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 10 
Some images are easy to remember while others are easily forgotten. While variation in 11 
image memorability is consistent across individuals, we lack a full account of its neural 12 
correlates. By analyzing data collected from inferotemporal cortex (IT) as monkeys 13 
performed a visual memory task, we demonstrate that a simple property of the visual 14 
encoding of an image, its population response magnitude, is strongly correlated with its 15 
memorability. These results establish a novel behavioral role for the magnitude of the IT 16 
response, which lies largely orthogonal to the coding scheme that IT uses to represent 17 
object identity. To investigate the origin of IT memorability modulation, we also probed 18 
convolutional neural network models trained to categorize objects. We found brain-19 
analogous correlates of memorability that grew in strength across the hierarchy of these 20 
networks, suggesting that this memorability correlate is likely to arise from the 21 
optimizations required for visual as opposed to mnemonic processing.   22 
 23 
 24 
 25 
We have a remarkable ability to remember the images that we have seen, even after a single 26 
viewing [1, 2]. Although this capacity appears general and may serve a wide variety of functions, 27 
we remember some images better than others [3]. Image memorability is consistent across 28 
individuals [3, 4], however, a full account of the sources of image memorability has remained 29 
elusive. For example, while some types of natural image content are known to impact 30 
memorability – such as images with people, which tend to be more memorable than scenes [3], 31 
and abnormal objects, such as chair shaped like a hand, which tend to be more memorable 32 
than typical objects [4] – we lack a complete account of how image content determines image 33 
memorability.  34 
 35 
What neural processes determine memorability? The sources of memorability could range from 36 
variation in the perceptual organization of images in visual cortex to the processes that support 37 
memory formation and/or memory recall. The neural correlates of memorability are likely to 38 
reside at higher stages of the visual form processing pathway, where image memorability can 39 
be decoded from human fMRI activity patterns [5, 6], and more memorable images evoke larger 40 
fMRI BOLD responses [5]. However, we lack a deeper understanding of how the 41 
representations of memorable and non-memorable images differ. Similarly, some insight into 42 
the neural correlates of memorability can be gained from convolutional neural network (CNN) 43 
models trained for object classification, which have been demonstrated to mimic other (i.e. 44 
object identity) representations in the form-processing pathway (reviewed by [7]). Image 45 
memorability can be reasonably decoded from the higher layers of at least one of these 46 
networks [8], but we do not understand how memorability is reflected in this CNN nor whether 47 
this CNN reflects memorability like the brain.  48 
 49 
The fact that image memorability is linearly decodable in higher visual brain areas such as 50 
inferotemporal cortex (IT) [5, 6] could imply that information about image memorability is 51 
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represented in the same fashion as information about object identity in these areas. Within IT, 52 
representations of image and object identity are generally thought to be encoded as different 53 
patterns of spikes across the IT population, consistent with neurons that are individually “tuned” 54 
for distinct image and object properties. In a population representational space, these distinct 55 
spike patterns translate into population response vectors that point in different directions, and 56 
information about object identity is formatted such that it can be accessed from IT neural 57 
responses via a weighted linear decoder (Fig. 1a; reviewed by [9]). Similarly, image 58 
memorability could be represented by population vector direction in IT. However,  under this 59 
proposal, it is not clear how our experience of image identity and image memorability would be 60 
represented as by the same population of neurons, i.e. the fact that one image of a person can 61 
be more memorable than another image of that same person, and at the same time, identity 62 
information, such as the class of an object, explains only a limited amount of how memorable an 63 
image will be [3]. 64 
 65 
Here we present an alternative proposal, hinted at by the fact that more memorable images 66 
evoke larger fMRI responses [5]: we propose that memorability variation is determined 67 
principally by the magnitude of the IT population response, or similarly, the total number of 68 
spikes across the IT population (Fig. 1). This scenario is consistent with general accounts in 69 
which visual perceptual processing precedes memory storage and images that evoke larger 70 
numbers of spikes, and consequently have more robust visual representations, are remembered 71 
best. This scenario incorporates a representational scheme for memorability that is orthogonal 72 
to the scheme IT uses to support object identity, and it is thus attractive from the perspective 73 
that it would provide a straightforward account of how IT multiplexes visual information about 74 
image content (as the population vector direction) as well as memorability (as population vector 75 
magnitude). The plausibility of this scenario rests on whether there is sufficient variation in 76 
population response magnitude across the class of natural images to account for memorability, 77 
given the host of homeostatic and normalization mechanisms that act to maintain constant 78 
grand mean firing rates across a cortical population [10]. 79 
 80 
 81 

 82 
 83 
 84 
Figure 1. The hypothesis: the magnitude of the IT population response encodes image memorability. In 85 
geometric depictions of how IT represents image identity, the population response to an image is 86 
depicted as a vector in an N-dimensional space, where N indicates the number of neurons in the 87 
population, and identity is encoded by the direction of the population vector. Here we test the hypothesis 88 
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that image memorability is encoded by the magnitude (or equivalently length) of the IT population vector, 89 
where images that produce larger population responses are more memorable. 90 
 91 
 92 
To test the hypothesis presented in Fig. 1, we obtained image memorability scores by passing 93 
images through a model designed to predict image memorability for humans ([4]; Supp. Fig. 1). 94 
The neural data, also reported in [11], were recorded from IT as two rhesus monkeys performed 95 
a single-exposure visual memory task in which they reported whether images were novel (never 96 
before seen) or were familiar (seen once previously; Fig. 2a). In each experimental session, 97 
neural populations with an average size of 26 units were recorded, across 27 sessions in total. 98 
After screening for responsive units, data were concatenated across sessions into a larger 99 
pseudopopulation in a manner that aligned images with similar memorability scores (see 100 
Methods and Supp. Fig. 1). The resulting pseudopopulation contained the responses of 707 IT 101 
units to 107 images, averaged across novel and familiar presentations.   102 
 103 
 104 

                                                                            105 
Figure 2. IT population response magnitude strongly correlates with image memorability. a) The 106 
monkeys’ task involved viewing each image for 400 ms and then reporting whether the image was novel 107 
or familiar with an eye movement to one of two response targets. The probability of a novel versus 108 
familiar image was fixed at 50% and images were repeated with delays ranging from 0 to 63 intervening 109 
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trials (4.5 s to 4.8 min). Shown are 5 example trials with image memorability scores labeled. The 110 
memorability of each image was scored from 0-1, where the score reflects the predicted chance-111 
corrected hit rate for detecting a familiar image (i.e., 0 maps to chance and 1 maps to ceiling, [4]). b) The 112 
relationship between image memorability scores and IT population response magnitudes. Each point 113 
corresponds to a different image (N=107 images). Population response magnitudes were computed as 114 
the L2 norm 𝑟!!!

!!! , where ri is the spike count response of the ith unit, across a pseudopopulation of 115 
707 units. Spikes were counted in an 80 ms window positioned 180 to 260 ms following stimulus onset 116 
(see Supp. Fig 2c for different window positions). The Pearson correlation and its p-value are labeled. 117 
The solid line depicts the linear regression fit to the data. For reference, the mean firing rates for two 118 
example images are also labeled (see also Supp. Fig 3b). c) Mean and standard error (across 119 
experimental sessions) of monkey behavioral performance on the memory task as a function of human-120 
based image memorability scores. Performance was binned across images with neighboring memorability 121 
scores and pooled across monkeys (see Supp. Fig 4 for plots by individual). The dashed line corresponds 122 
to the grand average performance, and if there were no correlation, all points should fall near this line. 123 
The point-biserial correlation and its p-value, computed for the raw data (i.e. continuous memorability 124 
scores and binary performance values for each image in each session) are labeled. 125 
 126 
 127 
Fig. 2b shows the correlation between image memorability and IT population response 128 
magnitudes, which was strong and highly significant (Pearson correlation: r = 0.68; p = 1x10-15). 129 
This correlation remained strong when parsed by the data collected from each monkey 130 
individually (Supp. Fig. 2a-b) and, after accounting for the time required for signals to reach IT, 131 
across the entire 400 ms viewing period (Supp. Fig. 3a). The correlation also remained strong 132 
when computed for a quantity closely related to response magnitude, grand mean firing rate 133 
(Supp. Fig. 3b), as well as when the highest firing units were excluded from the analysis (Supp. 134 
Fig. 3c).  135 
 136 
The strength of the correlation between memorability and IT response magnitude is notable 137 
given the species difference, as the memorability scores were derived from a model designed to 138 
predict what humans find memorable whereas the neural data were collected from rhesus 139 
monkeys. Likewise, we found that estimates of human memorability scores were predictive of 140 
the images that the monkeys found most memorable during the single-exposure visual memory 141 
task (Fig. 2c).  142 
 143 
As described above, image memorability can be reasonably decoded from at least one CNN 144 
trained to categorize objects and scenes, but not explicitly to score memorability [8]. This hints 145 
at the fact that the neural correlate of memorability variation may be a consequence of the 146 
optimizations required for visual (as opposed to mnemonic) processing, however, before making 147 
this conclusion, one would want to establish that this CNN reflects memorability in a manner 148 
analogous to the brain. We found that this was the case: the correlation between image 149 
memorability scores and their corresponding population response magnitudes was significantly 150 
higher in the trained as compared to a randomly initialized version of the network in all layers, 151 
and the strength of this correlation generally increased across the hierarchy (Fig. 3). These 152 
results were also replicated in other CNNs trained for object classification, where correlation 153 
strength also systematically increased across the hierarchy throughout much of the network 154 
(Supp. Fig. 4), suggesting that this signature is not unique to this particular architecture or 155 
training procedure. These results suggest that variation in population response magnitude 156 
across images is likely to be a natural consequence of visual systems that classify objects, and 157 
that this variation is directly related to variation in image memorability. 158 
 159 
 160 
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 161 
 162 
Figure 3. Correlations between memorability and population response increase in strength across layers 163 
of a CNN trained to classify objects and scenes. Mean and 95% CIs of the Pearson correlations between 164 
image memorability and population response magnitude for each hierarchical layer of the CNN described 165 
in [8], up to the last hidden layer. “Conv”: convolutional layer; “FC”: fully connected layer. p-values for a 166 
one-sided comparison that correlation strength was larger for the trained than the randomly connected 167 
network: p < 0.0001 for all layers. 168 
 169 
 170 
Discussion 171 
	172 
Here we have demonstrated that variation in the ability of humans and monkeys to remember 173 
images is strongly correlated with the magnitude of the population response in IT cortex. These 174 
results indicate that memorability is reflected in IT via a representational scheme that lies largely 175 
orthogonal to the one IT uses for encoding object identity (Fig. 1). For example, investigations of 176 
how monkey IT and its human analogs represent objects using ‘representational similarity 177 
analysis’ typically begin by normalizing population response vector magnitude to be the same 178 
for all images such that all that is left is the direction of the population response pattern, under 179 
the assumption that population vector magnitude is irrelevant for encoding object or image 180 
identity [12]. Before our study, data from human fMRI had pinpointed the locus of memorability 181 
to the human analog of IT, but we did not understand “how” the representations of memorable 182 
and non-memorable images differed. Our results point to a simple and coherent account of how 183 
IT multiplexes representations of visual and memorability information using two complementary 184 
representational schemes (Fig. 1).  185 
 186 
How might variation in IT population response magnitudes lead to variation in how visual 187 
memories are stored? These results are consistent with general accounts of memory in which 188 
visual processing precedes memory storage and images with more robust visual 189 
representations are those that are best remembered. Our results demonstrate that despite the 190 
host of homeostatic mechanisms that contribute to maintaining constant global firing rates 191 
across a cortical population [10], changes in image content can result in IT population response 192 
magnitudes that differ by up to 19% (Fig. 2b; Supp. Fig. 3b). Of course one naturally expects 193 
that classes of images that are known to be more robustly represented in IT should be better 194 
remembered – for example, natural images should be better remembered than their scrambled 195 
counterparts [e.g. 13]. The significance of our result follows from the unexpected finding that 196 
there is variation in the robustness of visual representations within the class of natural images 197 
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that correlates with our understanding of the content that makes images more or less 198 
memorable. For example, unusual objects, such as a chair shaped like a hand, are known to be 199 
more memorable than typical objects, but the fact that unusual objects have more robust visual 200 
representations has not been previously established. As such, our results give insight not only 201 
into visual memorability, but also vision itself. 202 
 203 
Our neural data were recorded from the brains of monkeys that could both see and remember 204 
what they had seen. To tease apart whether the origin of memorability could be attributed to 205 
optimizations for visual as opposed to mnemonic processing, we investigated CNNs optimized 206 
to categorize objects but not explicitly trained to predict the memorability of images. Prior to our 207 
study, memorability was demonstrated to be linearly decodable from higher layers of one of 208 
these CNNs, but it was unclear how memorability was reflected in this CNN and how that 209 
compared to the brain. Additionally, while this class of models has been demonstrated to mimic 210 
many aspects of how IT represents visual object identity (reviewed by [7]), image memorability 211 
has a distinct representational scheme from identity (Fig. 1), and in the context of the many 212 
illustrations that CNNs solve the same problems as brains using different strategies (e.g. [14]), it 213 
need not have been the case that CNNs reflected memorability in the same way as the brain. 214 
The fact that CNNs trained for object recognition mimic the neural representation of a distinct 215 
behavior – visual memorability – is compelling evidence that this strategy of multiplexing visual 216 
identity and memorability results from the computational requirements of optimizing for robust 217 
object representations. These modeling results also offer insight into the nature of the 218 
mechanism underlying memorability. The brain perceives and remembers using both 219 
feedforward and feedback processing, and this processing is modulated by top-down and 220 
bottom-up attention. Because of this, it is difficult to pinpoint the locus of an effect like the one 221 
we describe to any single mechanism using neural data alone. The fact that variations in 222 
response magnitudes that correlate with memorability emerge from static, feed-forward, and 223 
fixed networks suggests that memorability variation is unlikely to follow primarily from the types 224 
of attentional mechanisms that require top-down processing, recurrent processing, or plasticity 225 
beyond that required for wiring up a system to identify objects.   226 
 227 
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SUPPLEMENTAL FIGURES 236 
 237 
 238 
 239 

 240 
 241 
Supplemental Figure 1. Distributions of memorability scores for the images used in these experiments. 242 
Memorability scores range from 0-1, where the score reflects the predicted chance-corrected hit rate for 243 
detecting a familiar image and 0 maps to chance (see Methods and [4]).   244 
 245 
 246 

 247 
    248 
Supplemental Figure 2. The correlation of memorability and population response magnitude, for each 249 
monkey individually. a-b) Fig 2b replotted for each monkey individually (monkey 1: 353 units; monkey 2 250 
354 units). To compensate for parsing the data, the spike count window was increased to 250 ms in these 251 
plots (positioned 150 ms – 400 ms) relative to the 80 ms window depicted in Fig. 2. The Pearson 252 
correlation and its p-value are labeled. The following two points were included in computing the 253 
correlations but fall outside the boundaries of the plot or are obscured by text: Monkey 1 (panel a): 254 
memorability = 0.86, response magnitude = 83.6; Monkey 2 (panel b): memorability = 0.57, response 255 
magnitude = 71.5. Solid lines depict the linear regression fits to the data. 256 
 257 
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 258 
 259 
Supplemental Figure 3. The correlation of memorability and the IT population response, applied to 260 
different time windows, assessed with firing rate, and determined with top-ranked firing units removed. a) 261 
The same analysis described for Fig. 2b, but applied to 80 ms windows shifted at different positions 262 
relative to stimulus onset, where the correlations are plotted against the center of each time bin. Fig. 2b is 263 
shown at the peak of this plot (220 ms). Also shown (dotted line) is the critical correlation threshold for p < 264 
0.01, which the population reached at 80 ms following stimulus onset. b) Correlations between 265 
memorability and grand mean firing rate across the 707 units (in contrast to the plots of response 266 
magnitude in Fig. 2b). The two example images from 2b are indicated. Solid line depicts the linear 267 
regression fit to the data. c) The analysis in Fig. 2b with N% top-ranked firing rate units excluded from the 268 
pseudopopulation for different N. The dotted line indicates the critical correlation for the significance level 269 
p = 0.01. 270 
         271 
                                             272 

 273 
 274 
Supplemental Figure 4. Human-based memorability scores predict what monkeys find memorable. The 275 
analysis presented in Fig. 2c, applied to each monkey individually. To compensate for parsing the data, 276 
the data is parsed into 5 bins as opposed to the 7 bins in Fig. 2c. The dashed lines correspond to the 277 
grand average performance, and if there were no correlation, all points should fall near this line. The 278 
point-biserial correlation and its p-value, computed for the raw data, are labeled. 279 
 280 
 281 
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 282 
 283 
 Supplemental Figure 5. Correlations between memorability and population response magnitude are 284 
also reflected in two other CNNs. Mean and 95% CIs of the Pearson correlations between image 285 
memorability and population response magnitude for each hierarchical layer for two CNNs, including a) 286 
AlexNet [15], b) VGG-16 [16], up to the last hidden layer. “Conv”: convolutional layer; “FC”: fully 287 
connected layer. p-values for a one-sided comparison that correlation strength was larger for the trained 288 
than the randomly connected network, AlexNet: p < 0.0001 for all layers; VGG-16: p = 0.8, 0.2, 0.9, and 289 
0.5 for Conv 1.1, 1.2, 2.1, and 2.2, respectively, p = 0.0008 for Conv 3.2, and p < 0.0001 for all other 290 
layers. 291 
  292 
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METHODS:  1 
 2 
As an overview, three types of data are included in this paper: 1) Behavioral and neural data 3 
collected from two rhesus monkeys that were performing a single-exposure visual memory task; 4 
2) Human-based memorability scores for the images used in the monkey experiments, and 3) 5 
The responses of units at different layers of three convolutional neural network models trained 6 
to classify objects and scenes  . The Methods associated with each type of data are described 7 
below. 8 
 9 
Behavioral and neural data collected from two rhesus monkeys that were performing a 10 
single-exposure visual memory task  11 
 12 
Experiments were performed on two adult male rhesus macaque monkeys (Macaca mulatta) 13 
with implanted head posts and recording chambers. All procedures were performed in 14 
accordance with the guidelines of the University of Pennsylvania Institutional Animal Care and 15 
Use Committee. Monkey behavioral and neural data were also included in an earlier report that 16 
examined the relationship between behavioral reports of familiarity as a function of the time 17 
between novel and familiar presentations (e.g., “rates of forgetting”) and neural responses in IT 18 
cortex [1]. The results presented here cannot be inferred from that report. 19 
 20 
The single-exposure visual memory task: 21 
 22 
All behavioral training and testing were performed using standard operant conditioning (juice 23 
reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli were 24 
presented on an LCD monitor with an 85 Hz refresh rate using customized software 25 
(http://mworks-project.org). 26 
 27 
Each trial of the monkeys’ task involved viewing one image for at least 400 ms and indicating 28 
whether it was novel (had never been seen before) or familiar (had been seen exactly once) 29 
with an eye movement to one of two response targets. Images were never presented more than 30 
twice (once as novel and then as familiar) during the entire training and testing period of the 31 
experiment. Trials were initiated by the monkey fixating on a red square (0.25°) on the center of 32 
a gray screen, within an invisible square window of ±1.5°, followed by a 200 ms delay before a 33 
4° stimulus appeared. The monkeys had to maintain fixation of the stimulus for 400 ms, at which 34 
time the red square turned green (go cue) and the monkey made a saccade to the target 35 
indicating that the stimulus was novel or familiar. In monkey 1, response targets appeared at 36 
stimulus onset; in monkey 2, response targets appeared at the time of the go cue. In both 37 
cases, targets were positioned 8° above or below the stimulus. The association between the 38 
target (up vs. down) and the report (novel vs. familiar) was swapped between the two animals. 39 
The image remained on the screen until a fixation break was detected. The first image 40 
presented in each session was always a novel image. The probability of a trial containing a 41 
novel vs. familiar image quickly converged to 50% for each class. Delays between novel and 42 
familiar presentations were pseudorandomly selected from a uniform distribution, in powers of 43 
two (n-back = 1, 2, 4, 8, 16, 32 and 64 trials corresponding to mean delays of 4.5s, 9s, 18s, 36s, 44 
1.2 min, 2.4 min, and 4.8 min, respectively). 45 
 46 
The images used in these experiments were collected via an automated procedure that 47 
downloaded images from the Internet. Images smaller than 96*96 pixels were not considered 48 
and eligible images were cropped to be square and resized to 256*256 pixels. An algorithm 49 
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removed duplicate images. Within the training and testing history for each monkey, images were 50 
not repeated.  51 
 52 
The activity of neurons in IT was recorded via a single recording chamber in each monkey. 53 
Chamber placement was guided by anatomical magnetic resonance images in both monkeys. 54 
The region of IT recorded was located on the ventral surface of the brain, over an area that 55 
spanned 5 mm lateral to the anterior middle temporal sulcus and 14-17 mm anterior to the ear 56 
canals. Recording sessions began after the monkeys were fully trained on the task and after the 57 
depth and extent of IT was mapped within the recording chamber. Combined recording and 58 
behavioral training sessions happened 4-5 times per week across a span of 5 weeks (monkey 59 
1) and 4 weeks (monkey 2). Neural activity was recorded with 24-channel U-probes (Plexon, 60 
Inc) with linearly arranged recording sites spaced with 100 µm intervals. Continuous, wideband 61 
neural signals were amplified, digitized at 40 kHz and stored using the Grapevine Data 62 
Acquisition System (Ripple, Inc.). Spike sorting was done manually offline (Plexon Offline 63 
Sorter). At least one candidate unit was identified on each recording channel, and 2-3 units were 64 
occasionally identified on the same channel. Spike sorting was performed blind to any 65 
experimental conditions to avoid bias. For quality control, recording sessions were screened 66 
based on their neural recording stability across the session, their numbers of visually responsive 67 
units, and the numbers of behavioral trials completed. A multi-channel recording session was 68 
included in the analysis if: (1) the recording session was stable, quantified as the grand mean 69 
firing rate across channels changing less than 2-fold across the session; (2) over 50% of 70 
neurons were visually responsive (a loose criterion based on our previous experience in IT), 71 
assessed by a visual inspection of rasters; and (3) the number of successfully completed 72 
novel/familiar pairs of trials exceeded 100. In monkey 1, 21 sessions were recorded and 6 were 73 
removed (2 from each of the 3 criterion). In monkey 2, 16 sessions were recorded and 4 were 74 
removed (1, 2 and 1 due to criterion 1, 2 and 3, respectively). The resulting data set included 15 75 
sessions for monkey 1 (n = 403 candidate units), and 12 sessions for monkey 2 (n = 396 76 
candidate units). Both monkeys performed many hundreds of trials during each session (~600-77 
1000, corresponding to ~300-500 images each repeated twice). The data reported here 78 
correspond to the subset of images for which the monkeys’ behavioral reports were recorded for 79 
both novel and familiar presentations (e.g. trials in which the monkeys did not prematurely break 80 
fixation during either the novel or the familiar presentation of an image). Finally, units were 81 
screened for stimulus-evoked activity via a comparison of their responses in a 200 ms period 82 
before stimulus onset (-200 ms – 0 ms) versus after stimulus onset (80 – 280 ms) with a two-83 
sided t-test, p < 0.01. This yielded 353 (of 403) units for monkey 1 and 354 (out of 396) units for 84 
monkey 2. 85 
 86 
To perform our analyses, we concatenated units across sessions to create a larger 87 
pseudopopulation. In the case of the pooled data, this included 27 sessions in total (15 sessions 88 
from monkey 1 and 12 from monkey 2). When creating this pseudopopulation, we aligned data 89 
across sessions in a manner that preserved whether the trials were presented as novel or 90 
familiar, their n-back separation, and image memorability scores (obtained using methods 91 
described below). More specifically, the responses for each unit always contained sets of 92 
novel/familiar pairings of the same images, and pseudopopulation responses across units were 93 
always aligned for novel/familiar pairs that contained the same n-back separation and images 94 
with similar memorability scores. When the number of images in a session exceeded the 95 
number required to construct the pseudopopulation, a subset of images were selected 96 
separately for each n-back by ranking images within that n-back by their memorability scores, 97 
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preserving the lowest-ranked and highest-ranked images within that session, and selecting the 98 
number of additional images required as those with memorability scores that were evenly 99 
spaced between the two extreme memorability scores for that session. The resulting 100 
pseudopopulation consisted of the responses to 107 images presented as both novel and 101 
familiar (i.e. 15, 15, 16, 17, 17, 15 and 12 trials at 1, 2, 4, 8, 16, 32 and 64-back, respectively). 102 
To perform the neural analyses (Fig 2b, Supp Figs 2, 3), a memorability score for each of the 103 
107 pseudopopulation images was computed as the mean of the memorability scores across all 104 
the actual images that were aligned to produce that pseudopopulation response. The average 105 
standard deviation across the set of memorability scores used to produce each 106 
pseudopopulation response was 0.05, where memorability ranges 0-1. To perform behavioral 107 
analyses (Fig 2c, Supp Fig 4), the memorability score as well as binary performance values 108 
(correct/wrong at reporting that a familiar image was familiar) were retained for each of the 107 109 
images, across each of the 27 sessions. 110 
 111 
Human-based memorability scores for the images used in the monkey experiments 112 
 113 
We obtained memorability scores for the images used in the monkey experiments using 114 
MemNet [2] estimates. MemNet is a convolutional neural network (CNN) trained to estimate 115 
image memorability on a large-scale dataset of natural images (LaMem [2], publicly available at 116 
memorability.csail.mit.edu). LaMem consists of 60K images drawn from a diverse range of 117 
sources (See [2] for more detail). Each image in this dataset is associated with a memorability 118 
score based on human performances in an online memory game on Amazon’s Mechanical Turk. 119 
Behavioral performances were corrected for the delay interval between first and second 120 
presentation to produce a single memorability score for each image. After training, MemNet 121 
estimates visual memorability of natural images near the upper bound imposed by human 122 
performance: MemNet estimates reach 0.64 rank correlation with mean human-estimated 123 
memorability, while the upper bound of consistency between human scores has a rank 124 
correlation of 0.68. Here we treat MemNet memorability estimates as a proxy for human 125 
memorability scores. 126 
 127 
The memorability scores were obtained using the network weights reported in [2] and publicly 128 
available at http://memorability.csail.mit.edu/download.html. This network was originally trained 129 
using the Caffe framework [3], and we ported the trained network to Pytorch [4] using the caffe-130 
to-torch-to-pytorch package at https://github.com/fanq15/caffe_to_torch_to_pytorch. Before 131 
passing images into MemNet, we preprocessed them as described in [5]: we resized images to 132 
256 × 256 pixels (with bilinear interpolation), subtracted the mean RGB image intensity 133 
(computed over the dataset used for pretraining, as described in [5]), and then produced 10 134 
crops of size 227 × 227 pixels. The 10 crops were obtained by cropping the full image at the 135 
center and at each of the four corners and by flipping each of these 5 cropped images about the 136 
vertical axis. All 10 crops were passed through MemNet. The average of these 10 scores was 137 
used as the mean prediction of the model for the input image. This mean prediction was then 138 
linearly transformed to obtain the estimated memorability score: 139 
  140 

Memorability_score = min (max ((output - mean_pred)*2 + additive_mean, 0), 1)   141 
  142 
where following [2], we set mean_pred = 0.7626 and additive_mean = 0.65. 143 
  144 
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The responses of units at different layers of CNN models trained to classify objects and 145 
scenes  . 146 
 147 
We evaluated the correlation between response magnitude and image memorability on images 148 
from the LaMem dataset [2] using three commonly used convolutional neural networks (CNNs). 149 
All reported models were evaluated on the full test set of split 1 of LaMem, which contains 150 
10,000 images. We chose to use LaMem images, as each image in this dataset is labeled with 151 
a memorability score computed directly from human behavioral performance (i.e. not estimated 152 
with a model; see above and [2] for details of data collection and memorability score 153 
computation). All networks were run in TensorFlow 1.10 ([6], software available 154 
from tensorflow.org), using custom Python evaluation code. 155 
 156 
The results presented in Fig 3 were obtained by running images from this dataset through 157 
HybridCNN [5]. HybridCNN is a network with an identical architecture to AlexNet [7]. HybridCNN 158 
was first trained to classify natural images of objects and scenes using data from the ImageNet 159 
Large Scale Visual Recognition Challenge (ILSVRC) 2012, a 1000-way object classification 160 
dataset [8], as well as the Places 183-way scene classification dataset [5], for a combined 1183-161 
way classification task. For details of training, see [5]. Results were obtained using the network 162 
weights reported in [5] and publicly available at http://places.csail.mit.edu/downloadCNN.html. 163 
This network was originally trained using the Caffe framework [3], and we ported the trained 164 
network to TensorFlow using the caffe-tensorflow package https://github.com/ethereon/caffe-165 
tensorflow. Random initialization baselines were obtained using the same architecture, but 166 
randomly sampling the weights using the initialization algorithm described in [9]. 167 
 168 
Before passing images into each network, we preprocessed them as described in [5] and 169 
above: we resized images to 256 × 256 pixels (with bilinear interpolation), subtracted the mean 170 
RGB image intensity (computed over the training dataset), and then cropped the central 227 x 171 
227 and passed it into the network. The response magnitude (L2 norm) of each layer was 172 
computed over the full output vector of each hidden layer. In all cases, we show the magnitude 173 
of hidden layer output after applying the nonlinear operation. Results for the two networks 174 
presented in the supplement (Supp Fig 5) were obtained in an identical manner, except for the 175 
image preprocessing step. For each network, images were preprocessed as described in the 176 
original papers (AlexNet: [7], VGG-16: [10]).  177 
 178 
For all three networks (HybridCNN, AlexNet, and VGG-16), we computed correlations for all 179 
convolutional and fully-connected hidden layers. The Pearson correlation coefficient was used 180 
to measure correlation. All correlations were computed over the full set of 10,000 images 181 
described above. 95% confidence intervals for the correlation coefficient of each layer were 182 
obtained by bootstrapping over the set of 10,000 per-image layer magnitudes and memorability 183 
scores. 95% confidence intervals were estimated empirically as the upper and lower 97.5%-184 
centiles of the bootstrapped correlation coefficients for each layer and condition. Bootstrapped 185 
resampling was performed independently for each layer and each condition (trained or randomly 186 
connected). In all cases, bootstrap estimates were performed using 10,000 samples (with 187 
replacement) of the full dataset of 10,000 images. The bootstrapping procedure was also used 188 
to conduct one-tailed tests to determine whether the correlations between memorability and 189 
response magnitude were stronger in the trained as compared to the randomly initialized 190 
network at each layer separately. p-values were estimated by taking pairs of correlation 191 
coefficients computed on the bootstrapped data for each condition and measuring the rate at 192 
which the correlation for the random layer exceeded the correlation for the trained layer. 193 
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