ABSTRACT
The interplay of the Anaphase-Promoting Complex/Cyclosome (APC/C) and Skp1-Cul1-F-box (SCF) E3 ubiquitin ligases is necessary for controlling cell cycle transitions and checkpoint responses, which are critical for maintaining genomic stability. Yet, the mechanisms underlying the coordinated activity of these enzymes are not completely understood. Recently, Cyclin A- and Plk1-mediated phosphorylation of Cdh1 was demonstrated to trigger its ubiquitination by SCFβTRCP at the G1/S transition. However, Cyclin A-Cdk and Plk1 activities peak in G2 so it is unclear why Cdh1 is targeted at G1/S but not in G2. Here, we show that phosphorylation of Cdh1 by Chk1 contributes to its recognition by SCFβTRCP, promotes efficient S-phase entry, and is important for cellular proliferation. Conversely, Chk1 activity in G2 inhibits Cdh1 accumulation. Overall, these data suggest a model whereby the rise and fall of Chk1 activity is a key factor in the feedback loop between APC/CCdh1 and the replication machinery that enhances the G1/S and S/G2 transitions, respectively.
- APC/C
- Chk1
- Cell Cycle
- S-phase
- Cdh1