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Abstract 1 

Background 2 

Metabolic models are indispensable in guiding cellular engineering and in advancing our 3 

understanding of systems biology. As not all enzymatic activities are fully known and/or 4 

annotated, metabolic models remain incomplete, resulting in suboptimal computational analysis 5 

and leading to unexpected experimental results. We posit that one major source of unaccounted 6 

metabolism is promiscuous enzymatic activity. It is now well-accepted that most, if not all, 7 

enzymes are promiscuous – i.e., they transform substrates other than their primary substrate. 8 

However, there have been no systematic analyses of genome-scale metabolic models to predict 9 

putative reactions and/or metabolites that arise from enzyme promiscuity. 10 

Results 11 

Our workflow utilizes PROXIMAL – a tool that uses reactant-product transformation patterns 12 

from the KEGG database – to predict putative structural modifications due to promiscuous 13 

enzymes. Using iML1515 as a model system, we first utilized a computational workflow, 14 

referred to as Extended Metabolite Model Annotation (EMMA), to predict promiscuous 15 

reactions catalyzed, and metabolites produced, by natively encoded enzymes in E. coli. We 16 

predict hundreds of new metabolites that can be used to augment iML1515. We then validated 17 

our method by comparing predicted metabolites with the Escherichia coli Metabolome Database 18 

(ECMDB).  19 

Conclusions 20 

We utilized EMMA to augment the iML1515 metabolic model to more fully reflect cellular 21 

metabolic activity. This workflow uses enzyme promiscuity as basis to predict hundreds of 22 

reactions and metabolites that may exist in E. coli but may have not been documented in 23 
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iML1515 or other databases. We provide detailed analysis of 23 predicted reactions and 16 1 

associated metabolites. Interestingly, nine of these metabolites, which are in ECMDB, have not 2 

previously been documented in any other E. coli databases. Four of the predicted reactions 3 

provide putative transformations parallel to those already in iML1515. We suggest adding 4 

predicted metabolites and reactions to iML1515 to create an Extended Metabolic Model (EMM) 5 

for E. coli.  6 

 7 

Keywords 8 

Metabolic engineering, enzyme promiscuity, extended metabolic model, systems biology, 9 

enzyme activity prediction 10 

 11 

Background 12 

The engineering of metabolic networks has enabled the production of high-volume commodity 13 

chemicals such as biopolymers and fuels, therapeutics, and specialty products [1-5].  Producing 14 

such compounds requires transforming microorganisms into efficient cellular factories [6-9]. 15 

Biological engineering has been aided via computational tools for constructing synthesis 16 

pathways, strain optimization, elementary flux mode analysis, discovery of hierarchical 17 

networked modules that elucidate function and cellular organization, and many others (e.g., [10-18 

14]). These design tools rely on organism-specific metabolic models that represent cellular 19 

reactions and their substrates and products. Model reconstruction tools [15, 16] use homology 20 

search to assign function to Open Reading Frames obtained through sequencing and annotation. 21 

Once the function is identified, the corresponding biochemical transformation is assigned to the 22 

gene. Additional biological information such as gene-protein-reaction associations is utilized to 23 
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refine the models. Exponential growth in sequencing has resulted in an “astronomical”, or better 1 

yet, “genomical”, number of sequenced organisms [17]. There are now databases (e.g., KEGG 2 

[18], BioCyc [19], and BiGG [20]) that catalogue organism-specific metabolic models. Despite 3 

progress in sequencing and model reconstruction, the complete characterizing of cellular activity 4 

remains elusive, and metabolic models remain incomplete. One major source of uncatalogued 5 

cellular activity is attributed to orphan genes. Because of limitations of homology-based 6 

prediction of protein function, there are millions of protein sequences that are not assigned 7 

reliable functions [21]. Integrated strategies that utilize structural biology, computational 8 

biology, and molecular enzymology continue to address assigning function to orphan genes [22]. 9 

 10 

We focus in this paper on another major source of uncatalogued cellular activity − promiscuous 11 

enzymatic activity, which has recently been referred to as ‘underground metabolism’ [23-25]. 12 

While enzymes have widely been held as highly-specific catalysts that only transform their 13 

annotated substrate to product, recent studies show that enzymatic promiscuity – enzymes 14 

catalyzing reactions other than their main reactions – is not an exception but can be a secondary 15 

task for enzymes [26-31]. More than two-fifths (44%) of KEGG enzymes are associated with 16 

more than one reaction [32]. Promiscuous activities however are not easily detectable in vivo 17 

since, i) metabolites produced due to enzyme promiscuity may be unknown, ii) product 18 

concentration due to promiscuous activity may be low, iii) there is no high-throughput way to 19 

relate formed products to specific enzymes, and iv) it is difficult to identify potentially unknown 20 

metabolites in complex biological samples. Outside of in vitro biochemical characterization 21 

studies to predict promiscuous activities, there are few resources that record details about 22 

promiscuous enzymes such as MINEs Database [33], and ATLAS [34]. Despite the current 23 
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wide-spread acceptance of enzyme promiscuity, and its prominent utilization to engineer 1 

catalyzing enzymes in metabolic engineering practice [35-38], promiscuous enzymatic activity is 2 

not currently fully documented in metabolic models. Advances in computing and the ability to 3 

collect large sets of metabolomics data through untargeted metabolomics provide an exciting 4 

opportunity to develop methods to identify promiscuous reactions, their catalyzing enzymes, and 5 

their products that are specific to the sample under study. The identified reactions can then be 6 

used to complete existing metabolic models.  7 

 8 

We describe in this paper a computational workflow that aims to extend preexisting models with 9 

reactions catalyzed by promiscuous native enzymes and validate the outcomes using published 10 

metabolomics datasets. We refer to the augmented models as Extended Metabolic Models 11 

(EMMs), and to the workflow to create them as EMMA (EMM Annotation). Each metabolic 12 

model is assumed to have a set of reactions and their compounds and KEGG reaction IDs. Each 13 

reaction, and thus transformation, is assumed to be reversible unless indicated otherwise. EMMA 14 

utilizes PROXIMAL [39], a method for creating biotransformation operators from KEGG 15 

reactions IDs using RDM (Reaction Center, Difference Region, and Matched Region) patterns 16 

[40], and then applying the operators to given molecules. While initially developed to investigate 17 

products of Cytochrome P450 (CYP) enzymes, highly promiscuous enzymes utilized for 18 

detoxification, the PROXIMAL method is generic. To create an EMM for a known metabolic 19 

model, PROXIMAL generates biotransformation operators for each reaction in the model and 20 

then applies the operators to known metabolites within the model. The outcome of our workflow 21 

is a list of putative metabolites due to promiscuous enzymatic activity and their catalyzing 22 

enzymes and reactions. In this work, we apply EMMA to iML1515, a genome-scale model of 23 
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Escherichia coli MG1655 [41]. EMMA predicts hundreds of putative reactions and their 1 

products due to promiscuous activities in E. coli. The putative products are then compared to 2 

measured metabolites as reported in Escherichia coli Metabolome Database, ECMDB [42, 43]. 3 

We identify 23 new reactions and 16 new metabolites that we recommend adding to the E. coli 4 

model iML1515. Four of these reactions have not been catalogued prior for E. coli or other 5 

organisms, suggesting novel undocumented promiscuous transformations, while five other 6 

reactions are catalogued for species other than E. coli. Further, there were ten reactions that were 7 

cataloged in other E. coli databases (e.g. EcoCyc [44], and KEGG), but not in iML1515. These 8 

19 reactions led to the addition of the 16 metabolites that are new to iML1515. Additionally, 9 

there were four new reactions that present putative transformation routes that are in parallel to 10 

existing reactions in E. coli. No new metabolites are added due to these four reactions. 11 

 12 

Results 13 

The application of PROXIMAL to iML1515 yielded a lookup table with 1,875 biotransformation 14 

operator entries. The operators were applied on two sets of metabolites. One set consisted of 106 15 

iML1515 metabolites with predicted or measured concentration values above 1 µM [45]. We 16 

focused on these metabolites as the assumption is that high concentration metabolites are more 17 

likely to undergo transformation by promiscuous enzymatic activity and form detectible 18 

derivatives. When applied to this set, the operators predicted the formation of 1,423 known (with 19 

PubChem IDs) metabolites of which 57 were identified to exist in E. coli per ECMDB. After 20 

manual curation (per Step 1 in the Methods section), our workflow recommended 16 new 21 

metabolites and 23 reactions that can be used to augment the iML1515 model. The second set of 22 

metabolites consisted of the non-high concentration metabolites in iML1515. Our workflow 23 
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predicted the formation of 3,694 known (with PubChem IDs) metabolites. Out of the predicted 1 

metabolites of the second set 210 derivatives are found in ECMDB. We provide a listing of all 2 

derivatives in Supplementary File 1. For the remainder of the Results section, we focus on 3 

detailed analysis of derivative products due to high-concentration metabolites. Results of Flux 4 

Balance Analysis and Flux Variability Analysis for the added EMMA reactions are reported in 5 

Supplementary File 2. 6 

 7 

Identified reactions were divided into four categories, C1−C4. The rationale for the various 8 

categories is explained using a decision tree (Fig. 1), a machine learning model that classifies 9 

data into groupings that share similar attributes [46]. With the exception of leaf nodes, each node 10 

in the tree tests the presence or absence of a particular attribute. Left branches represent the 11 

presence of the attribute, while the right branch represents the attribute’s absence. Each leaf node 12 

represents a classification category and is associated with a subset of the 23 reactions. At the root 13 

node of the decision tree, we tested if a PROXIMAL predicted metabolite is in the iML1515 14 

model. If it is, and if the enzyme catalyzing the reaction within iML1515 model producing this 15 

metabolite is different than the enzyme PROXIMAL used to predict the relevant 16 

biotransformation, then it is classified in Category 1 (C1). Reactions belonging to C1 are parallel 17 

transformation to the ones in the model. They represent novel biotransformation routes between 18 

existing metabolites since they are generated using a different gene/enzyme than what is reported 19 

in iML1515. If previous conditions do not apply to the predicted product, then it is discarded as 20 

the reaction is already in iML1515.  21 

 22 
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If a predicted metabolite is not one of the known metabolites in iML1515, the decision tree 1 

determines whether the predicted metabolite and reaction set is associated with E. coli in other 2 

databases (KEGG and EcoCyc). If the biotransformation is present in KEGG or EcoCyc, then the 3 

predicted metabolite is classified into Category 2 (C2), reflecting a curation issue where some 4 

reactions were not included in the iML1515 model. If the predicted metabolite is not in iML1515 5 

and not associated with E. coli in KEGG nor listed in EcoCyc, then the decision tree determines 6 

if the same chemical transformation (same substrate and same product) is documented to occur 7 

in other organisms. Predicted biotransformations documented in KEGG for organisms other than 8 

E. coli are classified in Category 3 (C3). While biotransformations not found in KEGG are 9 

classified as Category 4 (C4).  10 

 11 

Each Category consists of a set of reactions. C1 consists of four reactions that are predicted to be 12 

catalyzed by enzymes that are different than those in iML1515. The details of the predicted 13 

reactions are shown in Fig 2, and Table 1 details a comparison between those predicted reactions 14 

and their parallel reactions in iML1515. The phosphoribosyltransferase reaction between 15 

cytosine and cytidine-5’-monophosphate (CMP) is predicted to occur in E. coli due to EC 16 

2.4.2.10 (orotate phosphoribosyltransferase) (Fig. 2A) and that between 2-oxoglutarate and 2-17 

hydroxyglutarate by EC 1.1.1.79 (glyoxylate reductase) (Fig. 2B). We also predict the 18 

transformation between bicarbonate and carboxyphosphate catalyzed by EC 3.6.1.7 19 

(acylphosphatase) (Fig. 2C). While carboxyphosphate is not in iML1515, the transformation is 20 

considered parallel to a reaction catalyzed by EC 6.3.5.5 that is documented to occur for E. coli 21 

in KEGG (see Fig. 3J). The last prediction is the coenzyme A transferase reaction between 22 

acetoacetyl-CoA and acetoacetate due to EC 2.8.3.10 (citrate CoA-transferase) (Fig. 2D).  23 
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 1 

Table 1: List of C1 reactions predicted by EMMA and their parallel reactions in E. coli 2 

iML1515. Each of the Predicted/iML1515 reaction pair occurs between the same substrate and 3 

product but utilize different co-substrate or cofactors. 4 

 EC number (gene) Reaction 

Predicted 
 
 
iML1515 

2.4.2.10 (b3642) 
 
 

3.2.2.10 (b2795) 

cytosine + 5-phospho-α-D-ribose-1-
diphosphate ⇋ CMP + diphosphate 

 
cytosine + D-ribose-5-phosphate ⇋ CMP 

+ H2O 

Predicted 
 
 
iML1515 

1.1.1.79 (b1033) 
 
 

1.1.1.95 (b2913) 

2-oxoglutarate + NADPH + H+ ⇋ 2-
hydroxyglutarate + NADP+ 

 
2-oxoglutarate + NADH + H+ ⇋ 2-

hydroxyglutarate + NAD+ 

Predicted 
 
 
KEGG 

3.6.1.7 (b0968) 
 
 

6.3.5.5 (b0032 or b0033) 

bicarbonate + orthophosphate ⇋ 
carboxyphosphate + H2O 

 
bicarbonate + ATP ⇋ carboxyphosphate 

+ ADP 

Predicted 
 
 
iML1515 

2.8.3.10 (b0615) 
 
 

2.8.3.8 (b2221+b2222 or 
b1694) or 2.8.3.9 
(b2221+b2222) 

acetoacetyl-CoA + citrate ⇋ acetoacetate 
+ (3S)-citryl-CoA 

 
acetoacetyl-CoA + acetate ⇋ acetoacetate 

+ acetyl-CoA 

 5 

  6 

C2 consists of 10 reactions known to be in E. coli but missing from the iML1515 model. The 7 

first predicted reaction is the aminoacyltransferase reaction between L-glutamate and γ-glutamyl-8 

β-cyanoalanine due to EC 2.3.2.2 (γ-glutamyltransferase) (Fig. 3A). The second is a predicted 9 

ligase reaction between L-glutamic acid and THF to form/consume THF-L-glutamic acid by EC 10 
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6.3.2.17 (tetrahydrofolate synthase) (Fig. 3B). The third is an acyltransferase transformation 1 

between propanoyl-CoA and 2-methylacetoacetyl-CoA catalyzed by EC 2.3.1.9 (acetoacetyl-2 

CoA thiolase) (Fig. 3C). Fourth, PROXIMAL predicted the phosphotransferase reaction between 3 

of D-ribulose-5-phosphate and D-ribulose-1,5-bisphosphate by EC 2.7.1.19 4 

(phosphoribulokinase) (Fig. 3D). The fifth predicted reaction known to be in E. coli is the redox 5 

transformation of D-gluconic acid to 2-keto-D-gluconic acid by EC 1.1.1.215 (gluconate 2-6 

dehydrogenase) (Fig. 3E). The workflow also predicted glycosyltransferase transformation of 5-7 

amino-4-imidazolecarboxamide to/from 1-(5’-phosphoribosyl)-5-amino-4-8 

imidazolecarboxamide by EC 2.4.2.7 (AMP pyrophosphorylase) (Fig. 3F). The seventh 9 

predicted reaction is the transformation between pyruvate and 4-hydroxy-2-oxoglutarate by EC 10 

4.1.3.24 (Fig. 3G). The eighth reaction is catalyzed by EC 2.4.2.10 to transform guanine to/from 11 

GMP (Fig. 3H). Also, PROXIMAL predicted the transformation between glycerate and tartrate 12 

by EC 4.1.1.73 (Fig. 3I). Lastly, bicarbonate is transformed to/from carboxyphosphate by EC 13 

3.6.1.7 (Fig. 3J).     14 

  15 

C3 consists of five predicted reactions that are not documented in E. coli but are known in other 16 

organisms. The first of these, the transformation between pyruvate and 4-carboxy-4-hydroxy-2-17 

oxoadipate (Fig. 4A) catalyzed by EC 4.1.3.17 (HMG aldolase), is present in many organisms, 18 

including bacteria, as part of the benzoate degradation pathway (KEGG R00350). The 19 

transformation is predicted to occur in E. coli due to EC 4.1.3.34 (citryl-CoA lyase). Both EC 20 

4.1.3.17 and EC 4.1.3.34 are lyases enzymes that form carbon-carbon bonds. 4-Carboxy-4-21 

hydroxy-2-oxoadipate is known to be formed/consumed by EC 4.2.1.80 (2-keto-4-pentenoate 22 

hydratase) in E. coli (KEGG R04781). Another predicted reaction is the (de)aminating redox 23 
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transformation between L-histidine and imidazol-5-yl-pyruvate, catalyzed by EC 1.4.1.4 1 

(glutamate dehydrogenase) (Fig. 4B). Imidazol-5-yl-pyruvate is not known to be produced in any 2 

other way in E. coli, according to ECMDB and KEGG databases. The transformation of L-3 

histidine to/from imidazol-5-yl-pyruvate is known to occur in the bacterium Delftia acidovorans 4 

by EC 2.6.1.38 (histidine transaminase) [47]. C3 also includes the predicted aryltransferase 5 

reaction between geranyl diphosphate and geranyl hydroxybenzoate by EC 2.5.1.39 (4-6 

hydroxybenzoate transferase) (Fig. 4C). While the general reaction of all-trans-polyprenyl 7 

diphosphate to 4-hydroxy-3-polyprenylbenzoate is known to occur in E. coli, the specific 8 

transformation between geranyl diphosphate to geranyl hydroxybenzoate is known to occur in 9 

plants as part of shikonin biosynthesis, by EC 2.5.1.93 (4-hydroxybenzoate geranyltransferase) 10 

[48]. The fourth predicted reaction is the redox transformation between D-alanine and 2-11 

aminoacrylic acid (Fig. 4D). This reaction is predicted to be catalyzed by EC 1.3.1.98 (UDP-N-12 

acetylmuramate dehydrogenase). While 2-aminoacrylic acid is not known to be produced in E. 13 

coli in any other way, the transformation between D-alanine and 2-aminoacrylic acid occurs in 14 

other organisms such as Staphylococcus aureus [49]. Lastly, our workflow predicts the 15 

transformation between phenylpyruvate and phenyllactate by EC 1.1.1.100 (Fig. 4E). This 16 

transformation is known to occur in plants by EC 1.1.1.237 [50]. 17 

  18 

C4 consists of four predicted reactions that are not currently catalogued in KEGG for any 19 

organism (Fig. 5). The first reaction (Fig. 5A) is the oxidoreductive interconversion between 20 

aminomalonate and L-serine by EC 1.1.1.23 (histidinol dehydrogenase). There is one reaction 21 

(KEGG R02970) catalyzed by EC 2.6.1.47 (L-alanine:oxomalonate aminotransferase) that 22 

produces aminomalonate; but it is not a redox reaction and is associated with rat and silkworm, 23 
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not E. coli [51]. The second is a hydrolytic decarboxylation reaction between N-acetylputrescine 1 

and N-acetylornithine (Fig. 5B) predicted to be catalyzed by EC 4.1.1.36 (PPC decarboxylase). 2 

The product, N-acetylputrescine, is involved in a number of enzymatic reactions – ECs 1.4.3.4 3 

(monoamine oxidase), 2.3.1.57 (spermidine acetyltransferase), and 3.5.1.62 (acetylputrescine 4 

deacetylase) – in many organisms that include both eukaryotes and bacteria [16].  The third 5 

reaction in this category is the hydrolytic decarboxylation reaction between 3-ureidopropionate 6 

and N-carbamoyl-L-aspartate also catalyzed by EC 4.1.1.36 (PPC decarboxylase). 3-7 

Ureidopropionate is present in eukaryotes and bacteria (but not E. coli) and is involved in 8 

reactions catalyzed by ECs 3.5.1.6 (β-ureidopropionase) and 3.5.2.2 (dihydropyrimidinase). The 9 

last reaction is the transformation between D-gluconic acid and D-galactarate by EC 1.1.1.23. D-10 

Galactarate is involved in reactions catalyzed by 4.2.1.158 that is present in Oceanobacillus 11 

iheyensis [52]. 12 

 13 

Discussion 14 

Current practices for reconstructing genome-scale metabolic models, which are derived using 15 

sequencing and functional annotation, can be improved by utilizing metabolomics data. 16 

However, directly utilizing metabolomics measurements to augment existing models is 17 

challenging. Not every metabolite is measurable due to limited resolution and fidelity of mass 18 

spectrometry instruments. Further, assigning chemical identities to measured metabolites 19 

remains a challenge. Even if new metabolites are identified, their formation cannot be easily 20 

assigned to enzymes without significant experimental effort involving either genetic or 21 

biochemical screens. Additionally, metabolomics data alone cannot differentiate reactions 22 

catalyzed by different enzymes yet between the same substrates-product pairs without additional 23 
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experimental efforts. Computational tools and workflows, as presented in this paper, can 1 

significantly guide such studies and aid in metabolic model construction and augmentation based 2 

on metabolomics data. 3 

 4 

The workflow we developed here is designed to identify metabolites that can form due to 5 

promiscuous enzymatic activity within a specific model organism. Further, the workflow 6 

provides balanced reactions to document such enzymatic activities. We utilized PROXIMAL 7 

[39], which first identifies patterns of structural transformations associated with enzymes in the 8 

biological sample and then applies these transformations to known sample metabolites to predict 9 

putative metabolic products. Using PROXIMAL in this way allows attributing putative 10 

metabolic products to specific enzymatic activity and deriving balanced biochemical reactions 11 

that capture the promiscuous activity. Using PROXIMAL offers an additional advantage − the 12 

derived promiscuous transformations are specific to the sample under study and are not limited 13 

to hand-curated biotransformation operators as in prior works [33, 34]. PROXIMAL therefore 14 

allows exploration of a variety of biotransformations that are commensurate with the 15 

biochemical diversity of the biological sample. The EMMA workflow, which utilized 16 

PROXIMAL, was previously developed to engineer a candidate set from a metabolic model for 17 

metabolite identification [53]. EMMA did not aim to augment existing metabolic models or 18 

derive balanced reactions as utilized in this study.  19 

 20 

Future experimental and computational efforts can further advance this work. Experimentally, 21 

the list of putative products generated by PROXIMAL but not documented in any metabolomics 22 

databases can be used as a resource to identify as yet unidentified metabolites. Experimental 23 
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validation of reactions in the C1, C3 and C4 categories would provide further evidence of the 1 

suggested reactions, and would provide a means for expanding existing databases such as KEGG 2 

and EcoCyc. Computationally, PROXIMAL can be upgraded to consider enzymes that act on 3 

more than one Reaction Center (R) within a metabolite (e.g. transketolase). This would produce 4 

multiple operators per reaction and generate a more comprehensive list of putative reactions and 5 

products. When applying PROXIMAL, we did not consider whether products of promiscuous 6 

reactions can themselves act as new substrates for promiscuous reactions. This is due to the large 7 

number of putative products. We are currently developing machine learning techniques to 8 

improve the prediction accuracy of PROXIMAL. 9 

 10 

Conclusion 11 

This study investigates creating Extended Metabolic Models (EMMs) through the augmentation 12 

of existing metabolic models with reactions due to promiscuous enzymatic activity. Our 13 

workflow, EMMA, first utilizes PROXIMAL to predict putative metabolic products, and then 14 

compares these products against metabolomics data. EMMA was applied to iML1515, the 15 

genome-scale model of E. coli MG1655. PROXIMAL generated 1,875 biochemical operators 16 

based on reactions in iML1515 and predicted 1,368 derivatives of 106 high-concentration 17 

metabolites. To validate these products, EMMA compared the set of putative derivatives with the 18 

set of metabolites documented in ECMDB as part of E. coli metabolism. For the overlapping set, 19 

we generated corresponding atom-balanced reactions by adding suitable cofactors and/or co-20 

substrates to the substrate-derivative pair suggested by PROXIMAL. The balanced reactions 21 

were compared with data recorded in EcoCyc and KEGG. Our workflow generated a list of 23 22 

new reactions that should be utilized to extend the iML1515 model, including parallel reactions 23 
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between existing metabolites, novel routes to existing metabolites, and new paths to new 1 

metabolites. Importantly, this study is foundational in providing a systemic way of coupling 2 

computational predictions with metabolomics data to explore the complete metabolic repertoire 3 

of organisms. The described workflow can be applied to any organism utilizing its metabolic 4 

model to predict sample-specific promiscuous enzymatic byproducts. Applying this workflow to 5 

other biological samples and their metabolomics data promise to enhance our understanding of 6 

natural, synthetic, and xenobiotic metabolism. 7 

 8 

Methods 9 

The EMMA workflow was customized to augment the E. coli iML1515 model based on the 10 

availability of the metabolic measurements in ECMDB, and the availability of cataloged 11 

reactions and metabolites for E. coli in other databases (EcoCyc and KEGG) (Fig. 6). The 12 

iML1515 model consists of 1,877 metabolites, 2,712 reactions and 1,516 genes. Our workflow 13 

consists of the following three steps. 14 

 15 

Step 1 – Predict promiscuous products using PROXIMAL 16 

EMMA used PROXIMAL to predict putative products that can be added to the model. 17 

PROXIMAL utilizes RDM  patterns [40] specific to the model’s reactions to create lookup tables 18 

that map reaction centers to structural transformation patterns. An RDM pattern specifies local 19 

regions of structural similarities/differences for reactant-product pairs based on a given 20 

biochemical reaction. An RDM pattern consists of three parts: i) A Reaction Center (R) atom 21 

exists in both the substrate and reactant molecule and is the center of the molecular 22 

transformation. ii) Difference Region (D) atoms are adjacent to the R atom and are distinct 23 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/536060doi: bioRxiv preprint 

https://doi.org/10.1101/536060


16 
 

between substrate and product. iii) Matched Region (M) atoms are adjacent to the R atom but 1 

remain unmodified by the transformation. All atoms are labelled using KEGG atom types [54]. 2 

PROXIMAL constructs a lookup table of all possible biotransformations that can occur due to 3 

promiscuous activity of enzymes based on the RDM patterns of reactions catalyzed by enzymes 4 

associated with genes in the iML1515 gene list. The “key” in the lookup table consisted of the R 5 

and M atom(s) in the reactant, while the “value” is the R and D atom(s) in the product. RDM 6 

patterns were initially available through the (RPAIR) database, but they are now catalogued in 7 

KEGG’s RClass database. The biotransformation operators in the lookup table were then applied 8 

to model metabolites. The outcome of this step is a list of predicted products due to putative 9 

enzymatic activity. 10 

 11 

Step 2 – Compare predicted products with metabolomics dataset 12 

Metabolites predicted by PROXIMAL were compared with measured metabolic data in 13 

ECMDB. ECMDB contains 3,760 metabolites detected in E. coli strain K-12 and related 14 

information such as reactions, enzymes, pathways, and other properties. This information was 15 

either collected from resources and databases such as EcoCyc, KEGG, EchoBase [55], UniProt 16 

[56, 57], YMDB [58], and CCDB [59], or from literature, or validated experimentally by the 17 

creators of ECMDB. Partial information about metabolites such as KEGG compound IDs, 18 

metabolites cell location, and chemical formulas is provided in ECMDB.  19 

 20 

For each putative product, a mol file was generated and then converted to a SMILES string using 21 

Pybel [60], a python wrapper for the chemical toolbox Open Babel [61]. Based on the SMILES 22 

string, we initially retrieved the corresponding PubChem ID and InchiKey from PubChem using 23 
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Pybel. To ensure consistency, we confirmed that retrieved PubChem IDs and InchiKeys of 1 

PROXIMAL predicted metabolites matched the corresponding entries in ECMDB. During this 2 

process, we noted some discrepancies. In some cases, the information retrieved from PubChem, 3 

such as InchiKeys did not match those in ECMDB. In cases of a mismatch, we sought additional 4 

information to confirm metabolite identities of ECMDB products. We utilized the values of the 5 

CAS ID, BioCyc ID, Chebi ID and KEGG ID fields to retrieve PubChem IDs using Pybel. The 6 

retrieved PubChem IDs are used to determine the ID through a majority vote. For example, if the 7 

PubChem ID associated with InchiKey, KEGG ID and CAS ID matched, but did not match the 8 

PubChem ID provided in ECMDB, then we considered the one retrieved by Pybel as the correct 9 

PubChem ID. Out of 3,760 metabolites in ECMDB, we identified 3,397 metabolites with 10 

consistent information with data retrieved from PubChem. Once PubChem IDs were identified 11 

for ECMDB metabolites, we compared our predicted metabolites against ECMDB metabolites 12 

using PubChem IDs. 13 

 14 

Step 3 – Curation of stoichiometric reactions 15 

If a metabolite predicted by PROXIMAL was in ECMDB, then steps 1 and 2 resulted in the 16 

identification of a verifiable predicted promiscuous transformation of an E. coli metabolite.   17 

Each predicted transformation was manually examined and compared against the RDM pattern 18 

causing the transformation. Transformations were discarded if the they seemed infeasible, if the 19 

substrate was a cofactor, or if the RPAIR entry associated with the PROXIMAL operator 20 

required the presence of more than one Reaction Center (R). For each valid verifiable predicted 21 

transformation by PROXIMAL, we developed a new reaction by examining the reaction(s) 22 

template associated with the enzymatic transformation and adding suitable cofactors to the 23 
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reactant and product of the biotransformation identified. The set of developed balanced reactions, 1 

where the added cofactors to a reaction caused the number of atoms of reactants and products to 2 

match on both sides of the reaction, are then compared to reactions recorded in EcoCyc, KEGG, 3 

or the literature.  4 

 5 

The outcomes were divided into four categories. C1 reactions consisted of metabolites predicted 6 

by PROXIMAL that are already in iML1515 but catalyzed by different enzymes than the ones 7 

already listed in the model. These reactions reflect promiscuous activity that enabled the same 8 

biotransformation catalyzed by a different gene in the model. C2 reactions already existed in 9 

EcoCyc and/or KEGG but not in iML1515. This reflected a curation problem where some 10 

reactions were not included in the iML1515 model. C3 reactions were not in EcoCyc but 11 

documented in KEGG for other organisms. C4 reactions did not exist in either EcoCyc nor in 12 

KEGG. These reactions were thus novel reactions that have not been reported in the literature.  13 
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List of Figures 1 

Fig. 1: Decision tree for classifying reactions identified based on enzyme promiscuity. When 2 

analyzing the iML1515 E. coli model, reaction categories C1, C2, C3, and C4 had 4, 10, 5, and 4 3 

predicted reactions, respectively. 4 

 5 

Fig. 2: The set of four reactions belonging to Category 1 (C1). Reactions in C1 are predicted to 6 

be catalyzed by enzymes different than those in iML1515. Each of the four panels is divided into 7 

three sections I) the balanced reaction developed by our workflow indicating the reactants, 8 

products, and the promiscuous enzyme, II) the RDM pattern showing the Reaction Center (R) in 9 

red where the biotransformation occurs, and III) the native reaction catalyzed by the potentially 10 

promiscuous enzyme, as catalogued in KEGG. 11 

 12 

Fig. 3: The set of ten reactions belonging to Category 2 (C2). Reactions in C2 are associated 13 

with derivatives not present in iML1515 but are associated with E. coli in KEGG and/or EcoCyc. 14 

Each of the ten panels is divided into two sections I) the balanced reaction developed by our 15 

workflow, that is also documented in KEGG, indicating the reactants, products, and the 16 

promiscuous enzyme, and II) the RDM pattern showing the Reaction Center (R) in red where the 17 

biotransformation occurs. 18 

 19 

Fig. 4: The set of five reactions belonging to Category 3 (C3). C3 reactions and derivatives are 20 

neither present in iML1515 nor associated with E. coli in KEGG and EcoCyc. However, 21 

according to KEGG, the reactions occur in other organisms. Each of the five panels is divided 22 

into three sections I) the balanced reaction developed by our workflow indicating the reactants, 23 
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products, and the promiscuous enzyme, II) the RDM pattern showing the Reaction Center (R) in 1 

red, and III) the native reaction catalyzed by the potentially promiscuous enzyme, as catalogued 2 

in KEGG.  3 

 4 

Fig. 5: The set of four reactions belonging to Category 4 (C4). C4 reactions and derivatives are 5 

neither present in iML1515 nor associated with any other organism in KEGG or EcoCyc. Each 6 

of the four panels is divided into three sections I) the balanced reaction developed by our 7 

workflow indicating the reactants, products, and the promiscuous enzyme, II) the RDM pattern 8 

showing the Reaction Center (R) in red, and III) the native reaction catalyzed by the potentially 9 

promiscuous enzyme, as catalogued in KEGG.  10 

 11 

Fig. 6:  Main steps of EMMA workflow customized to extend the E. coli iML1515 model with 12 

predicted reactions. Step 1: Predict promiscuous transformations and derivatives using 13 

PROXIMAL. Step 2: Compare derivatives with measured metabolic dataset(s). Step 3: Curation 14 

and stoichiometric balancing of reactions. 15 

 16 
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