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Abstract 4 

The cover and abundance of individual plant species have been recorded on ordinal 5 

scales for millions of plots world-wide. Many ecological questions can be addressed 6 

using these data. However ordinal cover data may need to be transformed to a 7 

quantitative form (0 to 100%), especially when scrutinising summed cover of multiple 8 

species. Traditional approaches to transforming ordinal data often assume that data 9 

are symmetrically distributed. However, skewed abundance patterns are ubiquitous 10 

in plant community ecology. A failure to account for this skew will bias plant cover 11 

estimates, especially when cover of multiple species are summed. The questions 12 

this paper addresses are (i) how can we estimate transformation values for ordinal 13 

data that accounts for the underlying right-skewed distribution of plant cover; (ii) do 14 

different plant groups require different transformations and (iii) how do our 15 

transformations compare to other commonly used transformations within the context 16 

of exploring the aggregate properties of vegetation? Using a continuous cover 17 

dataset, each occurrence record was mapped to its commensurate ordinal value, in 18 

this case, the ubiquitous Braun-Blanquet cover-abundance (BBCA) scale. We fitted a 19 

Bayesian hierarchical beta regression to estimate the predicted mean (PM) cover of 20 

each of six plant growth forms within different ordinal classes. We illustrate our 21 

method using a case study of 2 809 plots containing 95 812 occurrence records with 22 

visual estimates of cover for 3 967 species. We compare the model derived 23 

estimates to other commonly used transformations. Our model found that PM 24 

estimates differed by growth form and that previous methods overestimated cover, 25 
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especially of smaller growth forms such as forbs and grasses. Our approach reduced 26 

the cumulative compounding of errors when transformed cover data were used to 27 

explore the aggregate properties of vegetation and was robust when validated 28 

against an independent dataset. By accounting for the right-skewed distribution of 29 

cover data, our alternate approach for estimating transformation values can be 30 

extended to other ordinal scales. A more robust approach to transforming floristic 31 

data and aggregating cover estimates can strengthen ecological analyses to support 32 

biodiversity conservation and management. 33 

 34 

Keywords: aggregated, beta regression; Braun-Blanquet; growth form; midpoint; 35 

ordinal transformation; species abundance distribution; sPlot; summed foliage cover; 36 

VegBank; vegetation cover. 37 

 38 

Abbreviations: Braun-Blanquet cover-abundance - BBCA 39 
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Introduction 41 

Field-based assessment of the cover and abundance of individual plant species is 42 

complex. Observers making on-ground visual estimates of plant cover need to 43 

account for, and assess, foliage cover of different densities, dimensions, shapes and 44 

structures across multiple species, growth forms and strata. So too, counting cryptic, 45 

clonal, or copious numbers of plants can be complicated. Owing to this complexity, 46 

vast numbers of floristic plots across many continents have been surveyed using 47 

ordinal scales (Schaminée et al. 2009; Dengler et al. 2011; Chytrý et al. 2016). 48 

Whilst, in Braun-Blanquet (1932) originally described an abundance-dominance 49 

scale, the practical, on-ground application of this scale is to assess plant cover, and 50 

where cover is less than 5%, abundance is also assessed. The Braun-Blanquet 51 

cover-abundance (BBCA) scale is perhaps the most common ordinal scale used in 52 

plant ecology. For example, within the vegetation plot database sPlot v2.1 53 

(www.idiv.de/splot), more than 745 000 plots (66%) have recorded plant occurrence 54 

using Braun-Blanquet cover-abundance (sPlot extract supplied by Borja Jiménez-55 

Alfaro, 19th September 2017). This volume of data is testament that ground-based 56 

visual assessments of cover-abundance using ordinal scales provide a cost-57 

effective, rapid and non-destructive approach to gathering the data needed to 58 

summarise the composition and structure of plant communities. These data 59 

represent a wealth of investment in field effort and have supported major advances 60 

in vegetation classification, mapping and distribution modelling. 61 

The ever-growing access to global vegetation plot databases (Dengler et al. 2011; 62 

Schaminée et al. 2011) has opened pan-continental opportunities to explore many 63 

uses of floristic data. Some ecological questions may best be addressed using 64 

aggregate properties of vegetation, such as the summed total foliage cover within a 65 
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plot or across strata, the total summed cover or abundance of exotic or invasive 66 

species, or the relative cover or abundance of plants within different functional, 67 

taxonomic or growth form groups. Summing cover to derive aggregate properties of 68 

floristic data have a multitude of uses in ecology including assessing presence and 69 

diversity of faunal habitat, as covariates in species’ distribution models (SDMs), for 70 

assessing the spatial and temporal status of ecosystem baselines, predicting the 71 

effects of shifts in climate, land use and land cover, or measuring site-scaled 72 

responses to disturbance (e.g. Scholes & Biggs 2005; McElhinny et al. 2006; Pereira 73 

et al. 2010). Aggregate properties of vegetation data are particularly relevant to 74 

exploring ecological questions concerning the patterns, processes and prognoses at 75 

a range of spatial scales in contemporary and predicted future landscapes.  76 

There are many applications where ordinal data have been used successfully, such 77 

as ordination, classification, modelling or mapping of vegetation communities (e.g. 78 

Podani 2005; Podani 2006; Lyons et al. 2016) and for modelling the cover of single 79 

species (e.g. Damgaard 2014; Irvine et al. 2016). However, ordinal scaled cover 80 

observations of individual species cannot be summed (Guisan & Harrell 2000; 81 

Podani 2006; Chen et al. 2008b) and need to be transformed into a continuous scale 82 

prior to aggregating.  83 

Approaches to transforming Braun-Blanquet cover-abundance (BBCA) ordinal data 84 

have been proposed by Tüxen and Ellenberg (1937) and Braun-Blanquet (1964) 85 

(see Table 3 in van der Maarel 1979). In addition, van der Maarel (1979) proposed 86 

the ordinal transform value (OTV) with different scale adjustments, as a solution for 87 

converting ordinal data to percentage cover values. All these methods tend to 88 

transform data to the approximate midpoint of the ordinal class range for 89 

observations of cover greater than 5%. For classes with cover less than 5%, the 90 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535948doi: bioRxiv preprint 

https://doi.org/10.1101/535948
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

transformation values appear arbitrary and differ considerably (Table 1 columns 4–91 

6).  92 

Transforming data to the approximate midpoint of the class ranges assumes that 93 

data are symmetrically distributed within each class. Yet, patterns in plant 94 

abundance including density, biomass (Chiarucci et al. 1999; Morlon et al. 2009), 95 

frequency (Chiarucci et al. 1999), percentage cover (Damgaard 2009), size, energy 96 

use and productivity (Whittaker 1965) have all been shown to have a right-skewed 97 

distribution; skewed species abundance distributions occur in every known multi-98 

species community (McGill et al. 2007). Midpoint transformations are inflexible to the 99 

underlying distribution of cover data and assume that the distribution does not vary 100 

across species, groups of plant entities (such as growth forms, life forms, functional 101 

or taxonomic groups), vegetation types or biomes. Due to the prevalence of right-102 

skewed distribution, we predict that midpoint transformations overestimate cover and 103 

the compounding of these errors will result in gross overestimation of summed cover 104 

for aggregated properties. 105 

Here we develop a flexible approach to estimate cover transformations for ordinal 106 

scaled data that can then be used to provide accurate estimates of summed 107 

vegetation cover. The method we describe is applicable to data in any ordinal scale, 108 

can be extended to allow for differences in vegetation type or among biomes and 109 

can accommodate alternative aggregate properties of plant data such as growth 110 

forms, life forms, functional or taxonomic groups. To demonstrate the potential 111 

applicability of our approach we build and then validate the model using two 112 

separate and independent datasets. 113 

Given that diverse architectures and spatial arrangements of foliage lead to varied 114 

patterns of plant cover (Damgaard 2013), we also predict that different plant growth 115 
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forms will require different transformation values. Growth forms are practical and 116 

observable entities that can inform site-based assessment and monitoring, are 117 

recognizable from remotely-sensed imagery and are used to report on broad-scale 118 

biodiversity assessment or baselines (Pereira et al. 2013) with which we can 119 

measure change in cover (Pettorelli et al. 2014; Abelleira Martínez et al. 2016).  120 

 121 

Materials and Methods 122 

We outline the key steps required to estimate transformation values within ordinal 123 

classes for different plant groups. A pre-requisite for our method is cover data that 124 

have been collected on a continuous cover scale, ideally sourced from the same 125 

study region and vegetation types as the ordinal cover data. To prepare the input 126 

data for the model, ordinal values need to be mapped, a posteriori, to this continuous 127 

cover data as an intermediary variable (Figure 1, Step 1). Models, with a beta 128 

distribution, are then used to predict the mean cover of each plant group within each 129 

ordinal cover class. This predicted mean cover is the transformation value (Figure 1, 130 

Step 2). Using a case study, we explore summed cover estimates for different plant 131 

groups and evaluate the performance of the ordinal cover transformations. We 132 

compare our transformation to existing approaches in the context of summed cover 133 

for plant groups (Figure 1, Step 3). We evaluate the robustness of our predicted 134 

mean transformations on an independent dataset (Figure 1, Step 4).135 
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Estimate mean cover using parameters of a beta distribution  136 

We used a generalised linear mixed model (GLMM) with a beta distribution to derive 137 

estimates of the mean vegetation cover, within an ordinal class, given a plant’s 138 

growth form and random variation owing to plot identity. Individual species cover are 139 

continuous proportional estimates, and once suitably transformed, fall within the 140 

known range (0<y<1). Linear regression with a normal distribution is inappropriate 141 

for the analysis of proportions, such as percent plant cover, because data often 142 

violate assumptions such as normality and homogeneity of errors and furthermore 143 

fitted values can fall outside of the range [0,1] (Ferrari & Cribari-Neto 2004). A 144 

common approach to address these problems is to apply arcsine or logit 145 

transformations to the response variable, prior to regression (Warton & Hui 2011), 146 

although the results can be difficult to interpret (Ferrari & Cribari-Neto 2004). 147 

Numerous authors have instead demonstrated that percent plant cover are more 148 

appropriately analysed by assuming that cover approximates a two-parameter beta 149 

distribution (Ferrari & Cribari-Neto 2004; Chen et al. 2008a; Cribari-Neto & Zeileis 150 

2010; Herpigny & Gosselin 2015). Beta distributions are attractive because fitted 151 

values are constrained between the interval 0<y<1 and they can accommodate 152 

asymmetrical distributions with left- or right-skew. This flexibility makes beta 153 

distributions highly suitable for modelling diverse and often asymmetrical plant cover 154 

data (Cribari-Neto & Zeileis 2010).  155 

We present a Bayesian GLMM with a logit link to estimate the parameters of the beta 156 

distribution and allowed these parameters to vary among ordinal classes and plant 157 

growth forms. Estimates of these parameters were used to derive the predicted 158 

mean (PM) for each plant growth form in each ordinal class. 159 

 160 
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The proportional vegetation cover is given by the two-parameter beta distribution; 161 

Proportionij ~ Beta (aij, bij) 162 

Where aij and bij are shape parameters for species j in plot i, and i = 1,…n plots. The 163 

shape parameters are further defined as 164 

aij = θ x πij 165 

bij = θ x (1- πij) 166 

where θ allows for potential overdispersion to be incorporated in the model (Zuur et 167 

al. 2013). 168 

πij is modelled with a logit link  169 

logit (πij) = ηij  170 

The model consists of regression parameters (β) for each ordinal class, plant growth 171 

form and their interactions, plot level random intercepts and variance (Zi ):  172 

ηij = Xij x β + zi 173 

Zi ~ N (0, δ2
plot) 174 

Where Zi is a random intercept for plot, Xij are the matrix of all covariates (ordinal 175 

classes and their interaction with plant growth form) and β are the regression 176 

parameters for each covariate. That is, for each ordinal class 1…6, separate β were 177 

estimated for each plant growth form. For a simplified example with two growth forms 178 

and two ordinal classes this can also be expressed as: 179 

ηij = β0 + β1 x fOrdinalClassij + β2 x fGrowthFormij+ β3 fOrdinalClassij x fGrowthFormij + 180 

zi 181 

Where β0 = predicted value of logit transformed cover if species j belongs to the 182 

“reference” growth form and its’ value in plot i has the “reference” level ordinal cover-183 

abundance class. 184 
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β1 = departure of the predicted value for species j from β0 if the observation is of 185 

another ordinal cover-abundance class. 186 

β2 = departure of predicted value from β0 if species j belongs to another growth form. 187 

β3 = departure of predicted value from β0 + β1+ β2 when neither growth form nor 188 

ordinal cover-abundance class are of the reference level. 189 

In this example, fOrdinalClassij and fGrowthFormij are binary dummy variables 190 

coding growth form and cover-abundance scale categories, thus Xij is a vector 191 

containing values for these dummy variables (including their products) for species j 192 

in plot i. 193 

We included plot as a random intercept because although we assumed each plot 194 

should follow the characteristic skewed species abundance curve, we expected 195 

variation among plots and hence differences in the average cover of any given 196 

ordinal class and plant growth form.  197 

This basic model structure can be easily expanded to accommodate other possible 198 

sources of variation, such as among vegetation types or owing to the richness of 199 

plant species within a plot. In this case study, we decided not to include additional 200 

covariates to minimise computational demands and simplify model interpretation and 201 

operational complexity.  202 

The model was fit via Markov chain Monte Carlo optimization in JAGS (http://mcmc-203 

jags.sourceforge.net) via the R2jags package (Su & Yajima 2015) within R 3.5.0 (R 204 

Core Team 2018). Posterior parameter estimates and back-transformed predicted 205 

means were derived from 3 chains, with a burn-in of 3000 iterations, 15 000 206 

subsequent iterations per chain and with a thinning rate of 15. Autocorrelation and 207 

mixing were visually inspected. The interaction models were compared to additive 208 
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models using Deviance Information Criteria. Appendix S1 contains R code for our 209 

models. 210 

Case study – New South Wales, Australia 211 

We illustrate our model with a case study where we have used 1-6 BBCA as our 212 

ordinal scale and grouped plants into six growth form categories. Following is a brief 213 

description of how we prepared the case study dataset to build our model. We note 214 

that randomly generated data from an appropriate beta distribution (for similar 215 

example see Damgaard 2014) could also be used to demonstrate our approach. 216 

However, we chose to use a large archival dataset from a range of bioclimatic 217 

regions and vegetation types to demonstrate that, despite the underlying variation, 218 

our approach still led to robust estimates of summed cover. 219 

1. Preparation of observed percentage cover dataset  220 

To demonstrate our modelled approach, we sourced case study data from archival 221 

quantitative floristic data that met three considerations: (i) each species record 222 

included a visual estimate of foliage cover on a continuous scale from 0.1% to 100% 223 

and a count of abundance where cover was less than 5%; (ii) in each plot, full 224 

species inventories were recorded from a fixed-area (400 m2) and (iii) sites covered 225 

a wide geographic distribution (Appendix S2—Figure 1) and included a wide range of 226 

vegetation types with different structural complexity including rainforests, forests, 227 

woodlands, shrublands, grasslands and wetlands (Keith 2004). A total of 2809 geo-228 

referenced plots containing 95 812 occurrence records with visual estimates of cover 229 

for 3967 species met these criteria and were exported from the NSW BioNet Atlas 230 

database (www.bionet.nsw.gov.au).  231 

Analysis of the empirical cover distribution 232 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535948doi: bioRxiv preprint 

https://doi.org/10.1101/535948
http://creativecommons.org/licenses/by-nc/4.0/


11 

 

To confirm our assumption of right-skewed distribution of cover data we plotted our 233 

data and used the ‘skewness’ function in the e1071 package (Meyer et al. 2017) 234 

within R 3.3.3 (R Core Team 2018) to calculate the adjusted Fisher-Pearson 235 

skewness coefficient (G1) (Joanes & Gill 1998) for the whole distribution, and for 236 

distributions within each BBCA class. Skewness is a diagnostic tool usually used to 237 

test the symmetry of the data distribution. Here, we interpret skewness coefficients 238 

as being strongly and positively skewed when the G1 coefficient is greater than 0.5 239 

(Bulmer 1979; Doane & Seward 2011).  240 

2. Preparation of plant group entities 241 

All taxa were allocated to one of six growth form categories: tree, shrub, grass and 242 

grass-like (hereafter referred to as grass), forb, fern and other (remaining growth 243 

forms) (Oliver et al. submitted). For each growth form in each plot, total cover was 244 

estimated by summing the observed quantitative estimates of cover and the 245 

estimates of cover derived from the transformations of the ordinal data. 246 

3. Allocating an intermediary variable 247 

We created an intermediary variable by matching each quantitative estimate of cover 248 

for every floristic record (n = 95 812) to its commensurate ordinal value. Any ordinal 249 

scale can be used to partition data, but here we demonstrate our approach by 250 

allocating data to 1–6 BBCA (Table 1). BBCA1 and BBCA2 were assigned based on 251 

their observed foliage cover (<5%) and abundance; where BBCA1 ≤ 10 and BBCA2 252 

> 10 individuals. The pragmatic choice of ten individuals provides an explicit 253 

quantitative abundance threshold between classes BBCA1 and BBCA2. BBCA3–254 

BBCA6 were assigned based on observed foliage cover (≥5%) (Mueller-Dombois & 255 

Ellenberg 1974). The ordinal dataset created by this process approximates the form 256 

of many data held within vegetation databases.  257 
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In our case study dataset, observations of 5% cover were more prevalent than 258 

expected from a typical theoretical beta distribution (Figure 2). This bias was 259 

detected in preliminary model convergence diagnostics and model fit suggested that, 260 

for our case study, it would be preferable to split the data and separately model (i) 261 

BBCA1 and BBCA2 bounded between 0 and less than 5% cover and (ii) BBCA3 to 262 

BBCA6 bounded between 5% and 100% cover inclusive. To ensure the response 263 

variable was bounded by 0 and 1, percent cover was transformed using (y-a)/(b-a) 264 

where in (i) a = 0 and b = 5 and in (ii) a = 5 and b = 100 (Cribari-Neto & Zeileis 265 

2010). In the second model, the response variable was further transformed using (y * 266 

(n-1))/n where n = sample size (Cribari-Neto & Zeileis 2010). This split-model 267 

approach may not be necessary for all datasets, especially where data are derived 268 

from less subjective cover methods (e.g. point intercept or pin frame) but is included 269 

here to support the handling of datasets with similar patterns in distribution (see 270 

Appendix S3—Figures S1–S4 for other datasets that appear to show similar pattern). 271 

Evaluation of past and proposed approaches to transforming ordinal data 272 

We transformed each of the 1–6 BBCA records using three different approaches 273 

outlined in Table 1. We then evaluated these past approaches proposed by Tüxen 274 

and Ellenberg (1937), Braun-Blanquet (1964) and van der Maarel (2007) to the PM 275 

estimated from a beta distribution.  276 

For each plot, growth form cover and total cover were calculated by summing the 277 

observed continuous cover estimates (%) and the estimates of cover derived from 278 

the various transformations. Linear regression models with zero-intercept were fitted 279 

to the sum of observed continuous cover data (y) and sum of transformed cover data 280 

(x) cover data in R 3.5.0 (R Core Team 2018). We can justify using a regression 281 

through the origin because we are most interested in comparing the slope of the 282 
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regression line to the 1:1 line of best fit to determine if our PM models were over or 283 

underpredicting summed cover. We compared the  root mean squared deviation 284 

(RMSD) (see Eq. 1) as an estimate of the deviation of the transformed cover values 285 

from the 1:1 line.  286 

RMSD = 287 

 � 1� � 1 ���	� � ��
��

���

 

           (Eq. 1) 288 

Where �	� are the predicted cover values; �� are the observed cover values and n is 289 

the number of observations.  290 

The RMSD estimate represents the mean deviation of transformed cover values with 291 

respect to the true observed cover values. We also compared estimates of the slope 292 

with lower and upper 95% confidence intervals expecting that robust transformations 293 

would result in a slope = 1 and transformations that overestimate summed cover will 294 

have a slope <1. We include the adjusted coefficient of variation (R2) to evaluate how 295 

much of the linear variation of observed cover values is explained by the variation of 296 

transformed cover values.  297 

We note that RMSD is useful for evaluating models as it represents an absolute 298 

measure of fit to the 1:1 line and reports the prediction error in the same units as the 299 

data (i.e. summed cover). Whereas adjusted R2 gives a relative measure of 300 

proportion of total variance that is explained by the model on a scale between 0 and 301 

1.  302 
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We validated the PM transformation values on an independent dataset (2 227 sites 303 

with 51 497 observations) from West Virginia Natural Heritage Program (Vanderhorst 304 

et al. 2012) accessed from VegBank (Peet et al. 2013 accessed 28th Aug 2018). 305 

Whilst VegBank has a primary role for enabling the vegetation classification, large 306 

volumes of individual floristic observations are available for ecoinformatic synthesis 307 

and analysis. Owing to the ease of access and completeness of datasets stored in 308 

VegBank we were able to validate our model estimates on a geographically distinct 309 

dataset containing cover estimates of plants from entirely different vegetation 310 

communities. Details outlining the data preparation are included in Appendix S6. 311 

Results 312 

The empirical cover distribution 313 

The source continuous cover data were right-skewed and dominated by low cover—314 

85% of observations were between 0.1 and 4%, and 60% of these observations 315 

were of cover less than 1% (Figure 2). Data were heavily right-skewed for the whole 316 

distribution (G1 = 5.62) and right-skewed within five of the six BBCA classes (BBCA1 317 

G1 = 2.64, BBCA2 G1 = 1.57, BBCA3 G1 = 1.04, BBCA4 G1 = 0.61 and BBCA6 G1 = 318 

0.95). Only BBCA5 had a skewness coefficient less than 0.5 (G1 = 0.36). We also 319 

note potential observer bias for 5% cover. These patterns are similar to other visually 320 

estimated floristic cover data from other archived datasets (see Appendix S3— 321 

Figures 1-4). 322 

 323 
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Estimate mean cover using parameters of a beta distribution  324 

Table 1 (columns 7 and 8) shows the predicted mean transformations and their lower 325 

2.5% and upper 97.5% credible interval for each ordinal class, independent of 326 

growth forms. The most marked differences are noted in BBCA2 and BBCA3, where 327 

the predicted means are well below the previous approaches. The predicted mean 328 

for class BBCA6 is lower than the midpoint but was derived from relatively few 329 

observations (n = 138).  330 
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Table 1: Class divisions for the 1–6 Braun-Blanquet ordinal cover-abundance (BBCA) scale (columns 1–3), previous proposals for 331 

transforming them to percentage cover (columns 4–6), and proposed transforms (independent of growth form) based on estimating 332 

the predicted mean (PM) from a beta distribution of observed quantitative cover data and the lower 2.5% and upper 97.5% credible 333 

intervals. Number of observations (n) for BBCA1 (n = 54 811); BBCA2 (n = 26 968); BBCA3 (n = 11 946); BBCA4 (n = 1583); 334 

BBCA5 (n = 366) and BBCA6 (n = 138). 335 

Column 1 2 3 4 5 6 7 8 

BBCA 
Class 

Range of 
cover 
(%) 

Qualitative 
abundance 

terms 

Tüxen & 
Ellenberg 
(1937) 1 

Braun-Blanquet 
(1964) 1 

van der 
Maarel 
(2007) 2 

PM Credible interval 

1 <5 

e.g. present, 
few, rare, 
erratic, 

occasional, 
uncommon 

0.1 0.1 1 0.49 0.48–0.51 

2 <5 
e.g. common, 

abundant, 
many, several 

2.5 5 2 0.74 0.72–0.76 

3 5–25  15 17.5 17.5 8.95 8.84–9.07 

4 26–50  37.5 37.5 35 38.77 37.97–39.57 

5 51–75  62.5 62.5 70 62.43 60.69–64.13 

6 76–100  87.5 87.5 140 81.24 79.10–83.26 
 336 
1 adapted from van der Maarel (1979). 337 
2 ordinal transform values (OTV) using 1.415 weighting factor (van der Maarel 2007). 338 

Column 3 shows some of the qualitative descriptors used by field surveyors to divide observations between BBCA1 and BBCA2. 339 
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Table 2: Proposed transformation values, tailored to different growth forms, based on estimates of the predicted mean (PM) from a 340 

beta distribution of observed data. Lower 2.5% and upper 97.5% credible intervals (CI) are shown in square brackets; n = number 341 

of individual observations for each Braun-Blanquet cover-abundance (BBCA) class. 342 

 
   Growth Form     

  Tree Shrub Grass Forb Fern Other 
BBCA1 PM 0.78 0.52 0.45 0.42 0.43 0.45 

 CI (0.76 – 0.80) (0.51 – 0.53) [0.44 – 0.46] [0.41 – 0.44] [0.41 – 0.45] [0.44 – 0.46] 
 n 6465 13366 8731 16981 1863 7405 

BBCA2 PM 1.78 0.96 0.82 0.58 0.75 0.74 
 CI [1.7 – 1.86] [0.93 – 0.99] [0.8 – 0.84] [0.57 – 0.6] [0.72 – 0.78] [0.71 – 0.77] 
 n 441 2821 8488 12065 1324 1829 

BBCA3 PM 9.53 8.60 8.86 8.02 8.80 8.48 
 CI [9.38 – 9.7] [8.42 – 8.76] [8.71 – 9.01] [7.81 – 8.24] [8.46 – 9.19] [8.23 – 8.74 
 n 4347 2070 3500 893 412 724 

BBCA4 PM 38.06 39.18 39.32 37.86 39.30 38.72 
 CI [36.74 – 39.38] [36.98 – 41.26] [38.05 – 40.59] [34.01 – 41.81] [34.92 – 43.72] [34.76 – 42.64] 
 n 582 217 599 68 52 65 

BBCA5 PM 61.71 63.15 62.67 62.80 62.01 62.11 
 CI [58.15 – 65.16] [58.23 – 67.78] [60.24 – 65.08] [49.59 – 75.8] [54.16 – 70.05] [54.66 – 69.15] 
 n 89 48 184 6 18 21 

BBCA6 PM 80.80 83.9 80.81 78.87 77.59 80.55 
 CI [76.04 – 85.31] [78.99 – 88.41] [77.82 – 83.65] [64.83 – 90.78] [55.35 – 93.93] [70.09 – 89.57] 
 n 29 23 73 4 2 7 

 343 
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Evaluation of past and proposed transform values for summed growth form cover 344 

Estimates of the PM suggest that accounting for growth form within each ordinal class 345 

results in more robust summed cover estimates. Credible intervals suggest that in classes 346 

BBCA1 to BBCA3, trees typically have higher mean cover and warrant higher 347 

transformation values (Table 2). Credible intervals also suggest the need for separate 348 

transformation values for shrubs in BBCA1 and BBCA2 and a lower value for forbs in 349 

BBCA2 and BBCA3 (Table 2).  350 

When these growth form specific transformations were evaluated using the summed cover 351 

estimates RMSD did not exceed 9.50 (trees) (Figure 3 and Appendix S4—Table 1). In 352 

contrast, estimates based on past transformations frequently resulted in RMSD exceeding 353 

10. Slope ranged from 0.91 (forbs) to 1.05 (others), whereas past transformations slopes 354 

were <0.85, suggesting considerable overestimation of summed cover (see Appendix S4— 355 

Table 1 and Appendix S5—Figures 1-4). 356 

Evaluation of past and proposed transform values for total summed cover 357 

Evaluation of summed total cover revealed that when transformations are tailored to growth 358 

forms, the PM performed better than existing approaches (Figure 3). The PM reduced the 359 

overestimation of total summed cover by up to 4 times. The evaluation of model fit for 360 

summed total cover using past approaches generally revealed a poorer model fit: RMSD 361 

ranged from 41.47–79.37 (PM = 18.21) (see Appendix S4—Table 1) and slope ranged from 362 

0.57 to 0.74 (PM = 1.01) and adjusted R2 ranged from 0.61-0.96 (PM – 0.97). 363 

Evaluation of the growth form specific PM transformation on an entirely independent 364 

validation dataset from West Virginia Natural Heritage Program (Vanderhorst et al. 2012) 365 

show that transformations were robust, although tended to underestimate summed cover of 366 

most growth forms (Appendix 6—Table 1). RMSD ranged between 1.59 (others) and14.97 367 

(trees); slope ranged between 1 (others) and 1.12 (forbs) and adjusted R2 were high and 368 
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ranged between 0.97 (trees and shrubs) and 0.93 (others). When compared to the 369 

transformation proposed by Tüxen and Ellenberg (1937), the PM transformation values 370 

were marginally better. Tuxen and Ellenberg (1937) transformation values tended to result 371 

in an overestimate summed cover of all growth forms (Appendix S7—Figures 2a-f); RMSD 372 

was consistently higher than PM transformations for all growth forms; slopes were further 373 

from 1 between 0.76 (forbs) and 0.95 (shrubs) and adjusted R2 ranged between 0.86 374 

(others) and 0.98 (trees) (Appendix 6—Table 1). 375 

Evaluation of total cover, using the PM transformation values, showed RMSD was less than 376 

that estimated if the transformation was undertaken using estimates of Tüxen and Ellenberg 377 

(20.54 cf. 27.01) (Appendix 6—Table 1) and PM transformation values show a slight 378 

underestimation (slope = 1.1; adjusted R2 = 0.98) when tested on the independent dataset. 379 

Scatter plots showing the relationships between visual estimates of summed cover for all 380 

six growth form groups using the PM model and for Tüxen and Ellenberg (1937) 381 

transformations are provided in Appendix S7—Figures 1a-f and Figures 2a-f. 382 

Discussion 383 

Transforming ordinal data to a quantitative form is common practice in plant ecology and 384 

extends across disciplines including restoration (Fill et al. 2017), classification (Cawsey et 385 

al. 2002; Faber-Langendoen et al. 2007; Wiser & De Cáceres 2013); and for assessing 386 

disturbance (Scott & Kirkpatrick 2008; Knapp & Ritchie 2016). Similarly, universal skewed 387 

patterns in the species abundance distribution are a long standing and well recognised 388 

pattern in ecology (e.g. MacArthur 1960). The data we present here are no exception. Yet 389 

the integration of these two concepts, underpinned by a robust modelling approach has 390 

received little attention, especially in the context of synthesizing information on aggregate 391 

properties of vegetation data. We demonstrate, using two large quantitative independent 392 
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datasets that when the underlying right-skewed cover distribution is accounted for, a more 393 

robust set of transformations are generated. Where the aggregate properties of floristic data 394 

are of interest, our method, unlike previous approaches to transformation of ordinal data, 395 

does not overinflate cover.  396 

Where possible, we advocate that others replicate this approach and source continuous 397 

cover data, so that the means within each ordinal class can be estimated accounting for the 398 

underlying distribution. Ideally, the continuous cover datasets will encompass the same 399 

temporal and spatial variation as that of the ordinal data. Notwithstanding these 400 

recommendations for best-practice, we have demonstrated our modelling approach can 401 

produce robust estimates of summed cover using floristic data from geographically distinct 402 

dataset containing observations of entirely unrelated vegetation communities. We expect 403 

the estimates of summed cover would further improve had we used representative data 404 

from that region and vegetation to model specific estimates of the parameters for the beta 405 

distribution. Undoubtedly there will be circumstances where appropriate continuous data 406 

will not be available and the parameters of the beta distribution cannot be estimated for a 407 

specific study or region. In these situations, adopting the PM transformations provided in 408 

Tables 1 and 2 would be preferable to application of ordinal class midpoints. When plant 409 

cover are right-skewed, midpoint transformations will bias and overestimate total cover.  410 

Hierarchical models are useful for handling complex interactions in observational data. 411 

Despite the size of the initial dataset, some plant groups were poorly represented in the 412 

higher cover classes. By appropriately specifying the hierarchical model, estimates for 413 

these combinations could still be obtained, because they draw from the full model structure.  414 

We have identified that different growth forms have different cover distributions. Our 415 

empirical evidence strongly suggests that in plots where there are many small entities from 416 

the same growth form, such as for forbs and grasses, the cumulative cover of that growth 417 
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form (when derived from transformations of ordinal data) may amplify and inaccurately 418 

describe the structural complexity of vegetation communities. Identifying and accounting for 419 

these distributions in other grouped entities has the potential to further improve summed 420 

cover estimates. 421 

We also note potential observer bias for cover estimates of 5%. We acknowledge that 422 

visual estimates of cover and counts are subject to inter- and intra-operator error and bias 423 

(see Morrison 2016 for review) and this may account for the data digressions from a 424 

smooth shaped abundance curve. This is no doubt an artefact of observer preference for 425 

regular intervals when estimating cover, rather than a true representation of plant cover. In 426 

our case study analyses, the high frequency of estimates of 5% cover required a split-427 

model approach where cover data were treated in two separate models. Given this right-428 

skewed distribution and potential bias among disparate datasets (Appendix S3—Figures 1-429 

4), we propose the split-model approach may serve wider applications. Simulated beta 430 

distribution data may not be entirely appropriate when using visually-estimated cover data, 431 

but may be useful where other less subjective methods for estimating cover are used (such 432 

as point-intercept methods). Given that visual estimates of cover-abundance are the 433 

assessment protocol for many floristic surveys, our approach offers a way these data can 434 

still be transformed and used with greater confidence, despite the underlying variability and 435 

bias. The approach we outline here can rapidly generate robust and defensible 436 

transformation estimates that are less prone to inflating summed cover estimates. 437 

We envisage that our method may be useful when combined with emerging technologies 438 

such as 3-dimensional LiDAR or radar sensors that can penetrate vegetation canopies and 439 

assess complex structural elements. Furthermore, where large-scale biodiversity 440 

assessments, that rely on terrestrial vegetation as indicators of change, seek to integrate 441 

site observations to validate or train imagery, vegetation cover data collected in an ordinal 442 
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scale will be of little benefit. Summation of midpoint transformations have been widely used 443 

in remote-sensing applications, no doubt often resulting in overinflated cover estimates. 444 

While transformations derived from a beta distribution will reduce the problem of over 445 

inflation, summed cover estimates can still exceed 100%. Jennings et al. (2009) offer an 446 

approach to rescaling summed cover so that cover estimates do not exceed 100% and their 447 

approach may be useful where site-based data are integrated to inform remote sensing 448 

applications. 449 

Our approach to transforming ordinal estimates of cover using a beta distribution can 450 

extend the application of these data beyond the realm of vegetation classification and can 451 

salvage information from many millions of floristic records. We expect most large 452 

repositories of floristic data will contain cover estimates with multifarious and nuanced 453 

ordinal scales. Here we provide a method that can be applied to floristic data in different 454 

ordinal scales for transforming and integrating datasets with much greater confidence. We 455 

have demonstrated a pan-continental approach to transforming ordinal cover estimates 456 

needed to build robust and accurate aggregated cover estimates. We foresee this approach 457 

supporting the synthesis of multiple datasets containing legacy data collected in different 458 

ordinal scales, especially where the aggregate properties of vegetation cover for different 459 

plant groups are of interest. These transformations and the resultant aggregated properties 460 

of cover data can support a multitude of uses in ecology from site-scaled, to landscape-461 

scaled and for global applications. 462 
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 1 

 2 

Figure 1: Workflow showing the major elements required to estimate transformation 3 

values for ordinal data using continuous cover estimates. Here we use Braun-4 

Blanquet cover-abundance (BBCA) 1-6 scale, although this approach could be 5 

extended to any ordinal scale. Note, this flow diagram represents data from one plot, 6 

but many plots are needed to obtain robust estimates of mean cover.  7 
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 8 

Figure 2: Distribution of visual estimates of cover for 95 812 observations, and their 9 

corresponding Braun-Blanquet cover-abundance (BBCA) class for our case study. 10 

Dashed vertical lines show cut points between each BBCA class. Number of 11 

observations (n) for BBCA1 (n = 54 811); BBCA2 (n = 26 968); BBCA3 (n = 11 946); 12 

BBCA4 (n = 1 583); BBCA5 (n = 366) and BBCA6 (n = 138). Numbers between the 13 

dashed lines show the percentage of each class in the dataset. BBCA1 and BBCA2 14 

(both represent <5% cover) are shown as stacked histograms; BBCA1 (≤ 10 15 

individuals) sits above BBCA2 (> 10 individuals). See Appendix S3—Figures 1-4 for 16 

comparison with other archival datasets. 17 
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Figure 3: Results of linear regression with zero-intercept to compare root mean 

squared deviation (RMSD) and slope for each growth form and for total summed 

cover under previous transformations compared to the predicted mean 

transformation. Lower and upper 95% confidence intervals are shown for slope. 

Vertical dashed lines represent the perfect regression fit where RMDS = 0 and slope 

= 1. (data table supplied in Appendix S4—Table 1). Number of observations (n) for 

trees (n = 11 953); shrubs (n = 18 545); grasses (n = 21 575); forbs (n = 30 017); 

ferns (n = 3671); other (n = 10 051) and total (n = 2809). See Appendix S5 — 

Figures 1a-f to 4a-f for plots of all growth forms and three previous approaches to 

transformation proposed by Tüxen and Ellenberg (1937); Braun-Blanquet (1964) and 

van der Maarel (2007). 
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