
1 

 

Towards creating an extended metabolic model (EMM) for E. coli using enzyme promiscuity 

prediction and metabolomics data 

 

Sara A. Amin*, Department of Computer Science, Tufts University, Medford, MA, 

sara.amin@tufts.edu 

Elizabeth Chavez*, Department of Biology, University of North Carolina, Chapel Hill, NC 

celiz@live.unc.edu 

Nikhil U. Nair†, Department of Chemical and Biological Engineering, Tufts University, Medford, 

MA nikhil.nair@tufts.edu, and  

Soha Hassoun†, Departments of Computer Science and Department of Chemical & Biological 

Engineering, Tufts University, Medford, MA, soha.hassoun@tufts.edu  

*Equal contributions 

†Co-corresponding authors 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536060doi: bioRxiv preprint 

mailto:sara.amin@tufts.edu
mailto:celiz@live.unc.edu
mailto:Nikhil.nair@tufts.edu
mailto:soha.hassoun@tufts.edu
https://doi.org/10.1101/536060


2 

 

Abstract 

Background 

Metabolic models are indispensable in guiding cellular engineering and in advancing our 

understanding of systems biology. As not all enzymatic activities are fully known and/or 

annotated, metabolic models remain incomplete, resulting in suboptimal computational analysis 

and leading to unexpected experimental results. We posit that one major source of unaccounted 

metabolism is promiscuous enzymatic activity. It is now well-accepted that most, if not all, 

enzymes are promiscuous – i.e., they transform substrates other than their primary substrate. 

However, there have been no systematic analyses of genome-scale metabolic models to predict 

putative reactions and/or metabolites that arise from enzyme promiscuity. 

Results 

Our workflow utilizes PROXIMAL – a tool that uses reactant-product transformation patterns 

from the KEGG database – to predict putative structural modifications due to promiscuous 

enzymes. Using iML1515 as a model system, we first utilized a computational workflow, referred 

to as Extended Metabolite Model Annotation (EMMA), to predict promiscuous reactions 

catalyzed, and metabolites produced, by natively encoded enzymes in E. coli. We predict hundreds 

of new metabolites that can be used to augment iML1515. We then validated our method by 

comparing predicted metabolites with the Escherichia coli Metabolome Database (ECMDB).  

Conclusions 

We utilized EMMA to augment the iML1515 metabolic model to more fully reflect cellular 

metabolic activity. This workflow uses enzyme promiscuity as basis to predict hundreds of 

reactions and metabolites that may exist in E. coli but have not been documented in iML1515 or 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536060doi: bioRxiv preprint 

https://doi.org/10.1101/536060


3 

 

other databases. Among these, we found that 17 metabolites have previously been documented in 

E. coli metabolomics studies. Further, 6 of these metabolites are not documented for any other E. 

coli metabolic model (e.g. KEGG, EcoCyc). The corresponding reactions should be added to 

iML1515 to create an Extended Metabolic Model (EMM). Other predicted metabolites and 

reactions can guide future experimental metabolomics studies. Further, our workflow can easily 

be applied to other organisms for which comprehensive genome-scale metabolic models are 

desirable. 

 

Keywords 

Metabolic engineering, enzyme promiscuity, extended metabolic model, systems biology, enzyme 

activity prediction 

 

Background 

The engineering of metabolic networks has enabled the production of high-volume commodity 

chemicals such as biopolymers and fuels, therapeutics, and specialty products [1-3].  Producing 

such compounds requires transforming microorganisms into efficient cellular factories [4-7]. 

Biological engineering has been aided via computational tools for constructing synthesis pathways 

strain optimization, elementary flux mode analysis, discovery of hierarchical networked modules 

that elucidate function and cellular organization, and many others (e.g., [8-12]). These design tools 

rely on organism-specific metabolic models that represent cellular reactions and their substrates 

and products. Model reconstruction tools [13, 14] use homology search to assign function to Open 
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Reading Frames obtained through sequencing and annotation. Once the function is identified, the 

corresponding biochemical transformation is assigned to the gene. Additional biological 

information such as gene-protein-reaction associations is utilized to refine the models. Exponential 

growth in sequencing has resulted in an “astronomical”, or better yet, “genomical”, number of 

sequenced organisms [15]. There are now databases (e.g., KEGG [16], BioCyc [17], and BiGG 

[18]) that catalogue organism-specific metabolic models. Despite progress in sequencing and 

model reconstruction, the complete characterizing of cellular activity remains elusive, and 

metabolic models remain incomplete. One major source of uncatalogued cellular activity is 

attributed to orphan genes. Because of limitations of homology-based prediction of protein 

function, there are millions of protein sequences that are not assigned reliable functions [19]. 

Integrated strategies that utilize structural biology, computational biology, and molecular 

enzymology continue to address assigning function to orphan genes [20]. 

 

We focus in this paper on another major source of uncatalogued cellular activity − promiscuous 

enzymatic activity, which has recently been referred to as ‘underground metabolism’ [21, 22]. 

While enzymes have widely been held as highly-specific catalysts that only transform their 

annotated substrate to product, recent studies show that enzymatic promiscuity – enzymes 

catalyzing reactions other than their main reactions – is not an exception but can be a secondary 

task for enzymes [23-27]. More than two-fifths (44%) of KEGG enzymes are associated with more 

than one reaction [28]. Promiscuous activities however are not easily detectable in vivo since, i) 

metabolites produced due to enzyme promiscuity may be unknown, ii) product concentration due 

to promiscuous activity may be low, iii) there is no high-throughput way to relate formed products 

to specific enzymes, and iv) it is difficult to identify potentially unknown metabolites in complex 
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biological samples. Outside of in vitro biochemical characterization studies to predict promiscuous 

activities, there are few resources that record details about promiscuous enzymes such as MINEs 

Database [29], and ATLAS [30]. Despite the current wide-spread acceptance of enzyme 

promiscuity, and its prominent utilization to engineer catalyzing enzymes in metabolic engineering 

practice [31-34], promiscuous enzymatic activity is not currently fully documented in metabolic 

models. Advances in computing and the ability to collect large sets of metabolomics data through 

untargeted metabolomics provide an exciting opportunity to develop methods to identify 

promiscuous reactions, their catalyzing enzymes, and their products that are specific to the sample 

under study. The identified reactions can then be used to complete existing metabolic models.  

 

We describe in this paper a computational workflow that aims to extend preexisting models with 

reactions catalyzed by promiscuous native enzymes and validate the outcomes using published 

metabolomics datasets. We refer to the augmented models as Extended Metabolic Models 

(EMMs), and to the workflow to create them as EMMA (EMM Annotation). Each metabolic 

model is assumed to have a set of reactions and their compounds and KEGG reaction IDs. Each 

reaction is assumed to be reversible unless indicated otherwise. EMMA utilizes PROXIMAL [35], 

a method for creating biotransformation operators from KEGG reactions IDs using RDM 

(Reaction Center, Difference Region, and Matched Region) patterns [36], and then applying the 

operators to given molecules. While initially developed to investigate products of Cytochrome 

P450 (CYP) enzymes, highly promiscuous enzymes utilized for detoxification, the PROXIMAL 

method is generic. To create an EMM for a known metabolic model, PROXIMAL generates 

biotransformation operators for each reaction in the model and then applies the operators to known 

metabolites within the model. The outcome of our workflow is a list of putative metabolites due 
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to promiscuous enzymatic activity and their catalyzing enzymes and reactions. In this work, we 

apply EMMA to iML1515, a genome-scale model of Escherichia coli MG1655 [37]. EMMA 

predicts hundreds of putative reactions and their products due to promiscuous activities in E. coli. 

The putative products are then compared to measured metabolites as reported in Escherichia coli 

Metabolome Database, ECMDB [38, 39]. We identify 17 metabolites that are in ECMDB but not 

in iML15151. Out of the 17 generated metabolites, 11 are already documented in other E. coli 

databases (e.g. EcoCyc [40], and KEGG). The remaining 6 reactions and their metabolites have 

not been previously recorded as part of E. coli metabolism. We therefore recommend extending 

E. coli model iML15151 with at least 17 new reactions that are validated by existing metabolomics 

data. 

 

Results 

Application of PROXIMAL to iML1515 yielded a lookup table with 1,875 biotransformation 

operator entries. When applied to 106 high concentration metabolites [41] in iML1515, these 

operators predicted the formation of 1,423 known metabolites of which 1,368 were new to this 

model. Our workflow recommended 17 balanced reactions that can be used to augment the 

iML1515 model. 

  

These identified reactions were divided into four categories, C1−C4. The rationale for the various 

categories is explained using a decision tree (Fig. 1), a machine learning model that classifies data 

into groupings that share similar attributes [42]. With the exception of leaf nodes, each node in the 

tree tests the presence or absence of a particular attribute. Left branches represent the presence of 
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the attribute, while the right branch represents the attribute’s absence. Each leaf node represents a 

classification category and is associated with a subset of the 17 reactions. At the root node of the 

decision tree, we tested if a PROXIMAL predicted metabolite is in the iML1515 model. If it is, 

and if the enzyme catalyzing the reaction within iML1515 model producing this metabolite is 

different than the enzyme PROXIMAL used to predict the relevant biotransformation, then it is 

classified in Category 1 (C1). Reactions belonging to C1 are parallel transformation to the ones in 

the model. They represent novel biotransformation routes between existing metabolites since they 

are generated using a different gene/enzyme than what is reported in iML1515. If previous 

conditions do not apply to the predicted product, then it is discarded as the reaction is already in 

iML1515.  

 

If a predicted metabolite is not one of the known metabolites in iML1515, the decision tree 

determines whether the predicted metabolite and reaction set is associated with E. coli in other 

databases (KEGG and EcoCyc). If the biotransformation is present in KEGG or EcoCyc, then the 

predicted metabolite is classified into Category 2 (C2), reflecting a curation issue where some 

reactions were not included in the iML1515 model. If the predicted metabolite is not in iML1515 

and not associated with E. coli in KEGG nor listed in EcoCyc, then the decision tree determines if 

the same chemical transformation (same substrate and same product) is documented to occur in 

other organisms. Predicted biotransformations documented in KEGG for organisms other than E. 

coli are classified in Category 3 (C3). While biotransformations not found in KEGG are classified 

as Category 4 (C4).  
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Each Category consists of a set of reactions. C1 consists of five reactions that are predicted to be 

catalyzed by enzymes that are different than those in iML1515 (Fig. 2). The redox transformation 

between L-alanine and 2-aminoacrylic acid (Fig. 2A), is predicted to be catalyzed by EC 1.3.1.98 

(UDP-N-acetylmuramate dehydrogenase). 2-Aminoacrylic acid, also known as dehydroalanine, is 

also formed/consumed in E. coli due to EC 4.3.1.17 (serine deaminase). Another predicted reaction 

is the redox transformation between 2-oxoglutarate and 2-hydroxyglutarate by EC 1.1.1.79 

(glyoxylate reductase) (Fig. 2B). 2-Hydroxyglutarate is involved in reactions associated with EC 

1.1.1.95 (phosphoglycerate dehydrogenase) in E. coli. The phosphoribosyltransferase reaction 

between cytosine and cytidine-5’-monophosphate (CMP) is predicted to occur in E. coli due to EC 

2.4.2.10 (orotate phosphoribosyltransferase) (Fig. 2C). CMP, a nucleotide, is already known to be 

involved in a number of E. coli reactions – ECs 2.4.99.12, 2.4.99.13, 2.4.99.14, 2.4.99.15 (all of 

which are the same KDO transferase), 2.7.1.48 (uridine kinase), 2.7.4.25 (dCMP kinase), 2.7.8.5 

(glycerol-3-phosphate phosphatidyltransferase), 2.7.8.8 (phosphatidylserine synthase), 3.1.3.5 (5'-

nucleotidase), 3.2.2.10 (pyrimidine-5'-nucleotide nucleosidase), 3.6.1.9 (nucleotide 

diphosphatase), 3.6.1.26 (CDP diacylglycerol hydrolase), 3.6.1.65 (CTP diphosphatase), 4.6.1.12, 

(MECDP synthase) and 6.3.2.5 (phosphopantothenate-cysteine ligase) [16]. Another predicted 

reaction is the transformation between bicarbonate and carboxyphosphate catalyzed by EC 3.6.1.7 

(acylphosphatase) (Fig. 2D). Carboxyphosphate is also formed/consumed in E. coli due to EC 

6.3.5.5 (carbamoyl-phosphate synthase). The last prediction is the coenzyme A transferase reaction 

between acetoacetyl-CoA and acetoacetate due to EC 2.8.3.10 (citrate CoA-transferase) (Fig. 2E). 

Acetoacetate is also known to be formed/consumed in E. coli due to ECs 2.8.3.8 (acetate CoA-

transferase) and 2.8.3.9 (butyrate-acetoacetate CoA-transferase). 
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C2 consists of six reactions known to be in E. coli but missing from the iML1515 model. The first 

predicted reaction is the aminoacyltransferase reaction between L-glutamate and γ-glutamyl-β-

cyanoalanine due to EC 2.3.2.2 (γ-glutamyltransferase) (Fig. 3A). The second is a predicted ligase 

reaction between L-glutamic acid and THF to form/consume THF-L-glutamic acid by EC 6.3.2.17 

(tetrahydrofolate synthase) (Fig. 3B). The third is an acyltransferase transformation between 

propanoyl-CoA and 2-methylacetoacetyl-CoA catalyzed by EC 2.3.1.9 (acetoacetyl-CoA thiolase) 

(Fig. 3C). Fourth, PROXIMAL predicted the phosphotransferase reaction between of D-ribulose-

5-phosphate and D-ribulose-1,5-bisphosphate by EC 2.7.1.19 (phosphoribulokinase) (Fig. 3D). 

The fifth predicted reaction known to be in E. coli is the redox transformation of D-gluconic acid 

to 2-keto-D-gluconic acid by EC 1.1.1.215 (gluconate 2-dehydrogenase) (Fig. 3E). Lastly, the 

workflow predicted glycosyltransferase transformation of 5-amino-4-imidazolecarboxamide 

to/from 1-(5’-phosphoribosyl)-5-amino-4-imidazolecarboxamide by EC 2.4.2.7 (AMP 

pyrophosphorylase) (Fig. 3F).  

 

C3 consists of three predicted reactions that are not documented in E. coli but are known in other 

organisms. The first of these, the transformation between pyruvate and 4-carboxy-4-hydroxy-2-

oxoadipate (Fig. 4A) catalyzed by EC 4.1.3.17 (HMG aldolase), is present in many organisms, 

including bacteria, as part of the benzoate degradation pathway (KEGG R00350). The 

transformation is predicted to occur in E. coli due to EC 4.1.3.34 (citryl-CoA lyase). Both EC 

4.1.3.17 and EC 4.1.3.34 are lyases enzymes that form carbon-carbon bonds. 4-Carboxy-4-

hydroxy-2-oxoadipate is known to be formed/consumed by EC 4.2.1.80 (2-keto-4-pentenoate 

hydratase) in E. coli (KEGG R04781). Another predicted reaction is the (de)aminating redox 

transformation between L-histidine and imidazol-5-yl-pyruvate, catalyzed by EC 1.4.1.4 
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(glutamate dehydrogenase) (Fig. 4B). Imidazol-5-yl-pyruvate is not known to be produced in any 

other way in E. coli, according to ECMDB and KEGG databases. The transformation of L-histidine 

to/from imidazol-5-yl-pyruvate is known to occur in the bacterium Delftia acidovorans by EC 

2.6.1.38 (histidine transaminase) [43]. Lastly, C3 includes the predicted aryltransferase reaction 

between geranyl diphosphate and geranyl hydroxybenzoate by EC 2.5.1.39 (4-hydroxybenzoate 

transferase) (Fig. 4C). While the general reaction of all-trans-polyprenyl diphosphate to 4-

hydroxy-3-polyprenylbenzoate is known to occur in E. coli, the specific transformation between 

geranyl diphosphate to geranyl hydroxybenzoate is known to occur in plants as part of shikonin 

biosynthesis, by EC 2.5.1.93 (4-hydroxybenzoate geranyltransferase) [44]. 

 

C4 consists of three predicted reactions that are not currently catalogued in KEGG for any 

organism (Fig. 5). The first reaction (Fig. 5A) is the oxidoreductive interconversion between 

aminomalonate and L-serine by EC 1.1.1.23 (histidinol dehydrogenase). There is one reaction 

(KEGG R02970) catalyzed by EC 2.6.1.47 (L-alanine:oxomalonate aminotransferase) that 

produces aminomalonate; but it is not a redox reaction and is associated with rat and silkworm, 

not E. coli [45]. The second, is a hydrolytic decarboxylation reaction between N-acetylputrescine 

and N-acetylornithine (Fig. 5B) predicted to be catalyzed by EC 4.1.1.36 (PPC decarboxylase). 

The product, N-acetylputrescine, is involved in a number of enzymatic reactions – ECs 1.4.3.4 

(monoamine oxidase), 2.3.1.57 (spermidine acetyltransferase), and 3.5.1.62 (acetylputrescine 

deacetylase) – in many organisms that include both eukaryotes and bacteria [16].  The last reaction 

in this category is the hydrolytic decarboxylation reaction between 3-ureidopropionate and N-

carbamoyl-L-aspartate also catalyzed by EC 4.1.1.36 (PPC decarboxylase). 3-Ureidopropionate is 
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present in eukaryotes and bacteria (but not E. coli) and is involved in reactions catalyzed by ECs 

3.5.1.6 (β-ureidopropionase) and 3.5.2.2 (dihydropyrimidinase). 

 

Discussion 

Current practices for reconstructing genome-scale metabolic models, which are derived using 

sequencing and functional annotation, can be improved by utilizing metabolomics data. However, 

directly utilizing metabolomics measurements to augment existing models is challenging. Not 

every metabolite is measurable due to limited resolution and fidelity of mass spectrometry 

instruments. Further, assigning chemical identities to measured metabolites remains a challenge. 

Even if new metabolites are identified, their formation cannot be easily assigned to enzymes 

without significant experimental effort involving either genetic or biochemical screens. 

Additionally, metabolomics data alone cannot differentiate reactions catalyzed by different 

enzymes yet between the same substrates-product pairs without additional experimental efforts. 

Computational tools and workflows, as presented in this paper, can significantly guide such studies 

and aid in metabolic model construction and augmentation based on metabolomics data. 

 

The workflow that we developed here is designed to identify metabolites that can form due to 

promiscuous enzymatic activity. Further, the workflow provides balanced reactions to document 

such enzymatic activities. We utilized PROXIMAL [35], which first identifies patterns of 

structural transformations associated with enzymes in the biological sample and then applies these 

transformations to known sample metabolites to predict putative metabolic products. Using 

PROXIMAL in this way allows attributing putative metabolic products to specific enzymatic 
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activity and deriving balanced biochemical reactions that capture the promiscuous activity. Using 

PROXIMAL offers an additional advantage − the derived promiscuous transformations are 

specific to the sample under study, and are not limited to hand-curated biotransformation operators 

as in prior works [29, 30]. PROXIMAL therefore allows exploration of a variety of 

biotransformations that are commensurate with the biochemical diversity of the biological sample. 

The EMMA workflow, which utilized PROXIMAL, was previously developed to engineer a 

candidate set from a metabolic model for metabolite identification [49]. EMMA did not aim to 

augment existing metabolic models or derive balanced reactions as utilized in this study.  

 

Future experimental and computational efforts can further advance this work. Experimentally, the 

list of putative products generated by PROXIMAL but not documented in any metabolomics 

databases can be used as a resource to identify as yet unidentified metabolites. Experimental 

validation of reactions in the various categories, especially C3 and C4, provide a means for 

expanding existing databases such as KEGG and EcoCyc. Computationally, PROXIMAL can be 

upgraded to consider enzymes that act on more than one Reaction Center (R) within a metabolite 

(e.g. transketolase). This would produce multiple operators per reaction and generate a more 

comprehensive list of putative reactions and products. We applied PROXIMAL transformation 

patterns to only 106 high concentration metabolites with the goal of increasing the probability 

verifiable predictions. Derivatives of metabolites with lower concentration, however, can also be 

considered. Additionally, we applied only one iteration of the workflow – i.e., we did not consider 

whether products of promiscuous reactions can themselves act as new substrates for promiscuous 

reactions. This is due to the large number of putative products. We are currently developing 

machine learning techniques to improve the prediction accuracy of PROXIMAL. 
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Conclusion 

This study investigates creating Extended Metabolic Models (EMMs) through the augmentation 

of existing metabolic models with reactions due to promiscuous enzymatic activity. Our workflow, 

EMMA, first utilizes PROXIMAL to predict putative metabolic products, and then compares these 

products against metabolomics data. EMMA was applied to iML1515, the genome-scale model of 

E. coli MG1655. PROXIMAL generated 1,875 biochemical operators based on reactions in 

iML1515 and predicted 1,368 derivatives of 106 high-concentration metabolites. To validate these 

products, EMMA compared the set of putative derivatives with the set of metabolites documented 

in ECMDB as part of E. coli metabolism. For the overlapping set, we generated corresponding 

atom-balanced reactions by adding suitable cofactors and/or co-substrates to the substrate-

derivative pair suggested by PROXIMAL. The balanced reactions were compared with data 

recorded in EcoCyc and KEGG. Our workflow generated a list of 17 new reactions that should be 

utilized to extend the iML1515 model, including parallel reactions between existing metabolites, 

novel routes to existing metabolites, and new paths to new metabolites. Importantly, this study is 

foundational in providing a systemic way of coupling computational predictions with 

metabolomics data to explore the complete metabolic repertoire of organisms. Applying this 

workflow to other biological samples and their metabolomics data promise to enhance our 

understanding of natural, synthetic, and xenobiotic metabolism. 
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Methods 

The EMMA workflow was customized to augment the E. coli iML1515 model based on the 

availability of the metabolic measurements in ECMDB, and the availability of cataloged reactions 

and metabolites for E. coli in other databases (EcoCyc and KEGG) (Fig. 6). The iML1515 model 

consists of 1,877 metabolites, 2,712 reactions and 1,516 genes. Our workflow consists of the 

following three steps. 

 

Step 1 – Predict promiscuous products using PROXIMAL 

EMMA used PROXIMAL to predict putative products that can be added to the model. 

PROXIMAL utilizes RDM  patterns [36] specific to the model’s reactions to create lookup tables 

that map reaction centers to structural transformation patterns. An RDM pattern specifies local 

regions of structural similarities/differences for reactant-product pairs based on a given 

biochemical reaction. An RDM pattern consists of three parts: i) A Reaction Center (R) atom exists 

in both the substrate and reactant molecule and is the center of the molecular transformation. ii) 

Difference Region (D) atoms are adjacent to the R atom and are distinct between substrate and 

product. iii) Matched Region (M) atoms are adjacent to the R atom but remain unmodified by the 

transformation. All atoms are labelled using KEGG atom types [50]. Only transformations 

requiring the presence of one Reaction Centers (R) for the biotransformation to occur are utilized. 

PROXIMAL constructs a lookup table of all possible biotransformations that can occur due to 

promiscuous activity of enzymes based on the RDM patterns of reactions catalyzed by enzymes 

associated with genes in the iML1515 gene list. The “key” in the lookup table consisted of the R 

and M atom(s) in the reactant, while the “value” is the R and D atom(s) in the product. RDM 
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patterns were initially available through the (RPAIR) database, but they are now catalogued in 

KEGG’s RClass database. The biotransformation operators in the lookup table were then applied 

to model metabolites. To increase the probability of predicting verifiable reactions, the 

biotransformations were applied to only 106 metabolites in iML1515 with predicted or measured 

concentration values above 1 µM [41]. The assumption here is that high concentration metabolites 

are more likely to undergo transformation by promiscuous enzymatic activity and form detectible 

derivatives. The outcome of this step is a list of predicted products due to putative enzymatic 

activity. 

 

Step 2 – Compare predicted products with metabolomics dataset 

Metabolites predicted by PROXIMAL were compared with measured metabolic data in ECMDB. 

ECMDB contains 3,760 metabolites detected in E. coli strain K-12 and related information such 

as reactions, enzymes, pathways, and other properties. This information was either collected from 

resources and databases such as EcoCyc, KEGG, EchoBase [51], UniProt [52, 53], YMDB [54], 

and CCDB [55], or from literature, or validated experimentally by the creators of ECMDB. Partial 

information about metabolites such as KEGG compound IDs, metabolites cell location, and 

chemical formulas is provided in ECMDB.  

 

For each putative product, a mol file was generated and then converted to a SMILES string using 

Pybel [56], a python wrapper for the chemical toolbox Open Babel [57]. Based on the SMILES 

string, we initially retrieved the corresponding PubChem ID and InchiKey from PubChem using 

Pybel. To ensure consistency, we confirmed that retrieved PubChem IDs and InchiKeys of 
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PROXIMAL predicted metabolites matched the corresponding entries in ECMDB. During this 

process, we noted some discrepancies. In some cases, the information retrieved from PubChem, 

such as InchiKeys did not match those in ECMDB. In cases of a mismatch, we sought additional 

information to confirm metabolite identities of ECMDB products. We utilized the values of the 

CAS ID, BioCyc ID, Chebi ID and KEGG ID fields to retrieve PubChem IDs using Pybel. The 

retrieved PubChem IDs are used to determine the ID through a majority vote. For example, if the 

PubChem ID associated with InchiKey, KEGG ID and CAS ID matched, but did not match the 

PubChem ID provided in ECMDB, then we considered the one retrieved by Pybel as the correct 

PubChem ID. Out of 3,760 metabolites in ECMDB, we identified 3,397 metabolites with 

consistent information with data retrieved from PubChem. Once PubChem IDs were identified for 

ECMDB metabolites, we compared our predicted metabolites against ECMDB metabolites using 

PubChem IDs. 

 

Step 3 – Curation of stoichiometric reactions 

If a metabolite predicted by PROXIMAL was in ECMDB, then steps 1 and 2 resulted in the 

identification of a verifiable predicted promiscuous transformation of an E. coli metabolite.   

Otherwise, our analysis in step 1 yielded a putative transformation. For each verifiable predicted 

transformation by PROXIMAL, we developed a new reaction by examining the reaction(s) 

template associated with the enzymatic transformation and adding suitable cofactors to the reactant 

and product of the biotransformation identified. The set of balanced reactions developed, where 

the added cofactors to a reaction caused the number of atoms of reactants and products to match 

on both sides of the reaction, are then compared to reactions recorded in EcoCyc and KEGG. If 

the reaction could not be balanced, it was discarded from further analysis. Here, 34 products were 
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matched to measured metabolites reported in ECMDB. We identified 17 products and their 

balanced reactions after curation to remove stoichiometrically unbalanced reactions.  

 

The outcomes were divided into four categories. C1 reactions consisted of metabolites predicted 

by PROXIMAL that are already in iML1515 but catalyzed by different enzymes than the ones 

already listed in the model. These reactions reflect promiscuous activity that enabled the same 

biotransformation catalyzed by a different gene in the model. C2 reactions already existed in 

EcoCyc and/or KEGG but not in iML1515. This reflected a curation problem where some reactions 

were not included in the iML1515 model. C3 reactions were not in EcoCyc but documented in 

KEGG for other organisms. C4 reactions did not exist in either databases EcoCyc nor in KEGG. 

These reactions were thus novel reactions that have not been reported in the literature.  
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Figures 

 

 

 

 

Fig. 1: Decision tree showing the rationale followed while setting up categories for each of the 17 

reactions to be augmented to the iML1515 model. The reactions categories C1, C2, C3, and C4 consist 

of 5, 6, 3, and 3 predicted reactions, respectively. 
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Fig. 2: The set of five reactions belonging to Category 1 (C1). Reactions in C1 are predicted to be catalyzed by 

enzymes different than those in iML1515. Each of the five panels is divided into three sections I) the balanced 

reaction developed by our workflow indicating the reactants, products, and the promiscuous enzyme, II) the RDM 

pattern showing the Reaction Center (R) in red where the biotransformation occurs, and III) the native reaction 

catalyzed by the potentially promiscuous enzyme, as catalogued in KEGG. 
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Fig. 3: The set of six reactions belonging to Category 2 (C2). Reactions in C2 are associated with 

derivatives not present in iML1515 but are associated with E. coli in KEGG and/or EcoCyc. Each of the 

six panels is divided into two sections I) the balanced reaction developed by our workflow, that is also 

documented in KEGG, indicating the reactants, products, and the promiscuous enzyme n, and II) the RDM 

pattern showing the Reaction Center (R) in red where the biotransformation occurs. 
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Fig. 4: The set of three reactions belonging to Category 3 (C3). C3 reactions and derivatives are neither 

present in iML1515 nor associated with E. coli in KEGG and EcoCyc. However, according to KEGG, 

the reactions occur in other organisms. Each of the three panels is divided into three sections I) the 

balanced reaction developed by our workflow indicating the reactants, products, and the promiscuous 

enzyme, II) the RDM pattern showing the Reaction Center (R) in red, and III) the native reaction 

catalyzed by the potentially promiscuous enzyme, as catalogued in KEGG.  
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Fig. 5: The set of three reactions belonging to Category 4 (C4). C4 reactions and derivatives are neither 

present in iML1515 nor associated with any other organism in KEGG or EcoCyc. Each of the three 

panels is divided into three sections I) the balanced reaction developed by our workflow indicating the 

reactants, products, and the promiscuous enzyme, II) the RDM pattern showing the Reaction Center (R) 

in red, and III) the native reaction catalyzed by the potentially promiscuous enzyme, as catalogued in 

KEGG.  
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Fig. 6:  Main steps of EMM-B workflow customized to extend the E. coli iML1515 model with 

predicted reactions. Step 1: Predict promiscuous reactions and derivatives using PROXIMAL. Step 2: 

Compare derivatives with measured metabolic dataset(s). Step 3: Curation and stoichiometric 

balancing of reactions. 
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