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Abstract 9 

Countermanding behavior has long been seen as a cornerstone of executive control – the 10 
human ability to selectively inhibit undesirable responses and change plans. In recent years, 11 
however, scattered evidence has emerged that stopping behavior is entangled with simpler 12 
automatic stimulus-response mechanisms. Here we give flesh to this idea by merging the latest 13 
conceptualization of saccadic countermanding with a versatile neural network model of visuo-14 
oculomotor behavior that integrates bottom-up and top-down drives. This model accounts for 15 
all fundamental qualitative and quantitative features of saccadic countermanding, including 16 
neuronal activity. Importantly, it does so by using the same architecture and parameters as 17 
basic visually guided behavior and automatic stimulus-driven interference. Using simulations 18 
and new data, we compare the temporal dynamics of saccade countermanding with that of 19 
saccadic inhibition (SI), a hallmark effect thought to reflect automatic competition within 20 
saccade planning areas. We demonstrate how SI accounts for a large proportion of the saccade 21 
countermanding process when using visual signals. We conclude that top-down inhibition acts 22 
later, piggy-backing on the quicker automatic inhibition. This conceptualization fully accounts 23 
for the known effects of signal features and response modalities traditionally used across the 24 
countermanding literature. Moreover, it casts different light on the concept of top-down 25 
inhibition, its timing and neural underpinning, as well as the interpretation of stop-signal 26 
reaction time, the main behavioral measure in the countermanding literature.  27 

 28 

 29 

1. Introduction 30 
 31 

There is a long tradition in psychology and neuroscience of drawing a conceptual distinction 32 
between ‘top-down’ volitional processes and ‘bottom-up’ automatic responses. However, this 33 
does not mean there is a clear distinction in the brain. Nor is it likely that any behavior 34 
produced by any elaborate animal is entirely bottom-up or top-down in nature. Rather, we 35 
envisage an enmeshed relationship whereby increasingly selective or “voluntary” systems have 36 
grown out of, and remain entwined with, phylogenetically older automatic mechanisms (see 37 
Harrison, Freeman, & Sumner, 2014; McBride, Boy, Husain, & Sumner, 2012; Sumner & Husain, 38 
2008; Verbruggen, Best, Bowditch, Stevens, & McLaren, 2014; Verbruggen & Logan, 2008; 39 
Wessel & Aron, 2017). 40 
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 2 

Here we address a long-standing topic in top-down control: the ability to withhold action. 1 
Just as music is about the spaces as well as the notes, behavior is about the actions we don’t 2 
make as well as the actions we do make (Noorani & Carpenter, 2017). Clearly, humans are able 3 
to control their motor systems and refrain from always acting reflexively, habitually or 4 
impulsively. We have the flexibility to halt and change action plans in rapidly changing 5 
situations, such as sport, social interactions, or driving a car. The precise mechanisms that 6 
might enable us to do this have been a major focus of psychology and cognitive neuroscience. 7 
Over the years, work on human (Verbruggen, Best, et al., 2014; Verbruggen, McLaren, & 8 
Chambers, 2014; Wessel & Aron, 2017), primates (Logan, Yamaguchi, Schall, & Palmeri, 2015; 9 
Schall, Palmeri, & Logan, 2017) and rodent (Schmidt & Berke, 2017) has shown that, rather 10 
than reflecting solely a higher-level ability, stopping behavior also relies on a range of 11 
complementary lower-level adjustments. In convergence with this, here we propose that the 12 
ability to withhold action partly relies on fast drives triggered by any change in the 13 
environment. These automatic signals interfere with ongoing action plans, temporarily 14 
delaying their execution, buying time for slower and more selective drives to cancel or change 15 
the plan.  16 

Animal brains are full of inhibitory connections (see Noorani & Carpenter, 2017 for a 17 
review), many of which can be considered very basic and automatic properties of neural maps 18 
or local networks. What contribution could these low-level mechanisms play in behaviors 19 
traditionally ascribed to top-down control? Could they even form the main basis for well-20 
known hallmarks of ‘control’ behavior in some conditions? Even though they may be rather 21 
indiscriminate and simple, the potential advantage of low-level stimulus-driven inhibitory 22 
circuits would be their speed - a quick interruption allowing slower more complex processes 23 
time to update action plans (e.g. Schmidt & Berke, 2017). If we can understand how automatic, 24 
rapid and indiscriminate mechanisms work within tasks associated with top-down control, it 25 
should help us unify literatures on control and distraction (e.g. Wessel & Aron, 2017) and also 26 
better integrate the functional consequences of basic sensorimotor processes with concepts of 27 
higher cognitive functions. 28 

Important tools to develop and test our understanding of these mechanisms are 29 
computational models. In the recent years, their number and complexity have increased, with 30 
models becoming more biologically grounded, attempting to capture not only behavioral data, 31 
but also neuronal recordings (Bompas, Hedge, & Sumner, 2017; Bompas & Sumner, 2011; 32 
Boucher, Palmeri, Logan, & Schall, 2007; Cutsuridis, Smyrnis, Evdokmds, & Perantonis, 2007; 33 
Kopecz, 1995; Lo, Boucher, Pare, Schall, & Wang, 2009; Logan et al., 2015; Meeter, Van der 34 
Stigchel, & Theeuwes, 2010; Purcell et al., 2010; Shadlen, Britten, Newsome, & Movshon, 35 
1996; Trappenberg, Dorris, Munoz, & Klein, 2001; Wiecki & Frank, 2013). However, the focus 36 
on different tasks, animal models and anatomical subsystems has led to partly segregated 37 
subfields in the literature, and sometimes to the parallel development of distinct models 38 
attempting to capture different instantiations of similar cognitive functions. As a result, most 39 
current psychological models have been designed and constrained to capture mainly one task, 40 
and the generalizability to new tasks is not often tested. Although this limitation is inevitable in 41 
the early days of biologically inspired computational models of action decision, a desirable 42 
perspective for the field would be to move away from modeling tasks and start modeling the 43 
biological system trying to perform it. To achieve this, a first step is to draw modeling attempts 44 
together and develop more general models, ultimately able to predict human or animal 45 
behavior in new experimental conditions.  46 

 47 
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Stopping 1 

A prevalent paradigm of top-down inhibition used widely within the psychological, psychiatric 2 
and neurophysiological literatures is ‘countermanding’, epitomized by the stop signal task 3 
(Logan & Cowan, 1984; Noorani & Carpenter, 2017). Participants make simple responses to the 4 
presentation of a target and, on a minority of trials, are required to cancel (‘countermand’) 5 
their response following the onset of a stop-signal (Figure 1A). Hence, this task is designed to 6 
assess the volitional ability to rapidly inhibit responses that are already being planned.  7 

 8 

Figure 1. Typical design (above) and results (below) in the saccadic Stop-Signal Task (SST, panel 9 
A) and Saccadic Inhibition (SI, panel B) paradigms. Both paradigms involve a stimulus jump 10 
from center to periphery, sometimes followed by the onset of a central signal (right subpanels 11 
above, black lines below), sometimes not (left subpanels, grey lines). The signal onset time is 12 
indicated by vertical green lines and the delay between the target jump and the signal is 13 
referred to as the stimulus onset asynchrony (SOA). The two tasks differ in the instruction 14 
associated with the signal onset, withhold the saccade in the SST, ignore the signal and 15 
perform the saccade in the SI. A. Instructions to stop remove slower responses from the RT 16 
distribution, but fast responses escape ('failed stops'). B. The same visual events associated 17 
with an ignore instruction typically produce a dip in the latency distribution, where saccades 18 
are delayed and subsequently recover, so that the total number of saccades are about the 19 
same between signal present and no-signal distributions. We propose that on trials where 20 
participants are told to stop their saccade in response to the signal onset (A), the initial 21 
reduction in saccade probability has the same automatic source and therefore will happen at 22 
the same time as the dip in the ignore condition (B), but the recovery from the dip will be 23 
diminished or absent due to later top-down inhibition. 24 

 25 

The process of such top-down inhibition has long been conceptualized as a race between 26 
competing “go” and “stop” mechanisms within the independent horse-race model (Logan & 27 
Cowan, 1984). If the countermand activity can overtake the go activity, then the response is 28 
not executed; whereas if the go activity reaches its threshold before the stop-response activity 29 
overtakes it, then the response is executed (known as a failed stop). Failed stops tend to have 30 
short latencies with respect to the stop signal, consistent with the idea that top-down 31 
inhibition did not have sufficient time to act.  32 
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Since then, countermanding tasks have used a variety of response modalities and stimulus 1 
designs, but the basic principles of design and of behavioral outcomes are shared. The saccade 2 
(eye movement) countermanding task (Hanes & Schall, 1995) became the dominant modality 3 
for primate experiments, and has allowed the bridging of psychology and neurophysiology. 4 
The conceptual race between go and stop processes was then mapped onto more complex 5 
models capturing the neural architecture of the saccadic control network (Boucher, Palmeri, et 6 
al., 2007; Schall et al., 2017), implementing an antagonistic relationship between fixation and 7 
movement processes (Hanes, Patterson, & Schall, 1998; Munoz & Wurtz, 1993a, 1993b).  8 

The latest instantiation of this converging conceptualization is the Blocked Input 2.0 9 
model (Logan et al., 2015). In this model (Figure 2B), the onset of the “stop signal” is proposed 10 
to trigger two events: a quick return of excitatory input to fixation node, followed by a blocking 11 
of the excitatory input to the movement node. Although this model provides a similar fit to 12 
behavioral data as the simpler independent race model (or equally complex alternative 13 
models, see Logan et al., 2015), it better reflects the pattern of activity recorded in fixation and 14 
movement neurons within the frontal eye field of monkeys performing the stop-signal task. 15 
Being closer to the neuronal implementation of saccade planning opens the door to an 16 
increased ability to generalize to new tasks in ways that can be tested by both behavior and 17 
neurophysiology.  18 

Before Blocked Input 2.0, the stop or fixation activity was typically thought to be a 19 
unitary, purely top-down drive. In contrast, in Blocked Input 2.0, the very short latency of the 20 
first event (less than 50 ms) suggests it could be essentially bottom up in nature, while the 21 
later event (62-90 ms) is explicitly described as the top-down inhibitory control element. This 22 
suggests a potential evolution in the conceptual understanding of withholding action from a 23 
purely “top-down” inhibition account to a combination of “bottom-up” and “top-down” 24 
factors. This broad idea has been proposed before. For instance, Cabel et al. (2000) and then 25 
Morein-Zamir and Kingstone (2006) discussed the possibility that saccade countermanding 26 
using a central visual stop-signal captures a combination of automatic bottom-up as well as 27 
top-down volitional inhibition of responses, possibly due to stimulus-invoked activity of 28 
fixation cells of the superior colliculus. There are several empirical findings strongly suggesting 29 
that countermanding is not a pure measure of top down control, but rather induces an 30 
interaction between top-down and low level mechanisms. Alterations to the stimuli used, in 31 
particular in the saccadic version, can strongly affect the main outcome measure - the stop 32 
signal reaction time (SSRT), assumed to be the latency required to inhibit an already initiated 33 
go-response. For example a central visual signal provides a shorter SSRT than an auditory 34 
signal or a peripheral visual signal (Armstrong & Munoz, 2003; Asrress & Carpenter, 2001; 35 
Boucher, Stuphorn, Logan, Schall, & Palmeri, 2007; Cabel, Armstrong, Reingold, & Munoz, 36 
2000; Hanes & Carpenter, 1999; Hanes et al., 1998; Hanes & Schall, 1995; Ito, Stuphorn, 37 
Brown, & Schall, 2003; Morein-Zamir & Kingstone, 2006; Paré & Hanes, 2003; Stuphorn, 38 
Taylor, & Schall, 2000). In addition, introducing a 200 ms gap between fixation offset and 39 
target onset can reduce both reaction time and SSRT (Stevenson, Elsley, & Corneil, 2009).  40 

This conceptual evolution is also occurring in related fields. For instance, Schmidt and 41 
Berke (2017) echo the idea of fast and slow inhibition processes in their ‘Pause-then-Cancel’ 42 
theory of basal ganglia mechanisms in rodents. Wessel and Aron (2017) propose that rapid 43 
stopping in humans entails the same fronto-basal-ganglia network that disrupts motor plans 44 
following unexpected events, potentially unifying literatures on countermanding with post-45 
error slowing and attentional distraction in humans. In the domain of motor priming, Sumner 46 
and Hussain (2008) argued that automatic priming was one of the building blocks for conscious 47 
voluntary planning and control, while others merged the concepts of reflex and volition in the 48 



 5 

concept of conditional automaticity (see Kunde, Kiesel, & Hoffmann, 2003 for a discussion). In 1 
the oculomotor domain, Harrison et al. (2014) proposed that voluntary saccade control shares 2 
mechanisms with, and probably emerged in evolution from the quick phases of stimulus-3 
driven nystagmus. Conceptually, it is clear that several fields are moving away from the idea of 4 
an “executive controller”, and working toward characterizing the “army of idiots” that allow 5 
successful action control (Monsell & Driver, 2000; Verbruggen, McLaren, et al., 2014). 6 

 7 

Pausing and carrying on 8 

In order to draw together and build on these discussions, here we explore the extent to which 9 
countermanding can be accounted for by a low level, automatic disruption mechanism. In 10 
oculomotor behavior, new stimuli produce a hallmark phenomenon known as saccadic 11 
inhibition (SI, Buonocore & McIntosh, 2008, 2012; Buonocore, Purokayastha, & McIntosh, 12 
2017; Edelman & Xu, 2009; McIntosh & Buonocore, 2014; Reingold & Stampe, 2002, 2004). SI 13 
occurs under most scenarios in which a flash or new stimulus occurs while the system is 14 
planning a saccade, for example when reading text, viewing a scene or in simple saccade 15 
experiments. When these irrelevant stimuli occur during saccade planning, a population of 16 
would-be saccades is temporarily withheld, creating a dip in the latency distribution time-17 
locked to the onset of this distractor (Figure 1B). This inhibition is thought to be a purely 18 
automatic process where the distractor elicits competing activation in saccade planning areas 19 
(such as the Superior Colliculus) that limits the rise-to-threshold activity for the planned 20 
saccades to the target (Bompas & Sumner, 2011; Edelman & Xu, 2009; Reingold & Stampe, 21 
2002).  22 

These temporarily withheld saccades can be accounted for by a relatively simple 23 
biologically-inspired model (Figure 2C) based upon exogenous and endogenous neural signals 24 
and lateral inhibition in the intermediate layers of the SC (Bompas & Sumner, 2011, 2015; 25 
Trappenberg et al., 2001). The latency distributions produced both by the model and by 26 
human participants show a characteristic pattern with three phases following the distractor 27 
stimulus (Figures 1B and 3C): for the first 70-100 ms saccades entirely escape influence and 28 
are executed as usual (the distribution of saccades with or without distractors exactly overlap); 29 
then there is a dip - a reduction in the number of saccades produced compared with baseline 30 
conditions (with no distractor); lastly there is a recovery phase where the disrupted saccades 31 
are produced later in the distribution.  32 

Critically, this model was not originally developed to capture saccadic inhibition, but it 33 
readily did so when tested against the relevant experimental conditions (Bompas & Sumner, 34 
2011). It was designed to account for other typical aspects of oculomotor control, including 35 
express saccades, anti-saccades, variation of target probability and the gap effect 36 
(Trappenberg et al., 2001). Although its versatility comes at the cost of mathematical elegance 37 
(compared to simpler models designed to fit RT distributions, Brown & Heathcote, 2005; 38 
Carpenter & Williams, 1995; Ratcliff & McKoon, 2008), a conservative and principled approach 39 
to parameter constraining can be applied to test new empirical predictions. Although originally 40 
based on superior colliculus, the model architecture is also more general because similar 41 
behavioral phenomena and model principles extend to manual responses (Bompas et al., 42 
2017). 43 

 44 

 45 



 6 

Merging paradigms and models 1 

Volitional countermanding and automatic saccadic inhibition have so far been discussed in 2 
separate literatures and have different computational models associated with them. However, 3 
the latency distributions typical of both phenomena show a similar pattern: failed stops 4 
executed shortly after the signal escape inhibition and then at some delay following the signal 5 
there is a rapid reduction of response probability. Although this reduction has been 6 
traditionally attributed to the influence of top-down inhibition, our hypothesis is that it reflects 7 
the same automatic dip caused by the low-level indiscriminate saccadic inhibition mechanism. 8 
More selective control could then evolve later to inhibit the recovery phase, piggy-backing on 9 
the process begun by the automatic mechanism.  10 

This kind of hypothesis has been proposed before, but never formally tested (Akerfelt, 11 
Colonius, & Diederich, 2006). It shares conceptual similarity with the Pause-then-Cancel theory 12 
(Schmidt & Berke, 2017) derived from studying basal ganglia in rats (although the specific 13 
concepts and implementations are different as explained further in Discussion). We also 14 
consider it belongs in a growing family of proposals, briefly mentioned above, that attempt to 15 
integrate processes that were traditionally categorized as either volitional or reflexive. For 16 
example, although Wessel and Aron’s theory of unexpected events extends to the cognitive 17 
level, while ours is a mechanistic model of oculomotor planning, both carry the implication 18 
that countermanding is built on top of – and during evolution has grown out of – an 19 
indiscriminate response to novel visual stimuli (see discussion in Harrison et al., 2014 for 20 
similar ideas on the evolution of voluntary saccade control from automatic nystagmus).  21 

The computational models of countermanding and saccadic inhibition, while currently 22 
separate, are both biologically grounded and inspired by neuronal recordings. In fact, they 23 
share many properties. It therefore appears desirable to use both paradigms to constrain a 24 
merged model, able to capture both tasks. To achieve this (Section 2), we first employ the 25 
latest models applied respectively to the stop task (Blocked Input 2.0) and saccadic inhibition 26 
(200N-DINASAUR, 200-Nodes Dual Input Neural Accumulator with Sustained and AUtomatic 27 
Rise) and test the direct generalizability of each model to the conditions to which it had not 28 
been previously applied. We observe that DINASAUR can readily generalize across contexts 29 
when its endogenous response to the stop signal is a switch from target to fixation, as 30 
proposed by the Blocked Input model.  31 

Based on previous empirical data and our modeling, we make two key predictions, which 32 
we then test empirically. First, the early interference effects should be (almost) the same 33 
whether the instruction is to stop or ignore the signal. More specifically, the time at which the 34 
two distributions (in the presence and absence of signal) depart should be aligned across tasks. 35 
To confirm this, we designed two experiments, both combining saccade countermanding and 36 
saccadic inhibition paradigms using the same stimuli and participants but varying the 37 
instruction (Sections 3 and 4).  38 

The second prediction is that stopping behavior should be predicted by the model from 39 
the parameters obtained from basic oculomotor behavior. We do not fit the model to the 40 
stopping behavior itself. Rather, we extract the parameters from the conditions with simple 41 
saccades and saccadic inhibition (or inherit them from previous work), and we test whether 42 
the behavioral responses in the stopping condition naturally follows (Section 5). It is worth 43 
emphasizing this point, because the model does have multiple parameters. Crucially we do not 44 
allow them to vary when transferring across tasks. This is a stern test, as it is rare that a model 45 
can capture a new task without allowing multiple parameters to vary in a fresh fitting.  46 
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2. Model exposition and predictions 1 

 2 

Figure 2. Inputs to Blocked Input 2.0 and 200N-Dinasaur for each task condition, based on 3 
published versions (blue shaded areas; Logan et al., 2015; Bompas & Sumner, 2011) or 4 
parsimonious generalizations to new conditions (red shaded areas, using SOA = 83 ms as in the 5 
new experiments introduced below). A. Schematic task conditions (see Figure 1 for description). 6 
B. Blocked Input 2.0 was originally designed for the stop task encompassing the NO-SIGNAL 7 
and SIGNAL-STOP conditions (blue shade). In the most parsimonious generalization to the 8 
IGNORE instructions (red shade), the late “blocking” of move input does not occur (black line), 9 
just as in NO-SIGNAL conditions, while the stimulus onset reactivates fixation input (blue line) 10 
just as in the SIGNAL-STOP condition. C. 200N-DINASAUR was shown to capture saccadic 11 
inhibition (NO-SIGNAL = pro-saccade, SIGNAL-IGNORE = distractor condition, blue shade). Out 12 
of the 200 nodes, here only the fixation and target nodes are shown. The model categorizes 13 
inputs as exogenous (stimulus-elicited and transient, upper plots) or endogenous (instruction-14 
related and sustained, lower plots). A straightforward generalization to the STOP instruction 15 
(red shade) is to assume the exogenous inputs are unchanged, while the endogenous input 16 
switches from the target back to fixation, like in Blocked Input 2.0. Note that in Blocked Input 17 
2.0, this switch is not simultaneous: fixation drive reappears before move drive is blocked to 18 
allow for the extra rapidity of a stimulus-driven response. In DINASAUR, the exogenous input 19 
already accounts for the rapid stimulus-elicited activity, so parsimoniously the endogenous 20 
switch can be simultaneous: the onset of endogenous fixation drive is given the same delay as 21 
the offset of endogenous saccade drive.  22 

 23 
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2.1. Blocked Input 2.0 1 

This model was developed to capture the stop signal task and is described in Logan et al. 2 
(2015). Among multiple alternatives, it was the model best able to capture both the behavior 3 
of monkeys and the neural activity recorded in their FEF. It is a leaky accumulator with 2 4 
nodes, representing the fixation and movement options, which are mutually inhibitory (Figure 5 
2B). The go-signal is associated with a switch of input from the fix to the move node, occurring 6 
shortly after target onset (Dmove and Dfix both less than 50 ms, here grouped as a single 7 
parameter D as they turned out to be numerically almost identical). The stop signal triggers 8 
two additional events: the fixation node quickly receives excitatory input again (following 9 
about the same delay D), then the input to the move node is switched off (‘blocked’) by a stop 10 
module (some DControl delay after the signal; see Figure 2B right-hand blue panel). Node activity 11 
a directly maps onto firing rate, and evolves over time according to the following equation: 12 

𝜏
𝑑𝑎$
𝑑𝑡 = 	−𝑘$. 𝑎$

(𝑡) + 𝜇$ − 𝛽0. 𝑎0(𝑡) + 𝑁(0, 𝜎) 13 

with i being either fixation or move node and j being the other node, k representing leakage, μ 14 
the intensity of inputs projecting from other areas, β the weight of inhibition from the other 15 
node and σ the amplitude of normally distributed noise added independently to each time 16 
step. 17 

The most straightforward generalization of the model to IGNORE instructions (which have 18 
not featured in monkey stop task experiments), is inspired by the logic developed from 19 
DINASAUR, whereby exogenous inputs should be the same irrespective of the instruction, and 20 
only endogenous signals would be allowed to change. Here we associated the quick return of 21 
fixation signals as exogenous and the slower inhibition of target input as endogenous in this 22 
model. Thus, the presence of the signal requires fixation input to return identically as in the 23 
STOP condition, while the absence of the instruction to stop requires that move input is not 24 
blocked (Figure 2B red shaded panel).  25 

 26 

2.2. 200N-DINASAUR 27 

This model was initially developed by Trappenberg et al. (2001) to extract and simplify key 28 
features of the SC based on both known neurophysiology and established principles of leaky 29 
interactive accumulators (Usher & McClelland, 2001). Subsequently, Bompas and Sumner 30 
(2011, 2015; Bompas et al. 2017) showed that it predicted the characteristic dips of saccadic 31 
inhibition (the model is conceptually similar to the explanation given for saccadic inhibition by 32 
Reingold & Stampe, 2002), and in return these dips directly specify the delay time for 33 
exogenous input.  34 

200N-DINASAUR shares many features with Blocked Input as both are noisy leaky 35 
competing accumulators. DINASAUR has 200 nodes representing the horizontal dimension of 36 
the visual field, and the average spiking rate Ai of neuron i is a logistic function of its internal 37 
state ui: 38 

𝐴$(𝑡) = 1/(1 + 𝑒9:;<(=)) 39 

while ui varies across time t depending on normally distributed noise as well as the input 40 
received, either external to the map (endogenous or exogenous) or internal via lateral 41 
connections: 42 
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𝜏
𝑑𝑢$
𝑑𝑡 = −𝑘𝑢$(𝑡) +	

1
𝑛@𝜔$0

0

𝐴0(𝑡) + 𝐼$CDE(𝑡) + 𝐼$CFGE(𝑡) + 𝑁(0, 𝜂) 1 

A key aspect of DINASAUR is that it explicitly dissociates exogenous inputs (transients tied to 2 
visual events) from endogenous signals (later, sustained and linked to the instructions). Of 3 
course, this is still a gross simplification of the many sensory pathways (exogenous) and other 4 
pathways (endogenous) that feed oculomotor planning. Endogenous inputs vary as step 5 
functions (similar to inputs in the Blocked Input models), while exogenous inputs are transient, 6 
reaching their maximal amplitude (aexo) at t = tonset + δvis, and then decreasing exponentially as 7 
a function of time, according to the following equation: 8 

𝜏EF
𝑑𝐼$CDE

𝑑𝑡 = −𝐼$CDE(𝑡) + 𝑎CDE 9 

Exogenous inputs are tied to visual stimuli (e.g. targets, distractors or stop signals) and our key 10 
assumption is that these happen irrespective of the instructions. By default, we also assume 11 
that their properties (delay and strength) are not influenced by instruction, but see Discussion 12 
for expansion of this simplification). Exogenous inputs allow the model to produce express 13 
saccades (early mode at 70-110 ms on Figure 3B,D). All inputs have Gaussian spatial profiles 14 
(with SD σ): are maximal at the targeted nodes but also affect nearby nodes. Lateral 15 
connections show a Gaussian spatial profile that changes from positive (excitation) at short 16 
distance to negative (inhibition) at longer distance, described by the following equation: 17 

𝜔$0 = (𝐴𝑐𝑡 + 𝐼ℎ𝑛) ∗ expO−
𝐷$0Q

2𝜎QS − 𝐼𝑛ℎ 18 

In 200-DINASAUR, the NO-SIGNAL condition is characterized by a single exogenous 19 
(visual) transient from target onset (occurring δvis after target onset), shortly followed by a 20 
switch of endogenous support from fixation to target (δendo after target onset). The SIGNAL-21 
IGNORE condition differs from the NO-SIGNAL condition solely by the presence of a second 22 
visual transient, triggered by the signal appearing (the instruction being the same, no 23 
alteration of the endogenous inputs is assumed).  24 

To generalize the model to SIGNAL-STOP conditions, we assume that only the endogenous 25 
input should differ from the SIGNAL-IGNORE condition, since the visual display is identical and 26 
only the instructions differ. Following the logic of Blocked Input 2.0, the endogenous input to 27 
the target is switched off (blocked) δendo after the stop-signal, while the endogenous input to 28 
the fixation is switched on again. Unlike Blocked Input, however, the timings of these two 29 
events do not need to be free. Rather, there is a single δvis parameter inherited from the 30 
SIGNAL-IGNORE condition, and a single δendo parameter for both target and fixation nodes 31 
(with the delay between δvis and δendo inherited from previous work). Importantly, there is no 32 
need for this fixation drive to come back early, since the early stimulus-driven effect of any 33 
stimulus is already captured by the exogenous signal.  34 

 35 

2.3. Generalization to new paradigms from Blocked Input 2.0 and 200N-DINASAUR 36 

To test the generalization from both models to new tasks, we inherit as many parameter 37 
values as possible from previous publications, and make changes only where dictated by 38 
stimulus arrangement or the logic outlined above. For Blocked Input 2.0, parameter values are 39 
given in Table 1 and come from Monkey C in Logan et al. (2015) as its results were always 40 
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shown first in their article. Using parameters from Monkey A did not alter our conclusion in 1 
any respect. For DINASAUR, parameter values are given in Table 2, and come from Bompas 2 
and Sumner (2011). As expected, both models capture well the paradigm to which they have 3 
been applied previously (blue shaded panels on Figure 3).  4 

Table 1. Model parameters for Blocked Input 2.0, as used in Figures 2 and 3. Grey boxes 5 
indicate parameters that were inherited from Monkey C in Logan et al. (2015), and correspond 6 
to the STOP instruction. The only alteration is that, in the IGNORE condition, μmove remains up 7 
whether a signal appears or not (white box) but no new parameter is introduced. 8 

Name Description STOP IGNORE 

τ Decay time constant (ms) 1 

βmove Inhibition from move node 0.004 

βfix Inhibition from fix node 0.01 

k Leakage 0.008 

σ Noise amplitude 1 

δout Output time (ms) 10 

μmove Amplitude of inputs to move node 0.417 

μfix Amplitude of inputs to fix node 0.331 

D Delay of excitatory inputs to move and fix nodes (ms) 47 

θ Decision threshold 28 

DControl Delay for blocking inputs in response to signal (ms) 90 

μmove-post Amplitude of inputs to move node after Dcontrol 0 μmove 

 9 

Table 2. Model parameters for 200N-DINASAUR, as used in Figures 2 and 3. Grey boxes 10 
indicate those parameters unchanged from Bompas & Sumner (2011). The IGNORE condition is 11 
identical to previous work, except the distractor is now central instead of opposite to the 12 
target. The STOP condition differs from the IGNORE condition only in the endogenous response 13 
to the signal onset (white boxes) but no new parameter is introduced.  14 

Name Description IGNORE STOP 

Eccdist Distractor eccentricity in SC (mm) 0 

Ecctarg Target eccentricity in SC (mm) 1.76 

β Steepness of spiking function 0.07 

τ Decay time constant (ms) 10 

τon Transience of exo inputs 10 

Act Short-range activation 40 

Inh Long-range inhibition 55 

σ SD of spatial profile for lateral connections and inputs in SC (mm) 0.7 

k Leakage 1 

η Noise amplitude 50 

Th Decision threshold 0.85 

δout Output time (ms) 20 
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δvis Visual delay (ms) 50 

δendo Endogenous delay (ms) 75 

aexo Amplitude of exo inputs 80 

aendo,target Amplitude of endo inputs to the target 14 

aendo,fix Amplitude of endo inputs at fixation 10 

aendo,target-post Amplitude of endo inputs to the target after SOA + δendo in signal trials aendo,target 0 

aendo,fix-post Amplitude of endo inputs at fixation after SOA + δendo in signal trials 0 aendo,fix 

 1 

When using the published parameters, the SIGNAL-IGNORE scenario in Blocked Input 2.0 2 
was not able to produce the characteristic phenomenon of saccadic inhibition: dips in the 3 
distribution (Figure 3A). Instead, the model predicts only a partial recovery from the 4 
interference, leading to many saccades being inhibited (51% for Monkey C, 78% for Monkey 5 
A), despite the instruction to ignore. In contrast, integrating the main idea from Blocked Input 6 
into the endogenous node within DINASAUR provides good generalization between IGNORE 7 
and STOP conditions (Figure 3B and D). 8 

 9 

 10 

Figure 3. Simulated RT distributions from 10,000 trials using Blocked Input 2.0 (A,C) and 200N-11 
DINASAUR (B,D) for signal onset (green line) at SOA 83 ms. Blue shaded areas indicate those 12 
instantiations of each models as published. Red shaded areas indicate predictions for new 13 
conditions based on the assumptions described in Figure 2. The DINASAUR model (with blocked 14 
input for stopping) captures well the typical pattern of results obtained in both paradigms. 15 
Blocked Input 2.0 (with automatic fixation activity for ignore conditions) is not able to produce 16 
the sharp dips expected from the saccadic inhibition literature (but see Blocked Input 3.0 and 17 
Figures 4-5). Both models predict a perfect alignment across instructions of the time when the 18 
signal RT distribution (black) departs from the NO-SIGNAL RT distribution (grey), indicated by 19 
the blue dots (T0) and highlighted by blue vertical bars. Note that the difference in mean and 20 
variance of the RT distributions between the models simply reflects the parameters inherited 21 
from previous publications; they have never been fitted to the same behavioral distributions. 22 
Relatedly, the position of T0  (blue dots) relative to the baseline distribution merely depends on 23 
where that distribution lies relative to signal onset (the SOA). The important aspect here is 24 
generalization ability of each model across instructions.  25 
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2.4. Blocked Input 3.0 1 

We also test a simple upgrade of the Blocked Input 2.0 model. Taking inspiration from 2 
DINASAUR’s ability to capture the saccadic inhibition paradigm, we introduce a similar split 3 
between fast exogenous and slower selective signals into Blocked Input, which now allows the 4 
amplitude of these 2 streams of signal to vary independently as a function of the instruction. 5 
Figure 4 illustrates the relationship across all three models discussed in the present article.  6 

 7 

 8 

Figure 4. Overview of models and their relationships. A. Blocked Input 2.0 as in Logan et al. 9 
2015. B. Blocked Input 3.0 integrates aspects of DINASAUR into Blocked Input 2.0 in an attempt 10 
to capture the SIGNAL-IGNORE condition. Its inputs are split into two conceptually different 11 
streams: a fast and transient drive tied to visual onsets (exogenous) and a slower sustained 12 
drive tied to instructions (endogenous). C. 200N-DINASAUR is a map of fully interconnected 13 
neurons representing part of the left, central and right visual fields, invented to capture 14 
simplified SC dynamics. The temporal dynamics of its exogenous signals (quick growth and 15 
exponential decay) is a key factor for creating sharp dips and quick recovery. 16 

 17 

Table 3 presents the parameters specific to Blocked Input 3.0. We first attempt to inherit 18 
all parameter values from Blocked Input 2.0, without adding any new free parameter. In order 19 
to leave the NO-SIGNAL distribution unchanged between Blocked Input 2.0 and 3.0, we set the 20 
duration of exogenous signals as the difference between Dcontrol and D. Therefore, the inputs to 21 
the target node following target onset are the same under both models (a step function 22 
starting after delay D, Figure 5A-B). As can be seen on the simulated RT distributions (Figure 23 
5C), this variant improves on Blocked Input 2.0 in that most saccades now recover from 24 
distractor interference in the IGNORE condition, which is crucial to observe dips, the hallmark 25 
of saccadic inhibition. The reason for this improved recovery is that the bottom-up signal 26 
associated with the return of fixation is temporary (discontinued blue line on Figure 5A), 27 
rather than sustained (compare with Figure 2B).  28 

However, the simulated dip remains much shallower than in behavioral data. In Blocked 29 
Input 3.1, we therefore decoupled the amplitude of exogenous and endogenous signals, to 30 
allow the exogenous transient signals to be larger (continuous blue line on Figure 5A). For 31 
instance, multiplying the exogenous signals by 3 creates much larger dips, now comparable in 32 
amplitude to typical data observed in saccadic inhibition. The STOP condition would now also 33 
contain this initial strong fixation signal, dropping back to the sustained level in Blocked input 34 
2.0 after a short delay (Figure 5B). This slightly reduces the number of failed stops (Figure 5F). 35 
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This upgrade is reminiscent of the Boosted Fixation model, also proposed (and rejected) in 1 
Logan et al. (2015). However, contrary to Boosted Fixation, the extra fixation drive here is only 2 
temporary.  3 

 4 

Table 3. Description and values of new parameters introduced in Blocked Input 3.0 and 3.1. 5 
Blocked Input 3.0 assumes all parameter values are equal to published values from Blocked 6 
Input 2.0 (grey boxes), while Blocked Input 3.1 adds one free parameter: the amplitude of the 7 
exogenous input triggered by signal onset (white box). 8 

Name Description 3.0 3.1 

μexo,move Amplitude of exo inputs to move node μmove (from 2.0) 

μexo,fix Amplitude of exo inputs to fix node μfix (from 2.0) μfix * 3 

μendo,move Amplitude of endo inputs to move node μmove (from 2.0) 

μendo,fix Amplitude of endo inputs to fix node μfix (from 2.0) 

D Delay of exogenous inputs (ms) D (from 2.0) 

DControl Delay of endogenous inputs (excitatory and inhibitory, ms) DControl (from 2.0) 

 9 

 10 

Figure 5. Inputs and simulations from Blocked Input 3.0 and 3.1. A-B. In the most 11 
straightforward generalization from Blocked Input 2.0, we assume in Blocked Input 3.0 that the 12 
transient visual signals associated with signal onset are the same size as the original fixation 13 
inputs in Blocked Input 2.0 (discontinuous blue line). Blocked Input 3.1 assumes that the 14 
transient activity from the signal is larger (in this case 3 times higher) than the baseline fixation 15 
amplitude (continuous blue line). C. Simulated RT for Blocked Input 3.0 shows some dip, but this 16 
remains very shallow. D. The STOP condition for Blocked Input 3.0 is the same as for Blocked 17 
Input 2.0. E-F. Simulated RTs for Blocked Input 3.1 now show a clear dip and recovery as 18 
expected in the SIGNAL-IGNORE condition (E), while still capturing the SIGNAL-STOP condition 19 
(F). 20 

Blocked Input 3.1 confirms that splitting signals into distinct transient exogenous and 21 
sustained endogenous drives is an important property for allowing the model to capture new 22 
tasks. Not only does this splitting allow us to decouple the amplitude of both drives, but it also 23 
creates a straightforward relationship between, on the one hand, visual events and exogenous 24 
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signals, and on the other hand, the instructions and endogenous signals. However, despite this 1 
improvement, the dips created by Blocked Input 3.1 tend to recover too slowly, producing too 2 
long a tail compared with observed data and to simulations using the DINASAUR model. This 3 
highlights the importance of the temporal profile of exogenous signals. In DINASAUR, the step 4 
increase followed by exponential decay allows the interference to be maximal for a very short 5 
time window, and then for the system to recover quickly. Importing this property into Blocked 6 
Input 3.1 would doubtless improve the model’s performance. But rather than creating an 7 
amalgam model from this direction, in the remaining of the article, we use DINASAUR as the 8 
base model and inherit the spirit of Blocked Input for the behavior of endogenous signals 9 
during countermanding. This merger already captures the iconic behavior of the two 10 
paradigms as shown in Figure 3.   11 

 12 

2.5. Comparison to recordings in FEF neurons 13 

One of the strengths of Blocked Input 2.0 was its ability to capture not only monkey behavior 14 
but also that of fixation and movement neurons recorded within the frontal eye field of these 15 
monkeys, as previously published in Hanes et al. (1998) and Boucher et al. (2007). As explained 16 
above, DINASAUR appears better able to generalize across behavior in different tasks than 17 
Blocked Input 2.0, 3.0 and 3.1. The next critical question is how well DINASAUR approximates 18 
activity in fixation and movement neurons. Figure 6 shows that firing rates from DINASAUR 19 
and Blocked Input models are quite comparable (panels A-C), and that DINASAUR accounts 20 
equally well for the growth and decay rates from FEF neurons during successful inhibition 21 
(panel D) highlighted in Logan et al. (2015). Figure 6 was designed to match Figures 13 and 14 22 
in Logan et al. (2015) and the reader should refer to this work for a full justification. 23 

 24 

 25 

Figure 6. A-C. Mean firing rates from 1000 simulated trials using each model under the STOP 26 
condition, at the target and fixation nodes. The solid green line indicates the signal onset, here 27 
chosen at SOA 133, matching the experiments presented in section 4. The dashed green line 28 
shows the divergence time, i.e. the time at which this signal starts having an effect on the 29 
neuronal map, while the black vertical line indicates the SSRT, estimated from the simulated RT 30 
from each model. Activity was averaged across trials leading to successful inhibition (black and 31 
dark blue lines, Signal-Inhibit trials) and compared with “latency matched” No-Signal trials 32 
(grey and light blue lines; i.e. No-Signal trials in which latency is greater than SOA+T0). On the 33 
y-axis for the target node, Th indicates the saccade initiation threshold (although this is not 34 
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directly relevant for average firing rates, see text). D. Mean growth and decay rates from FEF 1 
neurons and simulations from each model (BI2 and BI3 refer to Blocked Input 2.0 and 3.1 2 
respectively), using the same format as Figure 14 in Logan et al. (2015).  3 

 4 

Panels A-C on Figure 6 contrast the mean firing rates between successful inhibition in 5 
SIGNAL trials and comparable NO-SIGNAL trials (i.e. NO-SIGNAL trials leading to a saccade 6 
being executed after the dip onset). In all models, target activity starts rising after a delay 7 
following target onset, while fixation activity decreases following fixation offset, irrespective of 8 
whether a signal is present or absent. On NO-SIGNAL trials, the fixation activity carries on 9 
decreasing (light blue lines), while the move activity carries on rising until it reaches a peak and 10 
then returns to baseline (grey lines). In neuronal recordings, this return to baseline is 11 
presumably related to triggering a saccade, and to mimic this effect in all our simulations, we 12 
interrupted the visual input to the peripheral target node each time a saccade was triggered in 13 
the model. This has of course no effect on the simulated RT distribution.  14 

On SIGNAL trials, following the signal (green solid lines), activity rises again at fixation 15 
(dark blue lines), resulting in a decrease in move activity (mediated by lateral inhibition), 16 
further emphasized by the suppression of inputs to the move/target node. Panels A-C also 17 
show the divergence time (green dashed lines); the time at which this signal starts having an 18 
effect on the target node (the separation of grey and black lines). In all models, this time is 19 
equal to SOA + δvis. All trials where the threshold is reached before this divergence time escape 20 
all influence from the signal and will therefore result in a failure to withhold the saccade 21 
(Signal-Respond trials). All trials where the threshold has not been reached by this time will be 22 
influenced by the signal to some extent. On some trials, the interference will be sufficient for 23 
the saccade to be correctly withheld (Signal-Inhibit category). On others, this interference may 24 
not be strong enough and the saccade is produced with a delay. This delay can be very short 25 
(as little as 1ms if the firing rate was very close to the threshold when the signal starts 26 
interfering), or much longer (up to 200 ms, see Bompas & Sumner, 2015). This variety means 27 
that recovery of saccades is already happening throughout the behavioral dips, rather than 28 
being restricted to the observed ‘recovery phase’. Although δvis is kept constant and thus the 29 
interference starts at the same time on every trial, the dips in the generated behavioral 30 
distribution are more spread, matching those observed in empirical data.   31 

The key difference between the models is that interference from the signal (the return of 32 
fixation activity and consequent lateral inhibition) increases in sharpness when going from 33 
Blocked Input 2.0 to Blocked Input 3.1 and to DINASAUR, illustrating the key property that 34 
makes DINASAUR able to produce sharp dips. Note that the downturn of target activity is 35 
already dramatic at the divergence time in DINASAUR, caused by the exogenous signal alone. 36 
In Blocked Input, the initial divergence is more subtle, and relies on the blocking of 37 
endogenous input for activity to take a severe downturn. Nevertheless, Panel B confirms the 38 
intuition from Logan et al. (2015) that a temporary boost of fixation following the signal 39 
(Blocked Input 3.1) would indeed capture neural dynamics.  40 

The figure also shows the SSRT estimated from the simulated behavior for comparison 41 
(black vertical lines), using the integration method (Verbruggen, Chambers, & Logan, 2013). 42 
We can see that the SSRT is always later than the divergence time and we will come back to 43 
the relationship between the two measures in section 5. Lastly, note that, when averaged over 44 
a large number of trials, mean node activity in DINASAUR never reaches the initiation 45 
threshold, contrary to Blocked Input models. However, whether and when the mean activity 46 
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reaches threshold is not directly relevant: in either class of model, the RT on each trial is 1 
determined by when the noisy activity reaches the threshold, and – due to the noise – this 2 
happens most of the time before the average trace reaches the threshold. Therefore, this 3 
apparent difference across models merely reflects the temporal profiles of accumulation 4 
(affected by the balance of self-excitation and leakage). 5 

While firing rates from Blocked Input 2.0 bear most resemblance to those motor neurons 6 
recorded in Monkey A, firing rates from DINASAUR resemble closely those visuo-movement 7 
neurons recorded in Monkey C (Figure 5 in Logan et al., 2015). Although there are potentially 8 
important differences between the two neuronal populations (Ray, Pouget, & Schall, 2009), on 9 
which we will come back in Discussion, activity within both neuron types modulate at about 10 
the same time and show similar growth and decay rates, as stated in Logan et al. (2015). Figure 11 
6D shows that DINASAUR provides growth and decay rates very similar to those in Blocked 12 
Input 2.0, accounting well for neuronal recordings in both monkeys. To construct panel D, we 13 
digitized the FEF data from Figure 14 in Logan et al. (2015), and ran simulations from each 14 
model following the same procedure as they used (see their Appendix C). Briefly, we simulated 15 
the models using the same SOAs and trial numbers as those from the FEF recordings (SOA 16 
ranging from 68 to 184 ms, and trial numbers varying from 61 to 130). For each SOA and 17 
monkey, the firing rate was averaged across the trials and divided by the initiation threshold. 18 
Minimum (M) and peak (P) mean firing rates were extracted, as well as the difference between 19 
these (D = P - M). The growth and decay rates were calculated on two sections of the curve, 20 
where the growth and decay are almost linear (i.e. the portion increasing from 25 to 75% of D 21 
(M + D * 0.25 to M + D * 0.75) for the growth rate, and the portion decreasing from 75 to 25% 22 
of D for the decay rate). It is clear that estimates from each model were within the range of 23 
estimates from neurons, similarly so across models. 24 

 25 

2.6. Empirical prediction: universality of dip onsets 26 

Irrespective of how well each model performs overall, a crucial observation in all our model 27 
simulations is that the time point when latency distributions diverge is exactly the same under 28 
both instructions (blue dots and lines on Figure 3 and 5). This is a basic prediction as soon as 29 
the initial neuronal response to the stop signal is conceptualized as automatic (and as long as 30 
non-decision time is not modulated by the different contexts, see below). In our previous work 31 
on saccadic inhibition, we have referred to this divergence point as dip onset or T0 and, using 32 
DINASAUR, we have shown that T0 - SOA directly reflects non-decision time (Bompas et al., 33 
2017; Bompas & Sumner, 2011, 2015). Below we explain why the relationship between T0 and 34 
non-decision time should hold overall irrespective of the model, and why we expect T0 to 35 
remain mostly unchanged across instructions.  36 

 37 

Dip onset reflects non-decision time.  38 

The conceptual approach that dip-onset is a direct reflection of the sum of the sensory delay 39 
and the motor output delay (non-decision time) was validated by varying the luminance 40 
contrast and color of distractors (Bompas & Sumner, 2011), using dips as a behavioral 41 
electrode for precisely determining sensory delay. This relationship is not expected to be 42 
model-specific, since it depends simply on the logic of what non-decision time is – the portion 43 
of the RT that is not influenced by decision / selection processes (i.e. not influenced by a 44 
distractor signal). Neither should T0 theoretically depend on the shape of what follows – a 45 
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sharp or gradual divergence or a true ‘dip’ (which implies divergence and then recovery). 1 
However, it should be noted that T0 is only directly observable in simulations or data if the 2 
distractor signal SOA allows the dip to fall within the main body of the RT distribution and if 3 
there are enough trials to allow little or no smoothing (smoothing is known to anticipate dip 4 
onsets). Its estimate could therefore slightly vary across models depending on the shape of the 5 
distributions. In Figure 3, simulations from Blocked Input 2.0 and DINASAUR were smoothed 6 
using the same procedure as real data and produce T0 respectively at 138 ms and 143 ms at 7 
SOA 83, irrespective of the instruction; that is respectively 55 and 60 ms following the 8 
distractor, while their respective non-decision times are 60 and 70 ms. Note that the 9 
differences in non-decision time across models are not relevant here as these result from 10 
fitting model parameters over completely different datasets and have never been contrasted 11 
before. What matters for now is that T0 offers a good estimate of non-decision times for any 12 
model (but will often anticipate it by 5 to 10 ms depending on the RT distribution and 13 
smoothing).  14 

 15 

Should T0 remain unchanged across contexts?  16 

One could argue that non-decision time may well differ under stop and ignore instructions, 17 
because of the associated attentional or strategic pro-active adjustments participants would 18 
likely make. Indeed, previous work using selective slowing paradigms (Bissett & Logan, 2014) 19 
has shown that, under the stop instruction, participants slow down to avoid making too many 20 
errors, in a similar fashion as when adjusting their behavior under accuracy versus speed 21 
instructions. It is therefore conceivable that T0 would be longer under the stop condition 22 
compared with the ignore condition, therefore contributing to the overall slowing. On the 23 
other hand, the stop condition requiring more attention to be paid to the stop signal, it is also 24 
conceivable that this would lead to improved sensory processing of the signal (Elchlepp, Lavric, 25 
Chambers, & Verbruggen, 2016) and therefore possibly to a shortening of T0 compared with a 26 
condition where the signal should be ignored.  27 

Previous research in the field of saccadic inhibition has consistently and clearly shown 28 
that T0, and therefore non-decision time, is mostly insensitive to pro-active slowing. For 29 
instance, Reingold and Stampe (2002) showed that dip timing was on average 4 ms later 30 
during pro-saccade blocks than during anti-saccade blocks, despite RTs being 100 ms faster. 31 
This being said, this difference was significant, which could suggest small but genuine 32 
modulations of non-decision time by instructions or ‘task-set’. In any case, these remain 33 
negligible compared with the modulations in decision time.  34 

Although the SSRT has long been conceived as the delay required to inhibit action, it is 35 
now clear that a large proportion of this time is devoted to non-decision time, while the 36 
inhibitory component is rapid and late (Boucher, Palmeri, et al., 2007). SSRT is sensitive to the 37 
salience of the stop signal and insensitive to fixation offsets (Morein-Zamir & Kingstone, 2006), 38 
just like T0 in a saccadic inhibition paradigm (Bompas & Sumner, 2011; Reingold & Stampe, 39 
2002). These findings suggest that SSRT likely behaves like T0, and therefore we expect the 40 
early part of the interference from stop-signals and distractors should be very similar in 41 
saccadic inhibition and countermanding. This leads to the strong prediction that T0 should 42 
remain the same across contexts (within a few ms), providing the same stimuli are used and 43 
only the instructions differ. In Sections 3 and 4, we test this empirical prediction, which 44 
constitutes the 1st step for our approach of unifying paradigms and models by regarding the 45 
first ‘inhibitory’ signal as fully automatic and therefore fully independent of instructions (note 46 
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that this is actually an overly stringent definition of automatic; we will return in Discussion to 1 
the concept of conditional automaticity, whereby cascades of neuronal activation considered 2 
automatic are nevertheless modulated by context). 3 

 4 

2.7. Modeling prediction: “one latency fits all” top-down delay 5 

A second key consequence from Section 2 is that top-down inhibition does not need a 6 
different delay from top-down drive. Rather, once endogenous and exogenous signals are 7 
explicitly separated, like in DINASAUR and Blocked Input 3, endogenous delays can all be 8 
captured by one variable, which constrains the latency of four events: 1) endogenous support 9 
for the target following target onset, 2) the removal of endogenous support for fixation 10 
following target onset, 3) the removal of endogenous support for the target following the 11 
signal under the stop instruction and 4) endogenous support returning to fixation following the 12 
stop instruction. This makes strong predictions when directly contrasting behaviors across 13 
conditions and paradigms, as this single parameter will now directly influence the NO-SIGNAL, 14 
SIGNAL-IGNORE and SIGNAL-STOP distributions across all SOAs. 15 

Furthermore, this single endogenous delay is not even a free parameter in DINASAUR, but 16 
is defined as exogenous delay + a fixed delay of 25 ms. The assumption that δendo directly 17 
depends on δvis reflects the idea that both exogenous and endogenous delays in sensorimotor 18 
decision tasks are linked to sensory signals, but endogenous signals are filtered by task 19 
relevance (Bompas & Sumner, 2011). This additional filtering process implies a longer route 20 
through the brain before entering motor competition, but the time at which these selective 21 
signals can be made available remains dependent on how fast the raw signals can reach these 22 
higher-level areas, i.e. the exogenous delay. Therefore, stronger signals will travel quicker 23 
within the brain, both straight to the decision area (δvis), and via the filtering process for task 24 
relevance (δendo). This 25 ms difference would in principle vary depending on the exact task 25 
and participants without changing the spirit of DINASAUR. The original model, inspired from 26 
the activity in SC neurons of monkeys, actually used a 50 ms difference (with δvis of 70, 27 
Trappenberg et al., 2001). Here the 25 ms is simply inherited from our previous modeling of 28 
saccades in humans (Bompas & Sumner, 2011). 29 

In Section 5, we test whether DINASAUR can, under these strict assumptions and with the 30 
stopping behavior inspired from Blocked Input, capture all aspects of our data. We show that 31 
this is the case, as long as we allow a minor refinement to the model to account for trials 32 
where human participants occasionally fail to maintain the stop instruction and ignore a stop-33 
signal.  34 

 35 

3. Empirical data – Methods 36 

3.1. Rationale for Experiments 1 and 2  37 

The behavior of humans and monkeys during the stop task or saccadic inhibition has been 38 
described many times, forging strong expectations for what empirical distributions will look 39 
like in each paradigm separately (Figure 1) and justifying the modeling endeavor from both 40 
fields (Figures 2-3). However, these paradigms have never been tested on the same 41 
participants and using the same stimuli. In the manual domain, ignore conditions have been 42 
used in stop paradigms, a paradigm known as “selective stopping” (see Bissett & Logan, 2014 43 
for a review). This paradigm would typically introduce two types of signals, one requiring a 44 
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stop and the other indicating the action should carry on (Verbruggen & Logan, 2009), or would 1 
involve two actions, one that should be inhibited (left hand movement) while the other should 2 
carry on (right hand movement). However, the nature of the analysis performed was quite 3 
different to our present ambition. As described above, our main aim for introducing new 4 
empirical data was two-fold. First, we aimed to test the prediction that the initial disruption to 5 
RT distributions is the same irrespective of instruction, suggesting that it is driven by 6 
automatic, rather than top-down inhibition. More specifically, this can be assessed by directly 7 
comparing dip onsets across instructions, as all models under this generalization hypothesis 8 
predicted perfect temporal alignment of dip onsets across conditions. Secondly, we aimed to 9 
test whether the later effects of the signal under each instruction can be captured within one 10 
single model with one set of parameters. This would suggest that distributions of failed stop 11 
can be fully predicted from the ignore condition by simply blocking the ability for saccades to 12 
recover, ultimately linking both phenomena to automatic interference from exogenous signals. 13 

In order to answer these questions, we needed to directly compare aspects of the RT 14 
distributions between contexts. Here there is a complication, which led us to conduct two 15 
separate experiments. Identical baseline (NO-SIGNAL) trials produce slower responses when 16 
participants know they might have to occasionally stop (as in a countermanding experiment) 17 
compared with when they are always allowed to ignore stimuli that come after the target (as 18 
in a saccadic inhibition experiment). This context-dependency is known as 'proactive slowing'  19 
(slowing of responses as a preparatory precaution given the possibility of having to stop, 20 
Verbruggen, Best, et al., 2014; Verbruggen & Logan, 2009). For this reason, we must compare 21 
SIGNAL-IGNORE and SIGNAL-STOP trials to their own NO-SIGNAL trials from the same block, 22 
rather than using the same baseline (as simulated in Figure 3). But further, too much 23 
distribution shift between conditions would hamper direct comparison. When RTs are very 24 
quick, only short SOAs produce detectable dips (as later ones only affect he very tail of the 25 
distribution, where hardly any saccades occur). But very short SOAs are not optimal to study 26 
stopping behavior, as only very few fails would then be observed. To be able to compare 27 
behavior using an identical set of SOAs, we needed to ensure that the baseline distributions in 28 
the two contexts would overlap to considerable degree, even though some difference was 29 
inevitable. 30 

To minimize proactive slowing in our design, in Experiment 1 we introduced a small 31 
number of trials requiring stopping in all blocks. To do this we included two types of signal, 32 
which we call 'common' and 'rare'.  In the IGNORE context, participants were asked to ignore 33 
the common signal but stop to the rare signal. This was reversed for the STOP context. Rare 34 
and common signals had identical properties except the rare was black (not illustrated) and 35 
the common white (Figure 1 and 2A). Only responses to no-signal and common-signal trials 36 
were included in further analyzes; the rare signal was present only to minimize differences in 37 
proactive slowing between the blocks. Differences remained, but this manipulation ensured 38 
the two baseline distributions were similar enough to measure T0 in all SOAs in both contexts. 39 
Our design is akin to “stimulus selective stopping” designs, which have been commonly used in 40 
the context of the manual stop task (see Bissett & Logan, 2014 for a review) and typically 41 
analyzed within the framework of the independent race model. Note that here we blocked the 42 
instruction to the common signal, rather than interleaving all three trial types (no-signal, 43 
signal-ignore and signal-stop) within the same blocks. This allows us to keep the exact same 44 
visual stimulus as signal and provides the strongest test for our prediction. Indeed, if T0 is fully 45 
constrained by automatic processes, it should depend only on the visual properties of the 46 
signal, and not the instructions, and this should remain true even when across blocks. 47 
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However, Experiment 1 also created a small recovery phase in the latency distribution for 1 
the STOP context. This may reflect particularly high levels of confusion in our participants, due 2 
to the interleaved presence of rare and common signals, and therefore to an increased failure 3 
to trigger the inhibition on STOP trials. Therefore, we validated our findings in Experiment 2 on 4 
a new sample, without the rare signal trials. This created the expected large shift between the 5 
two baseline distributions, making the long SOAs inefficient in the IGNORE context, and the 6 
short SOAs suboptimal in the STOP context. However, the same conclusions could be drawn 7 
from both experiments.  8 

 9 

3.2. Participants 10 

These experiments took a psychophysical approach in which few participants provided 11 
thousands of trials (between 5000 and 8000 each) to generate reaction time distributions, akin 12 
to neurophysiology studies that use non-human primates as subjects. The reason for this 13 
approach is that dips are a very robust phenomenon, found in every single participant tested 14 
throughout the saccadic inhibition literature on humans and primates, while the critical aspect 15 
is the accurate estimate of T0, which benefits from collecting a large number of trials per 16 
condition. Nine participants (5 female) with normal or corrected to normal vision took part (4 17 
in Exp 1 and 5 in Exp 2). One participant in Exp 2 was excluded because his accuracy on the 18 
stop task was around 2%. All participants were naïve to the purpose of the experiments. 19 

 20 

3.3. Materials 21 

A Tobii TX300 eye tracker with a 300 Hz sampling rate was used to collect saccade data. 22 
Participants were seated approximately 60cm from the screen where exact position of the eye 23 
in 3D space was calculated through algorithms supplied by the Tobii software for each time-24 
point sampled. Eye position was calibrated using a 9-point calibration array at the start of 25 
every session and after every 600 trials (one block). A 23 inch (51 by 29cm) LCD screen with a 26 
60Hz refresh rate was used to present stimuli. The lights in the room were switched off but the 27 
room was not in total darkness.  28 

 29 

3.4. Stimuli and procedure 30 

The two main trial types are illustrated in Figure 1 and 2A. Briefly, all trials began with a central 31 
fixation point, a white circle 0.4° visual angle in diameter (200 cd/m2), presented on a grey 32 
background for 700ms (58 cd/m2). This was immediately followed by a target with the same 33 
properties as the fixation point but either 12° visual angle to the left or right of the center of 34 
the screen on the vertical midpoint. For no-signal trials (60% of trials), the target appeared for 35 
1000ms and no other stimuli were presented. Both Experiments 1 and 2 contained common-36 
signal trials in which the target was followed by a larger white stimulus (1° diameter, 120 37 
cd/m2) appearing in the center of the screen after varying stimulus onset asynchronies (SOA: 38 
50, 83, 133 ms, due to the 60Hz refresh rate) until the end of the trial (i.e. until the main target 39 
disappeared). Experiment 1 additionally contained rare signal trials (5% of trials), in which the 40 
distractor was black (1° diameter, 9 cd/m2). 41 

Participants were instructed to fixate on the central fixation point and then saccade as 42 
quickly as possible to the target that appeared randomly on the left or right of fixation (in 43 
equal frequencies). At the beginning of each block participants were given instructions to try 44 
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to withhold their eye movement whenever the relevant signal (white or black disc) appeared 1 
in the center of the screen. They were told to ignore the other signal and to make a saccade to 2 
target as normal. All participants were instructed to ‘respond as fast as possible whilst 3 
minimizing errors’. At the end of each block participants were given feedback on mean 4 
reaction time, percentage of failed stops and percentage successful ignores for the relevant 5 
stimuli.   6 

Each participant completed over 5000 trials per experiment, divided into 24 blocks and 2 7 
contexts (12 blocks per context) spread over 4 sessions of 4 to 6 blocks each (approximately 1 8 
hour per session). Each session contained a run of 2 or 3 blocks of one context followed by a 9 
run of 2 or 3 blocks of the alternate context, presented in a counterbalanced order both within 10 
and across participants. The stimuli presented were identical across all blocks, however the 11 
required responses varied depending on the context. 12 

 13 

3.5. Data Analysis 14 

Raw gaze position data were first smoothed using a moving average with a window size of 15 
16.67ms and equal weighting across the window. Next saccades were detected using a velocity 16 
criterion of 35°/s, an acceleration of 6000°/s, and an amplitude of at least 6° (halfway to the 17 
target). Trials were excluded if there was loss of tracking (greater than 100ms) or blinks in the 18 
period 100ms before target onset to 100ms after saccade offset, or small saccades (under 6°) 19 
from 100ms before target onset. Each trial was visually inspected to ensure correct saccade 20 
detection by the algorithm and corrected where needed. Saccade latencies were calculated as 21 
the difference between target onset and saccade onset and then classified by trial type and 22 
context. All following analyzes are collapsed across left and right targets.  23 

Next, saccade latency distributions were obtained for each participant for no-signal trials 24 
and common-signal trials for each SOA collapsed across all sessions, separated by context. 25 
Latency distributions were obtained with a bin size of 3.33ms (the refresh rate of the eye 26 
tracker was 300Hz). Given the difference in trial numbers between signal and no-signal trial-27 
types, all distributions were scaled according to the number of trials still present within that 28 
condition after the exclusions listed above. Distributions of correct responses were then lightly 29 
smoothed using a Gaussian kernel with 7ms window size and 3ms standard deviation and 30 
interpolated to obtain 1ms precision, in line with Bompas et al. (2017) using similar trial 31 
numbers. Distributions using pooled data across observers and/or SOA used less smoothing 32 
(window = 5, SD = 1), in line with Bompas & Sumner (2011) using larger datasets. Note that for 33 
noisy distributions smoothing is necessary to robustly extract dip onset, but also anticipates 34 
dip onset. When more trials are available, smoothing becomes less necessary and less 35 
desirable for this reason. 36 

In order to determine the onset and peak amplitude of the dip in saccade latency 37 
distributions a distraction ratio was calculated for each time-bin of the latency distributions 38 
where at least 1 trial was present in the no-signal condition (e.g Bompas & Sumner, 2011; 39 
Reingold & Stampe, 2002). This distraction ratio is the proportional change in the number of 40 
saccades made in the signal-present distribution relative to the number in the no-signal 41 
distribution. This is calculated for each time bin as: 42 

𝐷𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑖𝑜 = 	
𝑁(𝑛𝑜	𝑠𝑖𝑔𝑛𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) − 𝑁(𝑠𝑖𝑔𝑛𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛)

𝑁(𝑛𝑜	𝑠𝑖𝑔𝑛𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 	43 
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The peak dip amplitude was calculated as the first time point of the maximum of the 1 
distraction ratio where the difference in the two distributions was greater than 2 saccades and 2 
the ratio was greater than 20%. Onsets of dips were defined as the point at which the 3 
distraction ratio fell below 2% working backwards in time from the dip peak.  4 

 5 

4. Empirical data - Results 6 

4.1. Latency distributions 7 

Figure 7 shows the saccade latency distributions for a typical participant (P1 in Experiment 1) 8 
in each context (see Appendix for all individual distributions and Table 4 for main summary 9 
statistics for both experiments), along with the simulations using 200N-DINASAUR (see section 10 
5 for modeling details). As expected, the IGNORE context is characterized by dips in the 11 
distribution following signal onsets, comparable to those in previous studies of saccade 12 
inhibition (Bompas & Sumner, 2011; Buonocore & McIntosh, 2008, 2012; Buonocore & 13 
McIntosh, 2013; Edelman & Xu, 2009; Reingold & Stampe, 2002, 2004). The distributions of 14 
failed inhibitions in the STOP context also show dips, but these are followed by little or no 15 
recovery, indicating mostly successful stops in the latter part of each distribution. Although 16 
one can start to appreciate the temporal alignment of T0 across contexts, this is more clearly 17 
illustrated by pooling across SOAs (section 4.2).  18 

Table 4 also shows the SSRT estimates, obtained using the integration method 19 
(Verbruggen et al., 2013). These were comparable to previous reports for saccade 20 
countermanding in human (on average 134 ms, Hanes & Carpenter, 1999), i.e. about 32 ms 21 
after dip onset and 30 ms longer than in rhesus monkeys (Hanes et al., 1998; Hanes & Schall, 22 
1995; Paré & Hanes, 2003). 23 

 24 



 23 

Figure 7. Latency distributions for Participant 1 in Experiment 1 across SOAs (rows) in the 1 
IGNORE and STOP contexts (A), along with simulations from DINASAUR without (B) and with 2 
(C) “confusion” (otherwise using parameter sets I1 and S1 on Table 5). Green bar indicates the 3 
signal onset. Grey lines indicate distributions in which no signal was presented. Black lines 4 
indicate distributions of trials in which a signal occurred. Blue dots indicate the dip onset (i.e. 5 
where the distributions diverge, not necessarily where one takes a down-turn); red dots show 6 
dip maximum.  7 

Table 4. Summary of empirical data along with simulated measures from the DINASAUR model. 8 
All measures are expressed in ms. T0p is the dip onset estimated from pooled distribution across 9 
all SOAs locked on distractor onset (see Figure 8). Group estimates are either mean across 10 
individuals (for mean RT and SD) or estimates from distribution data pooled across observers. 11 

 
Exp. 1 

IGNORE STOP 
Mean RT 
No-Signal 

SD of RT       
No-Signal 

T0p across 
all SOAs 

Mean RT 
No-Signal 

SD of RT       
No-Signal 

T0p across 
all SOAs 

Mean SSRT 
across SOAs 

P1 207 29 91 241 36 105 139 
P2 210 42 98 239 58 100 128 
P3 189 32 73 233 57 110 136 
P4 231 27 91 261 34 98 155 
Group 209 33 96 243 46 103 138 
DINASAUR 208 32 98 243 50 98 130 
 
Exp. 2 

IGNORE STOP 
Mean RT 
No-Signal 

SD of RT       
No-Signal 

T0p across 
all SOAs 

Mean RT 
No-Signal 

SD of RT       
No-Signal 

T0p across 
all SOAs 

Mean SSRT 
Across SOAs 

P1 170 34 No dip 288 71 109 140 
P2 195 40 96 280 60 98 119 
P3 178 29 86 290 68 101 141 
P4 132 20 No dip 289 60 96 116 
Group 169 31 95 287 65 99 131 
DINASAUR 174 26 98 289 63 98 134 

 12 

4.2. Temporal alignment of dip onsets across contexts 13 

Figure 8 shows the expected strong linear relationship between dip onset, and the timing of 14 
the distractor or stop signal, as well as the temporal alignment of dip onsets across the two 15 
instructions. This locking of T0 on distractor onset justifies pooling across SOAs based on time-16 
since-distractor in order to improve the estimates of T0 by using all the available data, a 17 
standard practice in many studies on saccadic inhibition (see section 3.5 and Reingold & 18 
Stampe, 2002). Panels C-D show these Signal-to-Response latency distributions for each 19 
participant and illustrate the temporal proximity of dip onsets across instructions. As expected, 20 
strategic adjustments across conditions were large in Experiment 2 (where the two contexts 21 
were kept fully separated) and meant the visual signal often arrived too late to have much 22 
effect in the ignore condition, especially for the fastest participants (P1 and P4). Nevertheless, 23 
when dips were observed in both contexts, these also appeared temporally aligned, confirming 24 
the results from Experiment 1. The main result is summarized on Figure 9, after pooling across 25 
participants.  26 

Dip onsets in the present study are around 98 ms on average, slightly later than reported 27 
previously, but it is known that stimulus properties affect dip onset (see e.g. Figure 6 in 28 
Bompas and Sumner, 2011), and the precise timing of its detection is affected by trial numbers 29 
and smoothing (Bompas et al., 2017). Dip maxima (red symbols) also occur at similar times in 30 
each context, though the exact timing of dip maximum is affected by the properties of the 31 
recovery, and thus less directly interpretable than dip onset (Bompas et al., 2017). 32 



 24 

 1 

Figure 8. A-B. Dip onset times (T0) for each participant in the IGNORE (open circles) and STOP 2 
(stars) contexts of both experiments, along with regression lines across SOAs on each group 3 
(whenever sufficient data was available). As predicted, dip onsets are locked on signal onset 4 
and are temporally aligned between the IGNORE and STOP contexts, consistently across 5 
experiments. C-D. Overlap of dip timing between the IGNORE and STOP contexts in both 6 
experiments, highlighted by blue vertical bars. Distributions show saccade latency locked on 7 
signal onset, allowing pooling of trials across the three SOAs to best visualize the timing of dip 8 
onset (blue dots) and maximum (red).  9 

Figure 9. Distributions of RT locked on signal onset, pooled across all SOAs and observers, along 10 
with simulations using 200N-DINASAUR model (parameters from Table 5). Same conventions 11 
as Figure 8. 12 
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Although dip onsets were overall aligned across tasks in both experiments, there 1 
appeared to be small but systematic numerical differences, suggesting T0 may be delayed in 2 
the STOP condition. This is investigated below. 3 

Group statistics. In Experiment 1, we found a main effect of SOA on T0 in a 2 (task) x 3 4 
(SOA) ANOVA, F(2,6) = 84, p < 0.001. The main effect of task was not significant (F(1,3) = 3.6, p 5 
= 0.15) and did not interact with SOA (F(2,6) = 0.37, p = 0.71) in line with our main hypothesis. 6 
Bayesian statistics suggested a similar pattern, with a Bayes Factor for the main effect of Task 7 
of 0.63 (using equal prior probabilities). The same statistical test could not be conducted on 8 
Experiment 2 alone because there were too many conditions without dips. Pooling the data 9 
across Experiment 1 and 2 showed similar results (evidence for a role of Task: BF = 0.5). BFs for 10 
Task were below 1 (therefore favoring the null) but above 0.33 (therefore not providing clear 11 
evidence in favor of the null either). Based on these, we cannot exclude that dip onset may be 12 
slightly delayed in the STOP context compared with the IGNORE, but this delay is small (5 ms 13 
on average when pooling across participants, SOAs and both experiments).  14 

Bootstrapping within the pooled RT distributions. Considering that our number of 15 
participants is small but our number of trials per participant is very high, a complementary 16 
statistical approach to the group-statistics above is to use bootstrapping to estimate the 17 
stability in estimated dip onset times observed across the two tasks. This was first performed 18 
on the signal-to-respond latency (same as Figure 9), i.e. on RT locked on distractor onset, 19 
pooled across all participants and SOA. For each experiment, task (IGNORE and STOP) and 20 
condition (no-signal and signal), we generated 1000 surrogate distributions from the observed 21 
distributions, by randomly sampling the same number of trials from each original distribution. 22 
We then applied the same dip onset extraction procedure as for observed data and calculated 23 
the median and 95% (uncorrected percentile) confidence intervals for the 1000 T0p. The 24 
median T0p were smaller in the IGNORE condition compared with the STOP condition but the 25 
confidence intervals largely overlapped across the two conditions (median [lower, upper] 26 
were: 96 [86, 103] and 103 [100, 106] for the IGNORE and STOP conditions of Exp 1; 96 [69, 27 
104] and 99 [86, 103] for Exp 2). The same conclusion was reached when repeating this 28 
analysis on each individual separately. The small difference between IGNORE and STOP 29 
conditions was therefore deemed too inconsistent and will be ignored in our modelling, but 30 
we return to plausible explanations for it (if real) in Discussion.  31 

Note that since the baseline distributions differed depending on context, but the timing of 32 
the dips (relative to the signal) is similar across contexts, the dip is therefore earlier relative to 33 
the main mode of the distribution in the STOP context, and thus the height of the pre-dip 34 
distribution was normally smaller in the STOP context. This is just a consequence of the 35 
baseline distributions. The critical question here was whether the leading edges of the dips are 36 
coincident. 37 

Figure 8 and Figures S1 and S2 in Appendix show that, for all participants in Experiment 1 38 
and P3 in Experiment 2, there is a partial recovery from the dip even in the STOP context. This 39 
failure to inhibit the saccade well after the time when they are usually able to do so has been 40 
reported before (Akerfelt et al., 2006). We suggest it may indicate occasional failure to trigger 41 
the inhibition command (Skippen et al., 2018), possibly fuelled by confusion about which 42 
instruction applied (see section 5.3). 43 

 44 

 45 
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5. Modeling Results 1 

This section details the steps taken to adjust three of the parameters in the DINASAUR model 2 
and to introduce a new one, in order to match the empirical data from Experiment 1 and 2 3 
above. These adjustments are summarized in Table 5 below and concern:  4 

- The visual delay (directly inferred from dip onset in the IGNORE context, section 5.1) 5 
- The strength of endogenous signals during fixation and in response to the target 6 

(constrained solely from the NO-SIGNAL trials in each context, reflecting strategic 7 
preparatory settings, section 5.2) 8 

- A new parameter quantifying a participant’s occasional failure to apply the STOP 9 
instruction, possibly because of lapses or confusion, which we will refer to as C 10 
(section 5.3) 11 

 Table 5. Parameters adjusted in 200N-DINASAUR to capture data from Experiments 1 and 2 12 
(see Table 2 for full list of parameters). Grey boxes indicate parameter values from Bompas & 13 
Sumner (2011) or those directly set by stimulus location or from another parameter. White 14 
boxes indicate free parameters used to capture the IGNORE and STOP contexts of Experiments 15 
1 and 2. Among these, δvis is directly constrained by behavioral dip onset in SIGNAL-IGNORE 16 
trials (δvis = T0 – δout), aendo-fix and aendo-targ are adjusted only from the NO SIGNAL condition in 17 
each context and assumed to generalize to the respective SIGNAL conditions, while C is the only 18 
new parameter freely adjusted when generalizing to the STOP context (see text in section 5.3 19 
for details).  20 

Name Description Bompas & Sumner 
(2011) 

Experiment 1 Experiment 2 

IGNORE STOP IGNORE STOP 

EccDist Distractor eccentricity in SC (mm) -1.76 0 

EccTarg Target eccentricity in SC (mm) 1.76 2.25 

δvis Visual delay (ms) 50 83 

δendo Endogenous delay (ms) 75 δvis + 25 = 108 

aendo-fix Amplitude of endogenous inputs at 
fixation 

10 18 22 12 54 

aendo-targ Amplitude of endogenous inputs to target 14 16 14 19.5 13 

C Confusion (see section 5.3)  0.20  0.05 

 21 

5.1. Non-decision time 22 

In previous work, we have explained why and illustrated how sensory conduction times for 23 
visual signals can be directly estimated from dip onset time (Bompas et al., 2017; Bompas & 24 
Sumner, 2011). Providing δvis and δout are constant across trials and a large number of trials are 25 
available, T0 = SOA + δvis + δout. This is because the earliest effect a visual stimulus can have on 26 
a saccade RT distribution represents the case where a distractor signal arrives (SOA + δvis after 27 
target onset) at the selection system just before the decision threshold is reached by the 28 
target activity (δout before the response would have occurred).  29 

In the data presented in Section 4, we observed that T0 hardly changes across contexts and 30 
experiments, despite the large differences in mean RT observed across blocks. Although 31 
within-participant bootstrapping analyses suggested mean estimates for dip onsets were 32 
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systematically earlier under the IGNORE instruction, the differences were only small (5 ms on 1 
average on pooled data across subjects and experiments). Furthermore, group statistics failed 2 
to reveal a main effect of Task on T0. We therefore choose to ignore this small difference in the 3 
present modeling (taking it into account would have altered the following section only very 4 
marginally; see Discussion for expansion on simplifications in the model). Based on pooled 5 
data across SOAs and observers (see section 4.2), we aimed to produce a T0p of 98 ms in our 6 
simulations across both contexts and experiments. Using 20 ms for output time (consistent 7 
with previous work) and a similar smoothing as in observed data (which anticipates dips by 5 8 
ms) directly led us to adjust δvis to 83 ms. For simplicity, we assume that δvis is equal for targets 9 
and distractors (this is a simplification as they have different eccentricity and sizes). 10 

By keeping δvis constant across instructions and experiments, we imply that δvis in 11 
DINASAUR does not contribute to pro-active slowing. This is consistent with the fact that 12 
DINASAUR nodes are mimicking the behavior of visuo-movement neurons (or “build-up” 13 
neurons in SC), rather than movement neurons. Indeed, recordings in visuo-movement FEF 14 
and SC neurons of monkeys performing a visual search task under a speed or accuracy 15 
condition (Reppert, Servant, Heitz, & Schall, 2018) (see also Heitz & Schall, 2012) 16 
unambiguously show that non-decision time of the visual response is unaffected by strategic 17 
adjustments. Under the accuracy condition, neurons from both populations showed a 18 
decrease in baseline firing rate (before target onset) as well as a lengthening of selective drives 19 
able to distinguish targets from distractors, but no change in visual gain or sensory conduction 20 
delay. In contrast, movement neurons in FEF and SC do delay the onset of their response on 21 
trials following stop-signals compared with trials following go-trials, consistent with behavioral 22 
slowing between these two conditions (Pouget et al., 2011), and with the idea that movement 23 
neurons integrate the output from visuo-movement neurons.  24 

 25 

5.2. Baseline parameters from NO-SIGNAL trials 26 

The next step was to adjust as few parameters as possible to account for strategic adjustments 27 
across tasks (which are inevitably present, but not of direct interest here). When IGNORE and 28 
STOP instructions are delivered in different blocks, such as in Experiment 2, participants adjust 29 
their behavior overall, leading to slower RT in the STOP block irrespective of signal presence 30 
(see section 3.1). This proactive slowing is present to a smaller degree in Experiment 1 when 31 
stop trials were always present but differed in frequency between blocks. To allow a fair test 32 
of the model’s ability to generalize from distraction to countermanding, it is essential to fit the 33 
different latency distributions of the baseline conditions. Critically, we adjusted the model 34 
parameters solely based on NO-SIGNAL trials.  35 

It is common to assume that pro-active slowing would be best captured by changes in 36 
initiation threshold (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Forstmann et 37 
al., 2010; Ratcliff & McKoon, 2008). This is indeed what simple models such as the 38 
independent race model would suggest (Heitz & Schall, 2012; Verbruggen & Logan, 2009). 39 
However, this assumption is not confirmed by electrophysiological recordings from monkeys 40 
(Heitz & Schall, 2012; Pouget et al., 2011; Reppert et al., 2018). Specifically, in SC neurons, 41 
firing rates some 10-20 ms prior to saccade initiation (i.e. the threshold) were the same under 42 
a speed and accuracy conditions (Reppert et al., 2018). Similarly, no change in threshold was 43 
observed after stop-signal trials, another way in which pro-active slowing has been 44 
investigated (Pouget et al., 2011). In FEF neurons, firing rates were actually higher in the speed 45 
condition compared with the accuracy condition, in direct contradiction to the decrease in 46 
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threshold suggested by the fit from the independent race model on concurrent behavioral 1 
data from these monkeys (Heitz & Schall, 2012). In contrast, both SC and FEF visuo-motor 2 
neurons consistently showed modulation in baseline firing rate (before target onset), as well 3 
as delayed target selection time (Reppert et al., 2018).  4 

In the DINASAUR model, baseline firing is directly related to the strength of endogenous 5 
fixation drive during the fixation period (aendo_fix), while delayed target selection would be 6 
caused by reducing the strength of the endogenous drive to the target (aendo_targ). Indeed, 7 
stronger fixation drive in stop task would, via lateral inhibition, reduce baseline firing rate in all 8 
peripheral nodes, making it more difficult to produce fast but possibly erroneous saccades to 9 
the target. Similarly, RT to the target largely relies on endogenous drives, since exogenous 10 
drives are most of the time insufficient to reach the threshold. Therefore, decreasing aendo_targ 11 
directly slows down most responses.  12 

Last, in SC visuo-motor neurons, changes from fast to accurate instructions were not 13 
accompanied by a modulation in visual gain (Reppert et al., 2018, i.e. the intensity of the visual 14 
response to stimulus onset that would be identical for targets and distractors). In our model, 15 
this suggests that the strength of visual signals (aexo) is unaffected by instructions (as was the 16 
delay of exogenous signals, see section 5.1). As for all the other parameters in the model, in 17 
the absence of specific hypothesis for why they may differ 1) across instructions or 2) 18 
compared with previous work, we refrained from altering these, providing the strictest test of 19 
our model.  20 

We therefore varied aendo_fix and aendo_targ systematically to search for the most suitable pairs 21 
for each of our four baseline conditions. Four observed distributions (one for each context and 22 
each experiment) were obtained from pooling across the 4 observers after correcting for their 23 
individual differences in mean RT. These were compared with 1000 trials simulated using each 24 
parameter combination, scaled to match the trial number from each experimental condition. 25 
Figure 10 shows the result of our parameter estimation, based on minimizing the X2 distance 26 
between observed and simulated NO-SIGNAL RT distributions in each context and experiment. 27 
To increase the sensitivity to the exact shape of the whole RT distribution, we used a fixed bin 28 
size (3.33 ms, the same as for the distributions throughout the article with the same 29 
smoothing) rather than a small number of quantiles. This choice led us to use the mean over 30 
two complementary estimates, X2

data and X2
model. Within each bin, X2

data = (Ndata – Nmodel)2 / Ndata, 31 
with N denoting the number of saccades for which RT fell within this bin, while X2

model = (Ndata – 32 
Nmodel)2 / Nmodel. This mean estimate therefore penalizes simulations producing saccades in bins 33 
where none are observed, as well as simulations failing to produce saccades in bins where 34 
some are observed. The overall X2 was the sum of the X2 over all the bins where Ndata (or Nmodel) 35 
was at least 1. Although this approach was the most intuitive to us, we note that using either 36 
X2

data, X2
model or X2

model on 10 quantiles actually made very little difference to the fit and no 37 
difference to our conclusion. 38 

The parameter adjustments required turn out exactly as predicted by the neuronal 39 
recordings (Reppert et al., 2018) for both experiments. In Experiment 1, the small pro-active 40 
strategic adjustment observers made between the IGNORE and STOP contexts is well captured 41 
by a small increase in endogenous fixation strength and a small decrease in endogenous target 42 
strength (black circle and diamond on Figure 10). In Experiment 2, the same pattern is 43 
observed but the larger pro-active slowing required larger adjustments (blue circle and 44 
diamond).  45 

 46 
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 1 

Figure 10. Endogenous parameter changes to account for proactive slowing. The diamond and 2 
circle symbols show the best parameter pairs (IGNORE-EXP1 is marked as I1, black circle; STOP-3 
EXP1: S1, black diamond; IGNORE-EXP2: I2, blue circle; STOP-EXP2: S2, blue diamond). We used 4 
only the NO-SIGNAL trials and adjusted only the strength of endogenous signals to fixation and 5 
target in 200N-DINASAUR, to account for pro-active slowing. The 4 symbols indicate those 6 
parameter pairs minimizing the X2 distance between simulated and observed RT distributions. 7 
The grey-scale areas around each symbol illustrate how the goodness of fit varies around the 8 
best values. These are thresholded to only show X2 values less than twice the minimum X2 in 9 
each condition. The selected parameters were used in Figures 7, 9 and 11 and are listed in 10 
Table 5.  11 

 12 

5.3. Generalization to SIGNAL-IGNORE and SIGNAL-STOP trials 13 

Crucially, once the adjustments to the NO-SIGNAL trials were made, we could test the ability of 14 
the model to generalize to the SIGNAL conditions for each SOA (note that our parameters 15 
were never allowed to differ between SOAs). The model was able to produce the expected 16 
dips from the IGNORE condition across all SOAs, producing an exquisite match to observed 17 
data without further adjustments (Figures 7 and 9B).  18 

The critical step was then to test how well behavior on SIGNAL-STOP trials could be 19 
predicted from our model under the following assumptions: i) the automatic exogenous 20 
activation should be identical to the IGNORE context (in both amplitude and delay); ii) all 21 
endogenous events occur with identical delay following their respective visual triggers; iii) this 22 
single endogenous delay variable is not free, but fully constrained by the automatic signal 23 
delay (δendo = δvis + 25 ms). We assess the model against both the shape of the RT distributions 24 
(Figures 7, S1 and S2) and also typical measures related to the stop-signal task (Figure 11).  25 

At first, we did not introduce any new parameter between the IGNORE and STOP contexts 26 
(Figure 9B). Like in Figure 3, this first attempt was able to produce the overall pattern of the 27 
stop condition producing very similar effects as the state of the art model for saccadic 28 
countermanding, Blocked Input 2.0. However, similar to Blocked Input models (Figure 3C) but 29 
in contrast to observed data, there were no “late” errors: the small recovery from the dip 30 
observed in all the participants in Experiment 1 and one in Experiment 2 was absent (see 31 
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Figures 1 and 2 in Appendix). As a result, the inhibition function (the proportion of failed stops 1 
as a function of SOA, dashed lines on Figure 11A) was systematically underestimated. Second, 2 
again similar to Blocked Input 2.0, DINASAUR predicted stop-signal reaction time (SSRT) to 3 
remain constant across SOAs (dashed lines on Figure 11B), in contrast to observed data 4 
showing a consistent decrease as a function of SOA in both experiments (dotted thin lines on 5 
Figure 11B).  6 

This dependency of SSRT over the stop-signal delay has been reported in the manual 7 
(Band, van der Molen, & Logan, 2003; de Jong, Coles, Logan, & Gratton, 1990; Logan & Burkell, 8 
1986; Logan & Cowan, 1984; Matzke, Love, & Heathcote, 2017) and saccadic (Hanes & Schall, 9 
1995) domains before. Within the framework of the independent race model, it can be 10 
explained by assuming the true SSRT varies across trials, and that varying the SOA leads to 11 
differently sampling this underlying distribution (Logan & Cowan, 1984). Since at short SOAs, 12 
most responses are successfully inhibited, the estimated SSRT is close to the true mean of 13 
SSRT. However, at long SOAs, only the shortest SSRT lead to successful inhibition, therefore 14 
leading to a systematic underestimation of the mean SSRT. However, a more fruitful 15 
interpretation seems to be in terms of failure to trigger the stop instruction, which would 16 
occur on some proportion of trials (Band et al., 2003).  17 

In the framework of the DINASAUR model, the same idea (variability of stop drive across 18 
trials) can be implemented in a simple way by adding a “confusion” (or inattention) parameter, 19 
i.e. a random proportion of trials where the STOP instruction is forgotten and which are 20 
therefore treated as IGNORE trials. This refinement is conceptually similar to that proposed in 21 
Hanes & Carpenter (1999), but is now explicitly linked to the ignore condition, which the 22 
system defaults to when the instruction to stop occasionally fails to be implemented. It is also 23 
well in line with similar suggestions made in the more cognitive domain and using manual 24 
responses (Band et al., 2003; Matzke et al., 2017; Skippen et al., 2018). In DINASAUR, top-25 
down drives are either on or off while, realistically, their strength and delay may well vary 26 
across trials. One could envisage that, on some trials, the blocking occurs but is incomplete or 27 
occurs too late, leading to the saccade being triggered anyway. These cases would be difficult 28 
to distinguish from a complete failure to apply the instruction to stop, and are therefore also 29 
captured by our confusion parameter.  30 

This adjustment allowed late recovery from stop-signals, and also improved the match to 31 
the inhibition function (continuous lines on Figure 11A), allowing more errors to be made by 32 
the model, bringing it more in line with human participants. This confusion parameter was set 33 
to 20% and 5% in Experiments 1 and 2, respectively, for the purpose of Figure 7, 9 and 11, but 34 
no further attempt was made to formally fit this proportion, as we expect it’s exact value to be 35 
highly dependent on participants, exact instructions and proportions of stop trials. Although 36 
20% may seem high, we note that it is well in line with estimates from very recent work, 37 
suggesting an average value of 17%, though on a very different task (Skippen et al., 2018). 38 
Crucially, although this confusion parameter is constant across SOA (like all other parameters), 39 
the proportion of saccades eligible for recovery decreases as SOA increases, and this now 40 
makes our model successfully capture the dependency of SSRT on SOAs (continuous lines on 41 
Figure 11B).  42 

We also plotted the cumulative distributions of RT (Figure 11C). Contrary to the custom in 43 
the stop-signal task literature, we did not normalize these on the number of saccades 44 
executed, which, in our eyes, would have masked the main feature of interest here: the 45 
exquisite overlap in the signal and no-signal distributions until the departure point (T0) and the 46 
dependency of this point on the SOA, both hallmarks of dips in the saccadic inhibition 47 
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literature. Our model captured the observed behavior well, irrespective of how the data was 1 
plotted. 2 

 3 

Figure 11. Traditional stop signal task measures from observed and simulated data. A-B. 4 
Proportion of failed stops (A) and stop signal reaction time (SSRT, B) across SOAs, from the 5 
pooled data across observers (black dots) and in DINASAUR simulations (empty circles) with 6 
and without confusion (continuous and dashed lines). The SSRT was calculated using the 7 
integration method (Verbruggen et al., 2013) and is also shown for each observer separately (+ 8 
and dotted lines). C. Cumulative distribution for no-signal (light grey) and signal trials (black 9 
continuous, semi-dashed and dashed for SOA 50, 83 and 133 respectively). 10 

 11 

6. Discussion 12 

How do brains halt action plans? Intertwined influences of automatic and top-down 13 
processes  14 

The thesis exposed in the present article is that the functional outcome of top-down control 15 
occurs initially via automatic indiscriminate mechanisms, which are followed by goal directed 16 
processes in the traditional view. When halting an action plan following new information in the 17 
world, the first process is a rapid automatic interference from the new sensory signal itself – 18 
which occurs regardless of the goal to halt. This indiscriminate interference has dynamics 19 
arising from the transient nature of rapid visual signals (such as the magnocellular pathway) 20 
and lateral inhibition in motor decision areas. It results in slowing down the process that leads 21 
to action, temporarily interrupting it. The endogenous command to alter the on-going action 22 
plan can then piggy-back on the already-unfolding automatic interruption. This account offers 23 
a simple interpretation for a wealth of data showing how “low-level” factors affect our ability 24 
to stop. It also allows quantitative predictions for many other factors, which have been shown 25 
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to automatically interfere with speeded responses but may not have been studied in the 1 
context of countermanding (see “Empirical predictions and future directions” below).  2 

This is not to say that rapid interference is entirely goalless in the broader sense: our 3 
brains may allow this interference to happen because it is helpful on average. In other words, 4 
natural selection seems to have preserved some apparently very basic – and probably 5 
phylogenetically old – processes that allow new and often irrelevant sensory information to 6 
rapidly travel to motor decision areas and influence action choices within 100 ms. We envisage 7 
this as one of the initial building blocks for how flexible behavior becomes possible as brains 8 
develop additional pathways that are more selective but slower. Further, while in simple visual 9 
scenes (such as in these experiments) all new stimuli may provide indiscriminate interference, 10 
in complex everyday scenes the degree of rapid interruption is likely to be modulated by 11 
relevance to on-going tasks (‘attention’ or ‘task-set’). It is known that attention modulates 12 
sensory signals from the earliest stages of processing (as early as the lateral geniculate nucleus 13 
for visual signals, O'Connor, Fukui, Pinsk, & Kastner, 2002). Similarly, sub-conscious motor 14 
priming is highly conditional on task-set (current task goals; i.e. whether the priming stimuli 15 
have a current motor mapping or not), suggesting automatic flows of activity through the brain 16 
show conditional automaticity (see Kunde et al., 2003 for an in-depth discussion on this topic) 17 
– and hence are not entirely goal-free. This dependency of automatic drives on task-set is also 18 
illustrated in pro-active control (Verbruggen, Best, et al., 2014; Verbruggen, Stevens, & 19 
Chambers, 2014). Therefore, although the present article develops the idea that top-down 20 
processes piggy back on automatic ones, we see it as complementary to the literature showing 21 
that automatic processes often piggy-back on top-down processes, pointing towards a close 22 
intertwining of automatic and volitional drives (Boy, Husain, & Sumner, 2010; Sumner & 23 
Husain, 2008).  24 

Our conclusions are convergent with previous literature showing how task goals, such as 25 
stopping, can be influenced by invisible or task-irrelevant primes (see Verbruggen, Best, et al., 26 
2014 for a review). Our viewpoint is also compatible with other recent theories of 27 
countermanding. Here we investigated the effect of visual stimuli on oculomotor control in 28 
humans, but our conceptualization is in line with other literatures describing animal behavior, 29 
such as freezing, as proposed in the Pause and Cancel model in rodents (Schmidt & Berke, 30 
2017). Our conclusions are reminiscent of those from Bisset & Logan (2014) on selective 31 
stopping paradigms, where participants are asked to stop to some signals but ignore others 32 
within the same session. In this context, it has been suggested that participants use a Stop 33 
then Discriminate strategy, in which they stop indiscriminately whenever a signal occurs and 34 
restart only if the signal is an ignore signal. However, we portray the initial stage as slowing 35 
down rather than stopping, and as an automatic process rather than a strategy.  36 

 37 

Converging modeling approaches 38 

Once we clearly conceptualized the first process in halting as transient automatic interference, 39 
we found natural alignment between recent models of countermanding and low-level 40 
mechanisms. The early process in countermanding models such as Blocked-Input 2.0 is already 41 
suggestive of automatic signals given its very short delay. The DINASAUR model was previously 42 
used to account for hallmark low-level oculomotor effects such as the gap effect and saccadic 43 
inhibition (Bompas & Sumner, 2011, 2015; Trappenberg et al., 2001), as well as visuo-manual 44 
interference (Bompas et al., 2017). We inherited the logic of blocking input for the 45 
endogenous signal from the most comprehensive model of countermanding (Logan et al., 46 
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2015), but we inherited nearly all actual parameters from saccadic inhibition (either previous 1 
work or the baseline and ignore conditions here). Countermanding behavior then drops out of 2 
the model. The model’s activity dynamics are also consistent with monkey neurophysiological 3 
data (Boucher, Palmeri, et al., 2007; Hanes et al., 1998) – an important test-bed for previous 4 
models of countermanding (e.g. Logan et al., 2015).  5 

To allow a match to every aspect of the data, we made one minor addition: a confusion 6 
parameter to capture the occasional late errors. However, even without this post-hoc addition, 7 
the model was able to generate good predictions in a behavior it had never been constrained 8 
for. Besides, this parameter is new to DINASAUR, but its plausibility has been already well 9 
supported in the context of the stop-task (Band et al., 2003; Matzke et al., 2017; Skippen et al., 10 
2018). It is worth emphasizing how rare it is for psychological models to capture new behavior 11 
for which they were not designed without being fit directly with plenty of free parameters. 12 
This might have been even more challenging when crossing a conceptual boundary – such as 13 
from bottom-up interference to top-down control. However, our thesis is that this should not 14 
be considered a conceptual boundary. Situations requiring top-down control do not differ 15 
qualitatively from those that stimulate automatic interference and most of the same brain 16 
mechanisms are engaged in both situations. Moreover, although elegant parsimonious 17 
mathematical models designed to capture specific tasks may often struggle to generalize to 18 
other tasks (unless completely re-fit or parameters are added that change the model 19 
characteristics), generalization is more natural in more complex models conceived to mimic a 20 
biological system. Of course, more parameters means more flexibility, should one allow all 21 
these parameters to vary freely. Note though that our approach is the opposite: we keep most 22 
parameters fixed and only allow very few parameters to vary in a highly constrained, 23 
hypothesis-driven manner. The ability of such models to generalize to new behaviors is a great 24 
strength, which, in our eyes, outweighs the loss in parsimony and mathematical elegance.  25 

Although our account bears conceptual resemblance to other recently proposed models 26 
of stopping, there remain important implementation differences. Specifically, the Pause then 27 
Cancel model (Schmidt & Berke, 2017) relies on an unspecific increase in the action initiation 28 
threshold following the stop signal event. Similarly, in Aron & Wessel (2017), a temporary 29 
slowing can be triggered in response to any unexpected events. Both accounts suggest this 30 
indiscriminate response could be mediated by the Basal Ganglia (BG), which has inhibitory 31 
connections with the SC. In contrast, DINASAUR mimics topologic relations between the visual 32 
field and the direction of saccades, as is commonly seen in SC buildup neurons during visually-33 
driven saccades. This difference in implementation could arise from a focus on different animal 34 
species and therefore on different types of action (ballistic head movements in rodents and 35 
saccades in monkeys). However, both BG and SC are involved in both actions in both species 36 
and it is therefore likely that both should contribute to stopping behaviors, the former as a 37 
general freezing mechanism and the later as a more spatially specific mechanism able to 38 
resolve competition across multiple stimuli in the visual field. Although simplified and limited, 39 
the spatial extent of the DINASAUR model allows us to test future predictions related to the 40 
spatial specificity of stopping behavior (see “Empirical predictions and future directions” 41 
below).  Future research investigating this spatial specificity could cast light on the relative 42 
contribution of the Basal Ganglia (possibly less spatially specific) and the Superior Colliculus 43 
into saccade countermanding.  44 

Another possibly important implementation difference relates to the distinction between 45 
visuomovement and movement neurons. DINASAUR units are simplified visuomovement SC 46 
neurons. As a result, they will show an automatic transient visual response, followed by a 47 
buildup of activity when the task requires it. In contrast, units in models such as Blocked Input 48 
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2.0 are thought to reflect FEF movement neurons. This means that they will not show the 1 
automatic visual response, but only the task-related accumulation. It has been argued that 2 
only movement (and not visuomovement) neurons reflect the accumulation of evidence that 3 
leads to saccadic decision (Ray et al., 2009). The fact that movement neurons (but not 4 
visuomovement neurons) showed activity profiles that matched those expected of GO units in 5 
a race model contributed to this assumption. Reciprocally, the presence of neurons with 6 
activity resembling the hypothetical GO units also contributed to legitimize the race model.  7 

Counter to this prevailing view, it is precisely the visuomovement nature of DINASAUR 8 
units (their automatic response to visual stimuli as well as their strategic drives) that allows 9 
DINASAUR to flexibly capture tasks it was not originally designed for – the saccadic inhibition 10 
and countermanding tasks – as well as several hallmarks of visuo-oculomotor behavior. 11 
Similarly, our upgrade of Blocked Input 2.0 to Blocked Input 3.1 consisted precisely in turning 12 
units from movement neurons into visuomovement neurons. The fact that neurons exist that 13 
behave in a similar way to units in our model is a necessary condition for this model to be 14 
“biologically plausible” but surely does not prove the model is right, nor that these neurons 15 
are precisely the ones “taking the decision”. Although it is essential to simplify complex 16 
behaviors and concepts into workable models, we keep in mind that this simplification makes 17 
all computational models intrinsically wrong. Ultimately, the proposed framework offers the 18 
opportunity to generate precise quantitative predictions, which can then be tested empirically 19 
(see “Empirical predictions and future directions” below). The endeavor here is not to 20 
“validate” one particular model or show it outperforms other models in specific tasks, but 21 
rather to employ a precise framework to bridge gaps across paradigms and literatures. 22 

 23 

Model simplifications 24 

Our approach to minimize the number of free parameters in the model led to four main 25 
simplifying assumptions (beyond the fact that all models are simpler than neuronal processes). 26 
First, most parameters were inherited from previous work, including the spatial profile of 27 
excitation and inhibition, the spatial extent of excitation from visual onsets and the temporal 28 
profile of exogenous signals. These parameters were based on monkey neurophysiology 29 
(Trappenberg et al., 2001), and appear sufficient for simulating currently existing human 30 
datasets (present and past, see Bompas & Sumner 2011).  31 

Second, we assumed visual onsets triggered the same automatic response (delay and 32 
amplitude), irrespective of their eccentricity. Visual eccentricity is known to decrease 33 
sensitivity and acuity, which could, in the model, mean weaker and slower signals. On the 34 
other hand, oculomotor behavior is, by definition, designed to orient towards peripheral 35 
stimuli, which may therefore be prioritized in oculomotor planning. To fully compare 36 
conduction delays (T0) across eccentricity is beyond the current data, but a proxy can be 37 
obtained from the very quickest saccades that are not guesses (i.e. the shortest-latency in 38 
which there are more correct than error saccades). In our data, this latency was 106 ms, and 39 
occurred in the condition expected to have lowest engagement with fixation: the IGNORE 40 
condition of Experiment 2. This suggests that T0 for these peripheral stimuli would have been 41 
approximately 100ms, allowing for a minimum amount of decision time and a slight pooling 42 
delay needed to detect above chance performance. This proxy estimate is similar to our 43 
estimate for T0 at fixation (98ms), and suggests our simplifying assumption of equal latency 44 
was sound. 45 
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Third, we assumed that instructions (task sets) do not affect the delay and strength of 1 
automatic signals. This is known to be simplistic, as discussed in the second paragraph of 2 
Discussion above. Thus, the small (~5ms) numerical difference in the estimates of T0 under 3 
IGNORE and STOP instructions could plausibly be a genuine indication of slight top-down 4 
modulation (rather than an outcome of noise in dip onset estimation, which close examination 5 
of Figure 8 reveals is also plausible). One possible interpretation is that proactive slowing in 6 
the STOP condition affects non-decision time as well as enhancing fixation activity.  7 

Fourth, we assumed that all endogenous delays were equal, including fixation release, 8 
saccade planning and blocking. This assumption followed from our theoretical view that the 9 
pattern of countermanding behavior could be predicted from lower-level oculomotor 10 
behaviors without separately fitting a special inhibitory or blocking mechanism. It is off course 11 
possible that these delays may differ slightly, in a way that relates interestingly to task-set or 12 
individual differences. 13 

  14 

How fast are top-down commands? 15 

The traditional purpose of countermanding research is to understand and measure how 16 
rapidly a top-down signal can overturn an action plan, quantified by the SSRT. One of the 17 
implications of the close relationship between bottom-up and top-down processes that we 18 
envisage is that the effective speed of top down signals depends on bottom-up factors. This 19 
conclusion is actually consistent with a wealth of research showing that SSRT depends on the 20 
exact experimental condition, and we provide here a general framework for explaining this. In 21 
this framework, all top-down drives, including stopping, are about translating sensory 22 
information into task-related action outcomes. Therefore, the speed of top-down drives will 23 
heavily depend on non-decision time, i.e. sensory conduction time and motor output time, 24 
which will depend on the nature of sensory information and action modalities under 25 
investigation.  26 

This being said, within the context of one task, one can usefully discuss the speed of top-27 
down drives associated with a given sensory signal, action domain and instruction set. One 28 
potential implication of conceptualizing the first phase of halting as automatic is that the truly 29 
endogenous signal does not have to be so rapid. This point echoes that of the Pause-then-30 
Cancel theory of basal ganglia mechanisms (Schmidt & Berke, 2017), where it is argued that a 31 
fast pause mechanism is followed by a cancel process that extends well beyond the traditional 32 
SSRT, and therefore we may have been looking in the wrong temporal window for neural 33 
evidence of such mechanisms.  34 

However, in our present results the latency remains relatively short for the top-down 35 
signals. SSRT is normally estimated as between 100 and 150 ms in humans for saccades 36 
(Campbell, Chambers, Allen, Hedge, & Sumner, 2017; Hanes & Carpenter, 1999). In our model 37 
there are two relevant input delays: visual and endogenous delay. For comparison with SSRT, 38 
we need to add motor output time, in this case 20 ms, because SSRT is a measure of the time 39 
needed between a stop signal and when a response would otherwise have occurred, not just 40 
the time before the inhibition signal reaches motor maps. The two delays in the model are 41 
therefore 83+20ms (i.e. dip onset time plus the effect of smoothing) for the transient 42 
automatic signal to start interfering with saccade build-up activity, and 108+20ms for 43 
endogenous support to switch back to fixation. One could therefore conclude that the new 44 
conceptualization overall supports previous estimates for the window of inhibitory signals.  45 
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Importantly though, neither of these two delays in DINASAUR can be interpreted as 1 
reflecting the timing of inhibition per se. Indeed, the first is the delay of automatic excitatory 2 
signals. When these automatic signals project to fixation neurons, they have an inhibitory 3 
effect on the plan to move the eyes to the target, but only indirectly, via lateral inhibition. The 4 
second only indexes the start of the endogenous switch, while the inhibition disrupting the link 5 
between the visual stimulus and the intention to saccade needs to be sustained throughout a 6 
long period to prevent saccades from recovering from the dip. Besides, the timing of this later 7 
drive is not specific to stopping, but is shared with all top-down drives in the model. 8 

How stopping is conceptualized also impacts the conceptual ordering of go and stop 9 
command speed. As previously envisaged within the influential independent race model of 10 
countermanding, the go signal always comes first and stop commands always have to catch up 11 
to take effect. This would have misled many into thinking that stop commands are on average 12 
faster than go commands. In contrast, in Blocked Input 2.0, the stopping delay (Dcontrol) is larger 13 
(62 and 90 ms for Monkey A and C) than the delay for producing go saccades (Dmove, 44 and 14 
47). In our model the two delays facilitating stops (83 and 108 ms) are identical to those 15 
producing go saccades to the target. How then is it possible for stimuli occurring after the 16 
target to trigger a majority of stops if the relevant delay parameters are equal to or longer 17 
than those driving go saccades?  18 

The answer is that in an interactive model a go saccade only occurs after an accumulation 19 
process, which takes some amount of time after the signals start getting integrated into this 20 
process. However as soon as a new signal, or a change in signal (e.g. one being turned off), 21 
reaches that process it can immediately change the accumulation, potentially stopping activity 22 
that was about to reach threshold doing so. In other words, go response latency depends on 23 
both the input delays and the accumulation time (plus output time), while inhibition speed 24 
depends mainly on the input delays (plus output time for behavioral evidence of inhibition). 25 
This distinction was of course known to previous researchers using interactive models. 26 
However, it does not appear to be widely discussed that stop processes can be successful and 27 
appear to ‘overtake’ go processes without there having to be neural mechanisms that are 28 
themselves more speedy for inhibition than for initiation of responses. 29 

Although Boucher et al. (2007) stress that the stop signal is ‘late and potent’, while we 30 
have referred to rapid transient inhibition, this difference of language merely occurs because 31 
of different starting positions. This signal is rapid when compared with human saccade latency 32 
distributions, or to the later influences of top-down signals. But it is late in the sense that it 33 
accounts for most of measured SSRT. It is potent in both models, in the sense that as soon as 34 
the signals reach the neural maps, lateral inhibition creates a strong impediment to saccade 35 
planning and has an almost immediately measurable effect in the reduction of saccade 36 
likelihood.  37 

 38 

The importance of sensory pathway dynamics in motor decision.  39 

Our findings confirm the suspicions of Cabel et al. (2000) and Morein-Zamir & Kingstone (2006) 40 
that the stimulus properties (such as salience) often influence task performance by engaging 41 
both automatic and top-down processes. This warns us not to assume that well-known 42 
behavioral effects in tasks associated with higher level processes always measure mechanisms 43 
at that level. The model framework we use provides a natural explanation for the influence of 44 
stimulus properties, which dictates both the timing and amplitude of the automatic dips 45 
(Bompas & Sumner, 2011; Reingold & Stampe, 2002). Likewise there are known differences 46 
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between SSRT arising from visual and auditory stop signals (Armstrong & Munoz, 2003; 1 
Boucher, Stuphorn, et al., 2007; Cabel et al., 2000; Morein-Zamir & Kingstone, 2006), which 2 
might traditionally be ascribed to the time needed to detect the stop signal before issuing the 3 
countermand, but in the model would also be captured by different dip size and delay. 4 
Auditory signals also produce dips, which happen sooner than following visual stimuli, 5 
although these have only been studied on microsaccades (Rolfs, Kliegl, & Engbert, 2008). 6 

Even changes to response modality – saccadic vs manual – which might not intuitively be 7 
associated with different stimulus-driven effects, in fact do affect the balance of drive from 8 
different sensory pathways (Bompas & Sumner, 2008), and thus the delay and amplitude of 9 
stimulus-driven activity (see Bompas et al., 2017for discussion and demonstration of the 10 
presence of dips in the manual modality). This could be part of the reason why SSRT differs 11 
between modalities (Boucher, Stuphorn, et al., 2007) and possibly also why saccadic and 12 
manual SSRT are differentially susceptible to influences such as alcohol (Campbell et al., 2017).  13 

Some task designs (e.g. manual responses with low-salience stop signals) may entail a 14 
sufficiently small automatic effect that explicitly including it in models would not alter 15 
conclusions in any important way. Indeed, the standard horse-race model of countermanding 16 
has been applied successfully to very many studies. However, we should not assume this will 17 
be the case for all manual designs, and we advocate paying close attention to the nature of 18 
stimuli and the non-linear activity they produce. For instance, it is possible for masked no-go 19 
or stop stimuli to slow down responses and slightly increase the rate of missed responses (van 20 
Gaal, Lamme, Fahrenfort, & Ridderinkhof, 2011), suggesting those invisible stimuli can partially 21 
prime activity, even if this would not manifest obviously in latency distributions under ignore 22 
instruction (for example if there was no strong lateral inhibition at the stage this priming 23 
reaches). Therefore top-down inhibition may partially piggyback on automatic processes even 24 
when it is difficult for us to detect this behaviorally.  25 

 26 

Non-independence of go and stop processes 27 

The fact that RT for failed stops tends to be shorter than mean RT for correct saccades is 28 
typically interpreted as evidence that the go and stop processes are independent. This 29 
concept, known as contextual independence, assumes that the finishing time of the go process 30 
is unaffected by the presence of the stop signal (see Bissett & Logan, 2014 for a recent 31 
explanation). However, Blocked Input and DINASAUR do not adhere to this concept, and yet 32 
the simulated failed stops have much shorter RT than most correct saccades. This 33 
demonstrates that this behavioral pattern is not a strong test for contextual independence; it 34 
is a necessary but not a sufficient condition. 35 

Previous work using saccades with visual (Gulberti, Arndt, & Colonius, 2014; Ozyurt, 36 
Colonius, & Arndt, 2003) and tactile (Akerfelt et al., 2006) stop  signals  show  violations  of  the  37 
independent  race  predictions,  suggesting  interaction  between  go  and  stop  processes 38 
(Colonius & Diederich, 2018). In contrast, it has been claimed that the idea of independence of 39 
the go and stop activity had been validated in neuronal recordings in FEF (Hanes et al., 1998) 40 
and SC (Paré & Hanes, 2003), because there was no difference in saccade-related activity in 41 
failed stops and correct trials when RT < SSRT + SOA, and no peak velocity or eccentricity 42 
difference in the saccades made (these would be behavioral consequences of any difference in 43 
SC activity). However, we now show that this way of selecting trials is very similar to RT < δvis + 44 
SOA, when no influence from the signal is yet measurable. Figure S3 in Appendix offers a clear 45 
demonstration of this. In all models the stop and go signals remain independent while the stop 46 
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signal is in sensory transmission before it reaches the integration process. The proportion of 1 
failed stops that occur during this time are expected to show contextual independence.  2 

 3 

What does SSRT reflect? 4 

Simulations using published parameters for Blocked Input 2.0 produced T0 around 60 ms and 5 
this value maps well onto the sum of excitatory input delay (47) and output time (10), just like 6 
in DINASAUR. Using the standard integration calculation for SSRT (but see Skippen et al., 7 
2018), the same simulations produce SSRT estimates of 73 ms for Monkey A and 93 ms for 8 
Monkey C (similar to observed SSRT, 71 and 94 ms), irrespective of SOA. These values map 9 
approximately onto the sum of DControl + δout for Monkey A (62 + 10), less clearly so for Monkey 10 
C (90 + 10). However, the proximity may be coincidental, since SSRT is also clearly influenced 11 
by other parameters in the model (Dmove and Dfix), though not in straightforward ways.  12 

Our SSRT estimates systematically decrease with increasing SOA, as previously noted in 13 
the countermanding literature. This trend suggests that SSRT does not directly reflect the 14 
timing of some unique underlying parameters of the sensorimotor system, as these would not 15 
be expected to vary with SOA. Linking saccade countermanding to saccadic inhibition and 16 
modeling both tasks with DINASAUR offers a quantitative explanation for this. The SSRT 17 
measure ignores the RT of failed inhibition, and therefore treats late errors equivalently to 18 
early errors. In other words, SSRT reflects the latency of inhibition as well as the success of 19 
inhibition. Given that dips are never so sharp that the distribution falls to zero straight after 20 
dip onset, there are always failed stops beyond dip onset. The number of these is influenced 21 
by nearly all parameters in the two models we considered. Therefore, SSRT is always higher 22 
than T0, and is a compound measure rather than the reflection of inhibitory delay alone.  23 

Many researchers use SSRT to measure individual differences in stopping ability. The 24 
model supplies a conceptually useful distinction that is merged in SSRT: whether better “ability 25 
to stop” translates into quicker/stronger application of top-down control (a longer-lasting dip 26 
as top down control takes over from the automatic inhibition) or more consistent blocking 27 
behavior across trials (fewer late errors/lapses). This is well is line with very recent work, 28 
suggesting correcting SSRT estimates for trigger failure improves correlation with impulsivity 29 
trait (Skippen et al., 2018).  30 

 31 

Empirical predictions and future directions 32 

Many “low-level” factors, such as signal contrast, chromaticity or position in the visual field, 33 
have been shown to modulate the automatic delaying of saccades. The present framework 34 
therefore predicts that these factors should also impact our ability to stop. Using previous 35 
quantitative estimates for how these factors precisely influence the delay and strength of 36 
exogenous signals, quantitative predictions for accuracy and related measures such as SSRT 37 
can be easily derived from DINASAUR. For instance, we have previously described how 38 
increasing the signal’s contrast equates, in DINASAUR, with increasing the strength and 39 
decreasing the delay of exogenous signals (Bompas & Sumner, 2009, 2011). We have also 40 
described how the interference from signals specifically designed to be visible only to some 41 
chromatic channels (“S-cone stimuli”) compared to that from luminance signals matched in 42 
salience. Using DINASAUR, we suggested that corresponding exogenous signals are delayed by 43 
25 ms, consistent with known electrophysiology (White & Munoz, 2011), but possess equal 44 
strength (Bompas & Sumner, 2008, 2011). Previous research has also shown that stimuli 45 
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presented in the temporal hemifield, i.e. left (right) visual hemifield when viewed with the left 1 
(right) eye only, interfere more with saccade latency compared with nasal stimuli (Walker, 2 
Mannan, Maurer, Pambakian, & Kennard, 2000). Some of these factors have never been 3 
considered in the context of countermanding, but a clear prediction from our proposal is that 4 
it should also be harder to stop in response to nasal or S-cone stimuli. Conversely, the present 5 
data show that dip onset, which we use to constrain the delay of exogenous inputs, can also be 6 
estimated from the stop signal task. This means that existing stop task datasets could be 7 
reanalyzed using the present framework in order to investigate automatic inhibition.   8 

The current DINASAUR model is only 1D and its spatial aspects are still largely under-9 
constrained (we have not allowed them to vary; they were inspired by recordings in monkeys 10 
but were never systematically tested against human behavior). Nevertheless, the fact that is 11 
possesses such spatial layout contrasts with most decision models (which possess typically 2 12 
nodes), and offers the possibility to investigate the effect of spatial attributes of signals and 13 
targets, such as size and location. For instance, DINASAUR correctly accounts for the fact that 14 
interference can be triggered by visual stimuli appearing at any location in the visual field but 15 
it also predicts that the interference should be modulated by where the stop signal specifically 16 
appears, in relation to the fixation and the saccade target. Previous research has shown that, 17 
in the stop task, signals appearing at the same location as the target were less potent than 18 
contralateral signals (Ozyurt et al., 2003). This is consistent with our previous work showing 19 
such stimuli fail to induce any saccadic inhibition (Bompas & Sumner, 2011), possibly due to 20 
the existence of a refractory period preventing two bursts of visual activity to occur close in 21 
time at the same location. It is therefore possible that these signals do not produce any 22 
automatic interference and act purely via top-down signals, providing an interesting design for 23 
isolating top-down factors. 24 

Another prediction from our framework is that factors mainly influencing top-down drives 25 
or the ability to apply these consistently (such as task switching, dual tasking, workload etc) 26 
should affect primarily the ability to stop saccades from recovering after the dips, but not so 27 
much dip onsets. More generally, the influences of clinical conditions, medications or other 28 
individual differences (age, personality traits etc) may well manifest as a combination of 29 
automatic and top-down drives differences. Therefore, disentangling the early (automatic dip) 30 
and late (blocking) stages in saccade countermanding, as the DINASAUR framework offers, 31 
should help revealing more specifically those higher-level factors researchers are often 32 
primarily interested in. 33 

So far, we have assumed that the delay of endogenous drives, including blocking, is fully 34 
determined by the delay of exogenous drives, being simply 25 ms longer. This choice was 35 
driven by parsimony and justified by the fact that all our signals are visual and had similar 36 
properties. Endogenous signals are simply viewed as further-processed versions of exogenous 37 
signals. However, it would be interesting to validate this assumption empirically, by measuring 38 
to what extent the exogenous delay (indexed by dip onset time) correlates with the 39 
endogenous delay (constrained by the shape of the go distribution), across participants or 40 
across conditions. Within the context of individual differences, this would also allow us to test 41 
whether the blocking has indeed the same delay as the endogenous signals driving the saccade 42 
to the target. Similarly, it could be tested whether endogenous timing is indeed the largest 43 
source of variability across people, as is commonly assumed in the countermanding literature.  44 

 45 

 46 



 40 

7. Conclusions 1 

To conclude, the theoretical, simulation and experimental work presented here suggests that 2 
automatic stimulus-driven interference accounts for much of the characteristic behavior in 3 
countermanding tasks, in contrast to the idea that these tasks primarily index higher level 4 
cognitive control. This highlights the importance of stimulus-driven effects in paradigms 5 
generally associated with higher cognition. More generally, we hope to help shift the 6 
traditional separation of automatic and voluntary processes towards a more integrated 7 
understanding of how automatic and voluntary control work together, alongside parallel 8 
endeavors to untangle the mysteriously intelligent control homunculus into the emergent 9 
activity of an army of idiots.  10 
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Appendix 2 

 3 

  4 

Figure S1. Latency distributions for each participant (columns) and SOA (rows) in the IGNORE 5 
and STOP contexts of Experiment 1, along with simulations from DINASAUR (using parameter 6 
sets I1 and S1 on Table 5). Green lines indicate the signal onset. Grey lines indicate distributions 7 
in which no signal was presented. Black lines indicate distributions of trials in which a signal 8 
occurred. Blue dots indicate the dip onset (i.e. where the distributions diverge, not necessarily 9 
where one takes a down-turn); red dots show dip maximum.  10 
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 1 

Figure S2. Latency distributions for Experiment 2. Same conventions as Figure S1 above. As 2 
expected, strategic adjustments across conditions were particularly large in Experiment 2 3 
(where the two contexts were kept fully separated) and meant the visual signal often arrived 4 
too late to have much effect, especially for the fastest participants  (P1 and P4). Nevertheless, 5 
when dips were observed in both contexts, Experiment 2 confirmed the results from Experiment 6 
1. 7 
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 1 

Figure S3. DINASAUR accounts for patterns in neural activity previously taken to imply 2 
independence of Go and Stop processes. A&C. Mean simulated activity during unsuccessful 3 
stop trials (signal-Respond) and latency matched No-Signal trials at SOA 83 ms, using the same 4 
convention as Figure 6 and matching Fig. 4 A&C in Boucher et al. (2007). B. Same data as in A 5 
but locked on saccade onset, following Fig. 3F in Paré & Hanes (2003). D. Same data as in C but 6 
locked on saccade onset (not shown in Paré & Hanes (2003), shown here for completion). 7 
Green shades indicate those time windows chosen in these two previous articles to illustrate 8 
the equality of neural activity between Signal-Respond and fast No-Signal trials. Clear 9 
differences are apparent outside these time windows. 10 
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