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Abstract 
Background 
The somatic co-evolution of tumors and the cellular immune responses that combat them drives 
the diversity of immune-tumor interactions. This includes tumor mutations that generate neo-
antigenic epitopes that elicit cytotoxic T-cell activity and subsequent pressure to select for 
genetic loss of antigen presentation. Most studies have focused on how tumor missense 
mutations can drive tumor immunity, but frameshift mutations have the potential to create far 
greater antigenic diversity. However, expression of this antigenic diversity is potentially 
regulated by Nonsense Mediated Decay (NMD) and NMD has been shown to be of variable 
efficiency in cancers. 
Methods 
Using TCGA datasets, we derived novel patient-level metrics of ‘NMD burden’ and interrogated 
how different mutation and most importantly NMD burdens influence cytolytic activity using 
machine learning models and survival outcomes. 
Results 
We find that NMD is a significant and independent predictor of immune cytolytic activity. 
Different indications exhibited varying dependence on NMD and mutation burden features. We 
also observed significant co-alteration of genes in the NMD pathway, with a global increase in 
NMD efficiency in patients with NMD co-alterations. Finally, NMD burden also stratified 
patient survival in multivariate regression models. 
Conclusions 
Our work suggests that beyond selecting for mutations that elicit NMD in tumor suppressors, tumor 
evolution may react to the selective pressure generated by inflammation to globally enhance NMD 
through coordinated amplification and/or mutation. 
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Background 
The co-evolutionary arms race between cancer and the immune response can drive tumor 

evolution. Tumors with high levels of clonal neoantigens have higher levels of T-cell infiltration1, 
and higher response rates to immunotherapies1–3. High levels of immune infiltration are also 
associated with loss of function mutations in Class 1 MHC proteins4, suggesting that the 
inflammation caused by T-cell-tumor recognition can result in selective pressure to lose T-cell 
tumor interactions. Many of the same variables that have been associated with immune infiltration 
in untreated tumors have also been associated with therapeutic response to checkpoint inhibitors5–9. 
Thus, exploring the predictors of inflammation and survival in the public TCGA datasets is an 
important source of hypotheses about immuno-therapeutic responses in human tumors, and gives us 
a window into the process of co-evolution between tumors and the immune system that shapes the 
immune ecology of the tumor and its microenvironment. 

 Only a minority of patients across multiple cancer types have been shown to be sensitive to 
single agent immunotherapy 10–13. This has prompted the rapid clinical development of anti-PD-1 
antibodies alongside biomarkers in diverse patient populations and in combination with a variety of 
established and experimental therapeutics. Notably, combining checkpoint inhibitors with patient 
stratification has led to the approval of Pembrolizumab (an anti-PD-1 monoclonal antibody) in 
previously untreated NSCLC patients with PD-L1 positive tumors14. However, like targeted 
therapy, only a minority of NSCLC patients are PD-L1 positive. Unlike targeted therapy, patients 
that are PD-L1 negative have non-trivial response rates to immunotherapy.   

Beyond PD-L1 positivity, other factors such as tumor mutational burden, microsatellite 
instability, oncogenic viruses have also been associated with therapeutic response and tumor 
immune infiltrates3,4,15. The rationale for their utility is that increased antigenic burden creates a 
specific T-cell response. Neoantigen burden due to non-synonymous substitutions has been clearly 
associated with immunotherapeutic success, cytolytic activity, and overall survival1,2,16. This link 
has also been demonstrated in a prospective clinical trial with nivolumab plus ipilimumab. In this 
randomized trial, the authors demonstrated that stage IV or recurrent NSCLC (not previously 
treated with chemotherapy and with a tumor PD-L1 expression level of less than 1%) who have 
more than 10 nonsynonymous mutations per megabase have a 42.6% progression free survival at 1 
year17. However, this recent clinical trial only examined single amino acid mutations, and many 
prior predictions of neoantigen burden also tended to predict neoantigens using single substitution 
variants16,18–20.   

Interestingly, like PD-1, many patients with high neoantigen burden fail to respond to 
immunotherapy, and some patients with low neoantigen burden have durable responses to 
immunotherapy and exhibit high levels of tumor inflammation with cytolytic cells2,21. As such, 
there is a critical need to continue to understand and predict mediators of tumor immunity in 
humans. Recently, multiple improvements to neoantigen predictions have been made by 
incorporating clonality1, indel mutations22, and intron retention mutations23 into studies of immune 
infiltration and immune response in tumors. 

Specifically, frameshift mutations have been examined genomically, pre-clinically, and in 
patient case studies24,25. These revealed that mutagenic indels provide a highly immunogenic source 
of antigens24. However, deeper investigations of the different mechanisms of neoantigen generation 
have the potential to expand the prognostic power of clinicians to predict immunotherapy responses 
and indications. Moreover, better predictions of the neoantigen landscape should aid current and 
future efforts to develop neoantigen derived peptide vaccines. These peptide vaccines may help turn 
immunotherapy non-responsive tumors into immunotherapy responsive tumors.  
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However, the use of frameshift mutations for predictions in pan-cancer analyses raises an 
important question. Frameshifts were not initially considered in genomic analyses of neoantigens 
because they were considered to be unlikely to be expressed due to nonsense mediated decay 
(NMD)1. Frameshift mutations cause premature termination codons (PTCs), resulting in mRNAs 
that are the target of nonsense-mediated decay (NMD). While NMD should lead to a loss of 
expression of the resulting transcripts, NMD has been found to function with varying efficiency26. 
This may lead to reduced NMD and result in the expression of frameshift mutations that could be 
presented as neoantigens. In addition, genomic analyses of frameshift mutations and their 
expression suggests that NMD operates with reduced efficiency in cancer24. Finally, there is also 
evidence in preclinical models that inhibiting nonsense mediated decay can enhance tumor 
immunity27. Thus, we believe that NMD itself may also act as an independent biological filter of 
which indels are expressed, and thus we aimed to quantify the additional information that NMD 
brings to the prediction of frameshift neoantigens. We hypothesize that additional orthogonal 
predictive metrics of immune activation can be derived based on patient-level NMD efficiencies. 
Here, we examined multiple cancer indications for associations between NMD/mutational burden 
with cytolytic activity/survival. We find that accounting for NMD and indel mutations is 
significantly better than accounting for indels alone. We also find that NMD derived metrics have 
some independent prognostic value alongside current clinical parameters like PD-L1 expression and 
simple tumor mutation burden (TMB)3,28. 
 
Methods 
Datasets 
The following TCGA datasets were acquired from Board Institute GDAC Firehose repository: 
mRNA-seq V2 RSEM level 3, mutation calls level 3, copy number level 3, and clinical data level 
1, for the following indications: BLCA, BRCA, CESC, COAD/READ, GBM/LGG, HNSC, 
KIPAN, LUAD, LUSC, OV, PRAD, SKCM, STAD, THCA, and UCEC, downloaded over the 
period from October to December of 2017. MSI data was acquired from Hause et al29. MSI was 
included for analyses only for indications with at least 10 cases of MSI-H and MSS each (UCEC 
and STAD satisfied this criteria). Note COAD/READ also had substantial MSI-H, but the 
mutation calls dataset for the COAD/READ was limited (to 223 patients), thus after merging 
across datasets, there were too few MSI-H patients for MSI to be included for subsequent 
analyses. 
 
Data preprocessing and quality controls 
The datasets were further preprocessed in preparation for analyses and modeling. For all 
datasets, only one tumor sample was used per patient (filter was based on sample type code). In 
the case of patient tumors with multiple vials, the lowest-valued vial was used. For mRNA-seq 
data, the transcripts per kilobase million (TPM) value was used. TPM was calculated as scaled 
estimate (tau value) * 1e6. For CNA data, missing CNA were treated as zero (no CNA). For 
calculating NMD efficiency and burden (more details in NMD feature engineering section), a 
series of data cleaning and quality controls were performed (Supp Figure S2). PTC-bearing 
transcripts were excluded if they overlapped with CNA. Genes were removed from the NMD 
efficiency and burden calculation if the WT was noisy (CV > 0.05 or < 10 samples) or low 
expression (median TPM < 5). 
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Cytolytic activity 
The cytolytic activity was calculated as the geometric mean of the expressions (in TPM+0.01) of 
GZMA and PRF14. The cytolytic activity values were also categorized into high/low with 
upper/lower quartiles. 
 
NMD feature engineering 
Metrics for nonsense-mediated decay burden was derived based on NMD efficiency values. The 
calculation for NMD efficiency was based on Lindeboom et al26. The data was preprocessed as 
described in the data quality controls section above. The efficiency was calculated at the gene-
level, as the negative log base 2 transform of the ratio between the expression of the mutant-
bearing transcript and the median mRNA expression of that transcript (calculated from samples 
with no mutations and copy number variations for that transcript). We accordingly derived NMD 
efficiencies for nonsense-, frameshift-, and nonsense/frameshift-bearing transcripts. Here it is 
important to clearly distinguish between NMD metrics. A measure of NMD burden is at the 
patient-level and is unique to this paper, while the measurement of NMD efficiency is at the 
gene-level and is the same as Lindeboom et al. To turn NMD efficiency measurements into 
estimates of NMD burden at the patient level, the NMD efficiency values were aggregated in 
several ways. This included calculation of the: median, mean, maximum, total number of genes 
with NMD, the fraction of total genes with NMD, and the median of the expression-weighted 
efficiency value (weighted by percentile of median WT gene expression out of all median WT 
gene expressions), and mean of the expression-weighted efficiency value. 
 
Random forest model 
A random forest model was used for predicting cytolytic activity (as a binary classification of 
low/high) based on the engineered feature set using the randomForest package. The random 
forest is a robust machine learning model that controls for overfitting internally. The 
hyperparameters for our random forest models were tuned using the caret package across the 
following values: number of randomly selected variables to try at each split, mtry [Round(a/2), 
a, 2a], where a = Round(√𝑁 − 1) and N is the number of features; and number of trees to try 
[500, 1000]. The combination of hyperparameter values chosen for the final model was based on 
the model with the highest AUC. Since the overall goal of the model is to infer importance, the 
entire dataset with all patients was used for model building. Although random forest internally 
controls for overfitting, 10-fold cross-validation was also performed to check for robustness of 
the model. Different models were built with different subsets of feature classes (e.g. mutation, 
NMD burden, MSI, mutation + NMD burden, mutation + MSI, NMD burden + MSI). Pan-cancer 
models were also created. The individual datasets per indication were pooled together to generate 
the pan-cancer dataset. All metric calculations (e.g. median, etc.) were calculated at the per-
indication level. Variable importance and significance were calculated using the rfPermute 
package. 
 
NMD alterations and pathway alterations 
For NMD co-occurrence analyses, we used the cBioPortal30 to examine all TCGA pan-cancer 
datasets (pan_cancer_atlas) on Jan 8, 2019. We searched NMD genes SMG 1,5,6,7 and USP 
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1,2,3B. Amplifications and mutations were searched separately. For copy number alterations of 
different pathways, we also searched the corresponding genes in cBioPortal. Genetic alterations 
of NMD and their association with NMD efficiency metrics and cytolytic activity metrics were 
also examined, with the metrics calculated per methods described above. For copy number 
variations, amplifications and deep deletions were considered using copy number cutoff of 1 and 
-1, respectively. NMD genes with no copy number variations (copy number value of zero) and 
no mutations were used as controls. 
 
Survival analyses 
Survival analyses were performed using the survival package in R. The survival function was 
estimated using Kaplan-Meier product limit method and its variance was estimated using 
Greenwood’s method. The hazard ratios were calculated using Cox proportional hazards model. 
In addition to univariate models, multivariate models were performed where each feature was 
controlled for age (categorical, < or > 65), gender (categorical, male/female), TNM stage 
(categorical), TMB (categorical, < or > median), and PD-L1 level (categorical, low/med/high 
quartiles of TPM values). TMB was determined using total mutation counts of missense, 
nonstop, nonsense, and frameshift divided by 38Mb, an estimate of the exome size. The p-values 
were corrected for multiple hypothesis testing using Benjamini-Hochberg. 
 
Statistical analyses 
All analyses were performed in R. Correlations among the covariates were calculated with 
Spearman correlation. In univariate analyses of feature values, the difference between categorical 
cytolytic low versus high was tested using Mann-Whitney for continuous features and Chi-
squared for categorical features. Statistical test for trend between NMD metrics and NMD 
genetic alterations was performed using Jonckheere-Terpstrata test. Statistical methods for 
random forest model and for survival analyses were described in their respective sections above. 
 
Code and data availability 
Code for the analyses and outputs are available on GitHub at 
https://github.com/pritchardlabatpsu/NMDcyt. 

 
Results 
NMD metrics are orthogonal predictors of tumor cytolytic activity. 

Recent work by Rooney et al. used the transcript levels of two cytolytic effectors GZMA and 
PRF1 (Supp Fig S1) to assess the immune cytolytic activity4. Here, using this measure for 
immune cytolytic activity, we quantitatively examined 17 cancer indications for the contribution 
of mutation variant counts to observed cytolytic activity (high versus low). We performed a pan-
cancer analysis using a random forest model with the total counts of each mutation variant type 
as features. A final AUROC value of 0.59 suggest that using mutation counts does not fully 
explain the cytolytic activity, but they are statistically significant contributors (Supp Fig S2A and 
S2B). Almost all the mutation variants are important and contribute to the model accuracy (Supp  
S2C). As expected, we observed that missense, nonsense, and silent mutation variants are 
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correlated24. However, frameshift mutation counts are not strongly correlated with silent 
mutation counts, hence suggesting frameshift are an orthogonal predictor (Supp Fig S2D). 

Recent developments have suggested that frameshifts (which create very distinct 
neoepitopes) can improve the prediction of inflamed tumors and patient survival24. However, this 
presents a question: does patient level NMD independently associate with metrics of tumor 
inflammation and overall survival in a manner that is independent from indel abundance? 
Previous work performed an approximate correction for NMD, but, the NMD process has been 
shown to be complex and variable26, and could be measured at the patient level by many metrics. 
For instance, the central tendency of NMD across all transcripts should give an indication of the 
efficiency of the process of NMD within an individual while the maximum NMD level within an 
individual for a specific transcript might measure the propensity for NMD to inhibit specific 
neoantigens. We hypothesized that to understand the role of nonsense mediated decay more 
deeply, we had to investigate many measures of NMD activity simultaneously. As NMD 
efficiency is measured at the individual gene level, while cytolytic activity is measured at the 
patient-level, we began by deriving multiple patient-level measures of ‘NMD burden’, using 
different approaches to aggregate the NMD efficiency values (Fig 1A and Supp Fig S3). This 
included a burden metric of nonsense mutations (ns), frameshift mutations (fs), and combined 
nonsense and frameshifts (ns+fs). We first examined the correlation among the variables, and 
observed that related variables (i.e. NMD related metrics, cytolytic activity metrics) tended to 
cluster together (Fig 1B). In addition, simple metrics of mutation abundance are positively 
correlated with cytolytic activity while most NMD-based metrics are negatively correlated (Fig 
1B, Supp Fig S4). This suggests that higher NMD efficiency lowers the expression of indels and 
possibly neoantigens. This is consistent with NMD suppressing neoantigens in experimental 
models of cancer27. 

Using our best NMD features which tended to be measures of central tendency, we built pan-
cancer models using mutation counts only, NMD-burden only, or a combination of the two 
feature groups. Surprisingly, NMD alone was as good of a predictor of pan-cancer cytolytic 
activity as mutations (AUROCs of ~0.6). Importantly, the combined model improved upon 
single data type predictors with an AUROC of 0.67 (Fig 1C and 1D). Thus, mutation counts and 
NMD-burden offer equally important orthogonal information that combines to improve our 
understanding of cytolytic activity in tumors (Fig 1D and 1E). 
 
The NMD pathway is significantly and co-ordinately altered in cancer. 

A potential explanation for an association between the central tendency of NMD across all 
genes within a patient and cytolytic activity is that T-cell infiltration might exert selective 
pressure upon tumors to mutate or amplify genes in the NMD pathway. Towards this hypothesis 
we utilized the TCGA pan-cancer data sets. Focusing on the major genes in the NMD pathway 
(SMG1,5,6,7 and UPF1,2,3B)31, we first examined whether these genes were amplified in 
cancer. Examining all patients in the Pan-Cancer dataset, we observed amplification of NMD 
pathway genes (Fig 2A) that resembled a gain of function pathway such as MAPK family 
members more than they did tumor suppressors such as P53 and PTEN (i.e. more amplifications 
than deletions were observed, Supp Fig S5). Interestingly, across these 7 genes, all permutations 
of the pairwise interactions between the 7 genes co-occurred more often than one would expect 
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by chance (corrected p-values<0.05, Fig 2B). Only one of these pairwise mutual amplifications, 
SMG5-SMG7, contains 2 genes that reside in a similar genomic location on chromosome 1. 
Beyond amplification, while none of the individual genes in the NMD pathway are predicted to 
be drivers of cancer, we thought it was possible that tumor evolution might select for co-
occurrence of multiple individual NMD pathway mutations. Surprisingly, all 21 pairwise 
combinations of the 7 core NMD pathway genes exhibited a tendency towards mutational co-
occurrence at a multiple hypothesis corrected p-value <0.001 (Fig 2B). Importantly, this co-
alteration appears to also have a functional consequence. When we examined patients with no 
NMD alterations versus patients with co-alterations (i.e. >1 alteration) we observed a significant 
trend towards increasing NMD efficiency as NMD genes became coordinately altered (Fig 2C 
and Supp Fig S6 and S7). Moreover, patients with NMD alterations had lower cytolytic activity 
(Supp Fig S8). 
 
Effects of NMD burden in individual cancer types 

We next examined the contribution of our NMD metrics to predicting cytolytic activity in 
each individual indication in the TCGA. We observed varying AUROC patterns of mutations, 
counts, NMD burden, and combined models across the different indications (Fig 3 and Table 
S1). Notably, for example, the contribution of NMD burden in GBM/LGG and LUSC toward 
predicting cytolytic activity were minimal while mutational counts added predictive value. On 
the other hand, in BLCA and LUAD, NMD burden contributed more than mutational counts 
toward predicting cytolytic activity. In indications COAD/READ, SKCM, HNSC, KIPAN, 
STAD, and UCEC, both NMD and mutational burden were important. In 6 out of 15 indications, 
the combined model resulted in AUROC values better than the individual models. We next 
examined the individual prediction metrics within each feature category across the indications to 
infer which processes were important in which tumor type. The metric values varied in 
significance across all the TCGA indications (Supp Fig S9) with varying levels of 
contribution/significance toward the final model (Supp Fig S10). The features that contributed 
toward multiple indications included counts of missense, silent, and total mutations, and several 
of the NMD burden metrics (mostly as measured by mean or median) (Supp Fig S10). Most 
importantly, we observed that the metrics contributing toward the model are concordant with the 
final AUROC values of the model (e.g. indications where only NMD metrics are important based 
on AUROC values (Fig 3) also had only NMD metrics as important and statistically significant 
(Supp Fig S10)). 

 
Effects of NMD burden on survival outcomes 

In addition to cytolytic activity, we also examined the effects of NMD burden on survival. 
Here, we used the overall survival from TCGA clinical data and performed univariate Cox 
regression for each feature across all the indications (Supp Table S2). In melanoma for example, 
as expected, higher cytolytic activity is associated with a better survival outcome (hazard ratio of 
cyt-high vs cyt-low, 0.5; 95% CI, 0.3-0.7); p-value=0.002) (Fig 4A). A NMD burden metric was 
also shown to contribute to the overall survival differences. Here a high NMD burden leads to 
lower cytolytic activity and a worse overall survival (Fig 4B). We have also examined other 
known contributors, including tumor mutational burden (TMB) and PD-L1 levels, both of which 
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were also found to stratify the survival outcomes (Supp Fig S11). Upon controlling for the 
covariates TMB, PD-L1, age, gender, and TNM stage, we again examined the NMD burden 
metric and found it to be significant. In the multivariate model, the statistical significant 
variables included nmdptc_med, age, gender, TMB and PD-L1 (Fig 4C). 
 
Discussion 

A tumor’s mutational burden/neoantigen repertoire has been associated with inflammation, 
overall survival and therapeutic response to immunotherapies. Previous studies in the TCGA and 
in patients treated with checkpoint inhibitors have identified similar variables that predict 
immune infiltration and checkpoint response4,8,32–34. Because frameshift neoantigen availability 
is hypothetically regulated by the efficiency of the NMD process, and functional evidence has 
suggested that inhibition of NMD can induce a tumor immune response and tumor regression in 
pre-clinical models by exposing neoantigens27, we derived orthogonal patient-level metrics based 
on gene level NMD efficiencies26 that improved our ability to predict tumor cytolytic activity 
both within and across TCGA cancer types. Tumors with co-amplifications and mutations in the 
NMD pathway had increased NMD efficiencies and were less likely to have immune infiltration. 
Beyond cytolytic activity we found that NMD metrics stratified some cancer types by distinct 
overall survival outcomes. These stratifications were significant, even when 2 established 
clinical covariates PDL1 status and TMB were included. 

In tumor suppressors, mutations arise spontaneously, and if they occur in a region that elicits 
NMD, the mutation can be selected for because NMD will eliminate the mRNA of the tumor 
suppressor. Clearly tumor evolution does not need to alter NMD to create loss of function in 
tumor suppressor proteins, it is simply selecting for mutations that happen to elicit NMD. 
However, our study suggests that at the level of a patient (and not a gene), mutations in NMD 
and a global increase in NMD efficiency can be selected for. The origin of the alterations in the 
NMD process could be due to enhanced suppression of tumor suppressor genes, or enhanced 
suppression of tumor neoantigens. Regardless of the causative selective pressure, the 
consequence is a tendency for genomic amplifications and mutations to co-occur within the key 
proteins in the NMD machinery (SMG 1,5,6,7, and UPF 1,2,3B). Consistent with this co-
alteration, we observed that these co-occurring mutations/amplifications increased NMD 
efficiency in patients that had low cytolytic activity. This suggests that pan-cancer tumor 
evolution might select for co-alteration in the NMD pathway. The association of amplifications 
and not deletions as well as the observed functional increase in NMD efficiency suggests that 
cytolytic activity is inhibited by gain of function alterations in the NMD pathway. 

The identification of correlates of tumor immune activity is a broad field with numerous 
potential candidates. One difficulty in interpreting these studies is that many studies find 
significant associations without quantifying the proportion of the data explained (and 
unexplained) by those variables. Thus, deciding which covariates to add, and how to quantify 
progress towards full prediction of cytolytic activity is difficult without the careful presentation 
of how much we understand versus how much we do not. Therefore, we present ROC curves and 
out-of-bag error estimates for all models. This quantitation allows us to clearly see that while we 
have identified significant predictors, our AUCs are mostly between 0.6 and 0.7, except for the 
pan-kidney dataset that has an AUC >0.8. 
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A potential weakness of this study is the use of mutation burden rather than MHC class I 
binding predictions. However, predicting neoantigen-MHC class I binding remains challenging 
and prune to high false positives35. We chose here to instead focus on mutation burden to 
minimize confounders from imperfect predictions. In addition, previous studies showed that 
mutation burden is highly correlated with neoantigen burden4,24, and as such likely to harbor 
similar information. 

Beyond predictions of cytolytic activity, we quantified tumor mutation burden36 and PD-L1 
positivity across all sample and indications in the TCGA. In melanoma the effect of NMD 
significantly added to a multivariate Cox regression model. Though the effect was more modest 
after correcting for co-variates, we suggest that it is easy to examine NMD in future clinical 
datasets, and as such we recommend that groups performing biomarker studies in treated and 
untreated patients should add metrics of NMD to attempt to understand and stratify responses. 

In addition to better understanding immunity and, potentially, the response to checkpoint 
therapy, the inhibition of Nonsense Mediated Decay (NMD) has been proposed as a therapeutic 
strategy. Suppression of NMD can create a therapeutic effect through cell intrinsic (via restoring 
the activity of a tumor suppressor) or extrinsic mechanisms (via tumor immunity). Should a 
clinical candidate to inhibit NMD arise, the road to biomarker driven application of the cell 
intrinsic therapeutic effects is clear, but picking indications for the immune dependent activity 
requires studies like this one. Thus, we suggest that indications whose cytolytic activity is 
particularly well explained by NMD, or patients with alterations in the NMD pathway that 
increase NMD efficiencies might be interesting indications to look for cell non-autonomous 
immune driven efficacy of future NMD inhibitors. 
 
Conclusions 
We have described here that tumor evolution may select via coordinated genetic alterations to 
globally enhance NMD efficiency. This in turn can influence tumor-immune interactions as 
measured by cytolytic activity and ultimately patient outcome. 
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NMD: nonsense-mediated decay; TMB: tumor mutational burden; MHC: major 
histocompatibility complex; PTC: premature termination codons 
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Figure legends 
Figure 1 NMD burden as orthogonal predictors of cytolytic activity. (A) Schematic of data 
processing pipeline for deriving NMD burden, incorporating TCGA datasets for CNA, exome-
seq, and mRNA-seq. (B) Pan-cancer correlation among features for mutations and NMD burden. 
(C) Pan-cancer ROC for random forest model with mutation variant counts only (Mut), NMD 
burden only (NMD), or combined (Mut+NMD). (D) Out-of-bag error of overall model (black) 
and for predicting cytolytic activity low (red) and high (green), for combined random forest 
model. (E) Variable importance of the features used in the combined model, based on mean 
decrease in model accuracy. nmdns: NMD metric based on nonsense transcripts; nmdfs: NMD 
metric based on frameshift transcripts; nmdptc: NMD metric based on nonsense and frameshift 
transcripts; _n_decayed: number of transcripts with NMD; _frac_decayed: fraction of transcripts 
with NMD; _max: maximum NMD efficiency value; _med: median NMD efficiency; _mean: 
mean NMD efficiency; .wt: NMD efficiency metric weighted by mRNA expression;  
 
Figure 2 NMD alterations co-occur and associated with improved NMD efficiency. (A) 
Amplifications/deletions of genes in the NMD pathway (SMG1,5,6,7 and UPF1,2,3B) across 
different indications. (B) Co-occurrence of copy number and mutations of NMD genes, using the 
TCGA pan-cancer atlas datasets on cBioPortal. (C) NMD efficiency of patients with co-altered 
NMD genes versus those without any alterations. Y-values are shown as the difference in median 
of log10 transformed NMD metric values (co-altered versus no alterations). Dots shown in red 
are statistically significant with adjusted p-value < 0.05; Mann-Whitney test with Benjamini-
Hochberg multiple hypothesis correction. 
 
Figure 3 NMD burden improves predictivity of cytolytic activity. Individual ROC, AUROC, and 
out-of-bag (OOB) error of random forest models, for (A) indications without MSI incorporated 
into model, and (B) indications with MSI incorporated into model. AUROC data are shown as 
AUROC ± SE of AUROC from cross-validation. 
 
Figure 4 Cytolytic activity and NMD burden stratifies overall survival outcomes. (A) Kaplan-
Meier overall survival for SKCM, stratified by cytolytic activity (categorized into low, med, and 
high based on quartiles). Legend shows the number of patients in each cytolytic activity level. 
(B) Association of feature nmdptc_med (NMD burden based on nonsense and frameshift, 
calculated based on median) on cytolytic activity. Statistical significance was determined using 
Mann-Whitney test. (C) Kaplan-Meier overall survival for SKCM, stratified by nmdptc_med 
(categorized into low, med, and high based on quartiles). (D) Forest plot of hazard ratios of each 
variable, in a multivariate Cox regression model for NMD burden (nmdptc_med), controlling for 
age, gender, TNM stage, tumor mutational burden (TMB), and PD-L1 levels. 
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A B Neither A Not B B Not A Both Log Odds 
Ratio p-Value Adjusted 

p-Value Tendency

SMG1 SMG6 10472 313 126 56 2.699 <0.001 <0.001 Co-occurrence
SMG6 UPF2 10649 141 136 41 >3 <0.001 <0.001 Co-occurrence
SMG1 UPF2 10470 320 128 49 2.528 <0.001 <0.001 Co-occurrence
SMG1 SMG5 10492 325 106 44 2.595 <0.001 <0.001 Co-occurrence
SMG1 UPF3B 10503 328 95 41 2.626 <0.001 <0.001 Co-occurrence
SMG7 UPF3B 10700 131 106 30 >3 <0.001 <0.001 Co-occurrence
SMG1 UPF1 10473 326 125 43 2.403 <0.001 <0.001 Co-occurrence
SMG7 UPF2 10661 129 145 32 2.904 <0.001 <0.001 Co-occurrence
UPF2 UPF3B 10684 147 106 30 >3 <0.001 <0.001 Co-occurrence
SMG1 SMG7 10478 328 120 41 2.39 <0.001 <0.001 Co-occurrence
SMG6 SMG7 10655 151 130 31 2.823 <0.001 <0.001 Co-occurrence
SMG5 SMG6 10664 121 153 29 2.816 <0.001 <0.001 Co-occurrence
UPF1 UPF2 10651 139 148 29 2.709 <0.001 <0.001 Co-occurrence
SMG6 UPF1 10646 153 139 29 2.675 <0.001 <0.001 Co-occurrence
SMG6 UPF3B 10675 156 110 26 2.783 <0.001 <0.001 Co-occurrence
SMG5 UPF2 10666 124 151 26 2.695 <0.001 <0.001 Co-occurrence
SMG5 SMG7 10681 125 136 25 2.754 <0.001 <0.001 Co-occurrence
UPF1 UPF3B 10686 145 113 23 2.708 <0.001 <0.001 Co-occurrence
SMG7 UPF1 10662 137 144 24 2.563 <0.001 <0.001 Co-occurrence
SMG5 UPF3B 10700 131 117 19 2.585 <0.001 <0.001 Co-occurrence
SMG5 UPF1 10669 130 148 20 2.406 <0.001 <0.001 Co-occurrence

Copy number alterations

A B Neither A Not B B Not A Both Log Odds 
Ratio p-Value Adjusted 

p-Value Tendency

SMG5 SMG7 10543 184 86 154 >3 <0.001 <0.001 Co-occurrence
SMG5 UPF2 10507 321 122 17 1.518 <0.001 <0.001 Co-occurrence
SMG1 SMG5 10548 81 327 11 1.477 <0.001 0.002 Co-occurrence
SMG5 UPF1 10526 327 103 11 1.235 <0.001 0.016 Co-occurrence
SMG7 UPF2 10598 230 129 10 1.273 <0.001 0.02 Co-occurrence
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