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Originality-Significance Statement: This work provides insights into the metabolism and 20 

adaptations of elusive Atribacteria (JS-1 clade) that are ubiquitous and abundant in methane-rich 21 

ecosystems. We show that JS-1 (Genus 1) from methane hydrate stability zones contain 22 

metabolisms and stress survival strategies similar to hyperthermophilic archaea.  23 
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Summary: Gas hydrates harbor gigatons of natural gas, yet their microbiomes remain 24 

mysterious. We bioprospected methane hydrate-bearing sediments from under Hydrate Ridge 25 

(offshore Oregon, USA, ODP Site 1244) using 16S rRNA gene amplicon, metagenomic, and 26 

metaproteomic analysis. Atribacteria (JS-1 Genus 1) sequences rose in abundance with increasing 27 

sediment depth. We characterized the most complete JS-1 Genus 1 metagenome-assembled 28 

genomic bin (B2) from the deepest sample, 69 meters below the seafloor (E10-H5), within the 29 

gas hydrate stability zone. B2 harbors functions not previously reported for Atribacteria, 30 

including a primitive respiratory complex and myriad capabilities to survive extreme conditions 31 

(e.g. high salt brines, high pressure, and cold temperatures). Several Atribacteria traits, such as a 32 

hydrogenase-Na+/H+ antiporter supercomplex (Hun) and di-myo-inositol-phosphate (DIP) 33 

synthesis, were similar to those from hyperthermophilic archaea. Expressed Atribacteria proteins 34 

were involved in transport of branched chain amino acids and carboxylic acids. Transporter genes 35 

were downstream from a novel helix-turn-helix transcriptional regulator, AtiR, which was not 36 

present in Atribacteria from other sites. Overall, Atribacteria appear to be endowed with unique 37 

strategies that may contribute to its dominance in methane-hydrate bearing sediments. Active 38 

microbial transport of amino and carboxylic acids in the gas hydrate stability zone may influence 39 

gas hydrate stability. 40 

 41 

Introduction 42 

Gas hydrates, also known as clathrates, are cages of ice-like water crystals encasing gas 43 

molecules such as methane (CH4). Because hydrates form under high pressure and low 44 

temperature, their distribution on Earth is limited to permafrost and continental margins (Hester 45 

and Brewer, 2009). These hydrates harbor gigatons of natural gas, which may serve as a potential 46 

energy source for the future (Chong et al., 2016). They are also susceptible to dissociation due to 47 

rising ocean temperatures, which could release massive methane reservoirs to the atmosphere and 48 

exacerbate global warming (Archer et al., 2009; Ruppel and Kessler, 2017). 49 
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 Despite the global importance of gas hydrates, their microbiomes remain mysterious. 50 

Microbial cells are physically associated with hydrates (Lanoil et al., 2001), and the taxonomy of 51 

these hydrate-associated microbiomes is distinct from non-hydrate-bearing sites (Inagaki et al., 52 

2006). Because salt ions are excluded during hydrate formation (Ussler III and Paull, 2001; 53 

Bohrmann and Torres, 2006), hydrate-associated microbes likely possess adaptations to survive 54 

high salinity and low water activity, as well as low temperatures and high pressures (Honkalas et 55 

al., 2016). However, knowledge of the genetic basis of such adaptations is incomplete, as 56 

genomic data for hydrate communities are sparse and most hydrate microbiomes have been 57 

characterized primarily through single-gene taxonomic surveys.  58 

 Global 16S rRNA gene surveys show that the JS-1 sub-clade of the uncultivated bacterial 59 

candidate phylum Atribacteria is the dominant taxon in gas hydrates (Reed et al., 2002; Inagaki et 60 

al., 2003; Kormas et al., 2003; Newberry et al., 2004; Webster et al., 2004; Inagaki et al., 2006; 61 

Webster et al., 2007; Fry et al., 2008; Kadnikov et al., 2012; Parkes et al., 2014; Chernitsyna et 62 

al., 2016) and in other deep sediment ecosystems with abundant methane (Gies et al., 2014; Carr 63 

et al., 2015; Hu et al., 2016). The other major Atribacteria lineage, OP-9, has only been found in 64 

hot springs (Dodsworth et al., 2013; Rinke et al., 2013) and thermal bioreactors (Nobu et al., 65 

2015). Marine Atribacteria are dispersed through ejection from submarine mud volcanoes 66 

(Hoshino et al., 2017; Ruff et al., 2019), and environmental heterogeneity may select for locally 67 

adapted genotypes. Indeed, Atribacteria phylogeny is highly diverse, suggesting the potential for 68 

wide functional variation and niche specialization. 69 

 Genomic evidence for such Atribacteria specialization remains limited. To date, near-70 

complete single-cell and metagenomic sequences from hot springs, wastewater, lake sediments, 71 

and non-hydrate bearing marine sediments have shown that Atribacteria lack respiratory 72 

pathways. The high-temperature OP-9 lineage likely ferments sugars (Dodsworth et al., 2013) 73 

whereas the low-temperature JS-1 lineage ferments propionate to hydrogen, acetate, and ethanol 74 

(Nobu et al., 2016). Both JS-1 and OP-9 lineages possess genes encoding bacterial 75 

microcompartment shell proteins that may sequester toxic aldehydes, enabling their condensation 76 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536078doi: bioRxiv preprint 

https://doi.org/10.1101/536078
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

to carbohydrates (Nobu et al., 2016). The available data on Atribacteria genomes suggest 77 

diversification linked to organic substrate utilization, although a range of other factors, including 78 

physical environmental conditions (e.g., temperature and pressure) undoubtedly also play a role. 79 

 Here we examined the distribution, phylogeny, and metabolic potential of uncultivated 80 

JS-1 Atribacteria in cold, salty, and high-pressure sediments beneath Hydrate Ridge, off the coast 81 

of Oregon, USA, using a combination of 16S rRNA gene amplicon, metagenomic, and 82 

metaproteomic analysis. We found that JS-1 Genus-1 are abundant in the gas hydrate stability 83 

zone (GHSZ) and that they harbor numerous strategies for tolerance of osmotic stress, including 84 

many biosynthesis pathways for unusual osmolytes similar to those of thermophiles.  85 

 86 

Results and Discussion 87 

Geochemical gradients. Sediment core samples spanned four geochemical zones from 0-69 88 

meters below seafloor (mbsf) at the ODP Site 1244C,D,E at Hydrate Ridge, off the coast of 89 

Oregon, USA (Fig. S1; Tréhu et al., 2003): near surface (0-2 mbsf), sulfate-methane transition 90 

zone (SMTZ; 2-9 mbsf), metal reduction zone (18-36 mbsf), and GHSZ (45-124 mbsf; Fig. 1). 91 

 92 

Figure 1. Porewater geochemistry (methane, sulfate, manganese, iron, and iodide) and 16S rRNA 93 
gene composition from sediment depth profiles at ODP 204 Site 1244, Hydrate Ridge, offshore 94 
Oregon, USA. Hatched and solid bars are archaeal and bacterial 16S rRNA genes, respectively. 95 
“Others” category represents bacterial and archaeal phyla with <2% of total sequences. 96 
 97 
Sediment porewater methane concentrations rose from negligible at the seafloor to 8% by volume 98 

at 3-5 mbsf, and remained <5% below 5 mbsf, with the exception of one sample at 21 mbsf. 99 
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Sulfate rapidly dropped from 28 to <1 mM from 0-9 mbsf and remained <1 mM below 9 mbsf, 100 

with the exception of one sample at 50.7 mbsf (2.3 mM sulfate). Outside of the metal reduction 101 

zone, dissolved Mn was ~1 µM and dissolved Fe was 3-10 µM. Dissolved Mn and Fe peaked at 6 102 

and 27 µM, respectively, coincident with a single layer of disseminated gas hydrate in the metal 103 

reduction zone. Dithionite-extractable Fe and Mn increased slightly from 2 to 21 mbsf (0.4 to 104 

1.1% and 0.002 to 0.005%, respectively; Table S1). Iodide concentrations were highest in the 105 

GHSZ (1.4 mM), where liquid brines form as a result of methane hydrate formation. Estimated in 106 

situ salinity ranged from seawater salinity (35 g kg-1) to >100 g kg-1 (Milkov et al., 2004). Total 107 

organic carbon concentrations in sediment varied between 1-2%. In situ temperature ranged from 108 

~4°C at the seafloor to ~6-11°C in the GHSZ. 109 

 110 

Phylogenetic diversity. Phylogenetic diversity and species richness in 16S rRNA gene amplicons 111 

were highest in the SMTZ and decreased with depth except in the metal reduction zone (Fig. S2). 112 

The relative abundance of Atribacteria (JS-1)-affiliated amplicons increased with depth, from 113 

15% in the near surface to 86% in the GHSZ (Table S1). GHSZ sediment (sample E10-H5 from 114 

69 mbsf) contained 230 Atribacteria OTUs (89-92% ANI) that spanned a wide diversity of clades 115 

within JS-1 Genus 1 (Yarza et al. 2014) (Fig. 2). A single OTU matching GenBank AB804573.1, 116 

from an ocean drilling core from offshore Shimokita Peninsula, Japan, comprised 69% of 117 

Atribacteria 16S rRNA sequences in the GHSZ (Table S2). Other Atribacteria 16S rRNA 118 

sequences also matched marine samples from shallower Hydrate Ridge sediments (Marlow et al., 119 

2014) and methane hydrate sediment off Taiwan (Lin et al., 2014) (Table S2). 16S rRNA 120 

sequences from amplicons and metagenomes generally showed consistent trends (Fig. S3). 121 

Atribacteria OTU abundance and composition varied significantly with sediment depth (Fig. S4). 122 
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 123 

Figure 2: Phylogenetic reconstruction of Atribacteria 16S rRNA gene sequences from sample E10-124 
H5 (69 mbsf). The tree includes the 230 Atribacteria OTUs with two or more sequences as well as 125 
reference sequences from environmental clones, SAGs, and MAGs, with Firmicutes as the 126 
outgroup. Reconstruction was performed in RAxML with 275 positions spanning the V3-V4 region 127 
of the 16S rRNA gene using a GAMMA model of rate heterogeneity, a GTR model of substitution, 128 
and 500 bootstraps followed by a thorough Maximum Likelihood search.  The relative abundances 129 
of recovered amplicons from diverse lineages/OTUs is shown in the outermost circle. Additional 130 
information on the most abundant JS-1 OTUs from E10-H5 is provided in Table S2.  131 
 132 

JS-1 Genus-1 partial genome. To gain insight into the function of JS-1 Atribacteria in the 133 

GHSZ, we analyzed a 4-Mbp metagenome-assembled genome (MAG) from sample E10-H5 134 

(Table S3). This MAG, hereafter designated “B2”, was chosen for its relatively high 135 

completeness (69%) and low contamination (2%). B2 lacked a 16S rRNA gene, but contained a 136 

rpoB gene with 94% similarity to Atribacteria bacterium 34_128 from an oil reservoir (Hu et al., 137 

2016). B2 had 35% GC content, similar to other Atribacteria (Carr et al., 2015). Phylogenetic 138 

placement based on 69 concatenated single-copy genes confirmed that B2 belonged to JS1-Genus 139 
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1 and was most closely related to JS1-Genus 1 genomes from a sediment-hosted aquifer at Rifle, 140 

Colorado (RBG_COMBO_35; Anantharaman et al., 2016), cold CO2-rich fluids at Crystal 141 

Geyser, Utah (CG2_30_33_13; Probst et al., 2017), and hydrothermal vent sediments at Guaymas 142 

Basin, Gulf of California (4572_76; Dombrowski et al., 2017) (Fig. 3). 143 

 144 
Figure 3: Maximum likelihood phylogeny for B2 with 220 representative and 20 previously 145 
found Atribacteria SAGs and population genomes using multiple (minimum 6, maximum 146 
69) core single copy genes. Tree made in RAxML with GAMMA model, 1000 rapid bootstraps, 147 
MRE convergence bootstop (50 replicates) followed by a thorough ML search. 148 
 149 
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Despite the relatively cool in situ temperature of the E10-H5 sediment (7-8°C 150 

(ShipboardScientificParty, 2003)), the most closely related genomes from cultured isolates were 151 

thermophilic gram-positive Firmicutes: halophilic Halothermothrix orenii spp. (Mavromatis et 152 

al., 2009) and metal-respiring Therminocola potens strain JR (Byrne and Nicholas, 1986). Below 153 

we highlight features of the B2 genome and proteome potentially relevant to life in the unique 154 

environment of methane clathrates, with particular focus on a putative respiratory complex and 155 

genes involved in stress response and environmental homeostasis. 156 

 157 

Predicted respiratory function of the Hun supercomplex. B2 contained genes for a putative 158 

operon encoding a 16-subunit respiratory complex, hereafter designated Hun. The hun operon 159 

was also present in two other MAGs from ODP Site 1244 (Planctomycetes C1H3-B36 and 160 

Firmicutes E5H5-B3) and in Atribacteria, Actinobacteria, and Omnitrophica MAGs from other 161 

deep subsurface ecosystems (Rinke et al., 2013; Baker et al., 2015; Anantharaman et al., 2016; 162 

Probst et al., 2017) (Table S4). The gene arrangement and predicted function of the putative Hun 163 

complex are similar to those of an ancient Mrp-Mbh-type membrane-bound [NiFe] hydrogenase-164 

Na+/H+ antiporter respiratory complex in hyperthermophilic archaea (Yu et al., 2018), which is 165 

thought to be the ancestor of Complex I, also known as NADH:ubiquinone oxidoreductase (Nuo) 166 

(Friedrich and Scheide, 2000; Moparthi and Hägerhäll, 2011; Schut et al., 2013). Complex I’s 167 

modules likely had separate origins: the ubiquinone-reducing subunits NuoBCD (“Q-module”) 168 

evolved from an ancient membrane-bound [NiFe] hydrogenase, while its proton-pumping 169 

subunits NuoLMN (“P module”) evolved from an ancient Na+/H+ antiporter (Mathiesen and 170 

Hägerhäll, 2002; Moparthi et al., 2014; Spero et al., 2015).  171 

Atribacteria hun genes likely encode a complex of four protein modules that couple H+ 172 

and Na+ translocation to H2 production, similar to Mrp-Mbh-type complexes in hyperthermophilic 173 

archaea (Fig. 4). Based on the similarity of HunAB to anaerobic sulfite reductase (Asr) subunits 174 

A and B, which transfer electrons from ferredoxin to the active site in AsrC (missing in the hun 175 
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operon), we inferred that N module-like subunits HunABC likely accept electrons from 176 

ferredoxin and pass them through iron-sulfur clusters to Q-module-like subunit HunEFGP. 177 

Instead of accepting electrons from NADPH and passing them to ubiquinone as in Complex I, 178 

HunABC likely accepts electrons from ferredoxin and passes them to 2H+ for reduction to H2 at 179 

HunEFGP’s Ni-Fe active site (Table 1; Fig. 4).  180 

 181 

Figure 4: Predicted structure and function of a multi-subunit respiratory complex, 182 
hereafter “Hun”, found in B2 and other deep subsurface genomes. Top: conserved gene 183 
cluster arrangement, with each color representing a different predicted protein. Below: predicted 184 
cellular locations and functions based on homologs of the genes of the same colors encoded by 185 
the putative hun operon, and predicted regeneration of substrates by the heterodisulfide reductase 186 
(HdrA)-methyl viologen hydrogenase (MvhAGD) complex. Predicted functions of hun genes are 187 
based on Mrp-Mbh complexes in thermophilic archaea (Schut et al., 2013; Yu et al., 2018). See 188 
Table S4 for accession numbers.  189 
 190 

P-module-like subunits HunDHILK are predicted to be proton-pumping transmembrane proteins 191 

and Na-module-like subunits HunIJKLMNO are homologs of the Na+/H+ antiporter 192 

MnhABCDEFGH in Mrp-Mbh-type complexes. The presence of F0F1-type and V-type ATPases 193 

suggest that H+ and Na+ ions pumped outward by HunIJKLMNO are pumped back in to make 194 

ATP. Electrons from H2 could be transferred back to ferredoxin by the activity of the 195 

heterodisulfide reductase (HdrA)-methyl viologen hydrogenase (MvhAGD) complex (Fig. 4). A 196 

redox-sensing transcriptional repressor gene (hunR) immediately upstream of the hun operon 197 

J
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suggests that the hydrogenase may not be used strictly for energy conservation, but could also be 198 

for balancing reducing equivalent by disposing of extra electrons (McLaughlin et al., 2010).  199 

 200 

Osmotic stress survival. Any life that can persist in brine pockets within methane hydrate must 201 

contend with high salinity (up to ~3x that of seawater) and low water potential. B2 contained 202 

numerous genes for the “salt out” survival strategy, in which osmotic pressure is maintained by 203 

exporting cations (Wood, 2015). B2’s cation export systems included efflux systems, 204 

mechanosensitive ion channels, and Na+-H+ antiporters (Table 1).  205 

A second salt survival strategy is import and/or biosynthesis of osmolytes, most often 206 

polar, water-soluble, and uncharged organic compounds and/or extracellular polymers. For 207 

example, glycine betaine is abundant in saline fluids from deep sediment basins (Daly et al., 208 

2016). B2 contained genes for transport of trehalose and biosynthesis of the common osmolytes 209 

glutamine, glutamate, and poly-gamma-glutamate, all of which had homologs in other 210 

Atribacteria MAGs (Table 1). B2 also encoded genes for glycine betaine and dihydroxyacetone 211 

biosynthesis without homologs in other Atribacteria. Surprisingly, B2 also encoded biosynthetic 212 

genes (myo-inositol-1 phosphate synthase (MIPS)/bifunctional IPC transferase and DIPP 213 

synthase (IPCT-DIPPS)) for the unusual solute di-myo-inositol-phosphate (DIP) made by 214 

hyperthermophiles (Santos and Da Costa, 2002). The MIPS gene had closest similarity to 215 

halophilic and psychrophilic Euryarchaeota, without homologs in other Atribacteria. The IPCT-216 

DIPPS gene was also present in Atribacteria HGW-1 from subsurface Japan (Hernsdorf et al., 217 

2017) and Atribacteria 4572_76 from Guaymas Basin (Dombrowski et al., 2017). 218 

Immediately upstream from B2’s MIPS/IPCT-DIPPS genes was an acyl carrier protein 219 

(acpP) gene, commonly involved in fatty acid and polyketide biosynthesis. Sixteen additional 220 

acpP copies were present in B2, often flanked by transposon scars, suggestive of recent 221 

horizontal gene transfer (Table S5). Other Atribacteria MAGs had only 1-2 copies of acpP, 222 

usually near fatty acid biosynthesis genes. 223 
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Table 1. Putative osmotic stress-related genes in B2. Atribacteria homologs all had >80% 224 
AAI. AAI to other taxa (56-76%) are provided. *indicates multiple copies. 225 

 226 

Like other Atribacteria, B2 contained genes encoding a sugar phosphate-utilizing class of 227 

proteinaceous bacterial microcompartments that neighbored sugar isomerases, RnfC NADH 228 

dehydrogenase and an oxidoreductase (Axen et al., 2014; Nobu et al., 2016) (Table S6). Further 229 

exploration of sugar-related genes revealed that B2 and other Atribacteria encode the non-230 

mevalonate pathway for isoprenoid biosynthesis (ispDEFGH), exopolysaccharide synthesis 231 

proteins, numerous glycosyltransferases for transferring UDP- and GDP-linked sugars to a variety 232 

of substrates, and several proteins related to N-linked glycosylation (Table S7). The capacity for 233 

glycosylation may be another adaptation for survival of salt stress (Kho and Meredith, 2018). 234 

 235 

Expression of lipopolysaccharide and transport-related proteins. Metaproteomic analysis 236 

identified six expressed peptides affiliated with B2, all associated with assembly or transport 237 

(Table 2). One was an outer member lipopolysaccharide assembly protein (LptD), also known as 238 

Annotation Gene Accession  Top hit  Top hit 
Na+/H+ antiporter mrpEFGB 

 
RXG65834.1-
RXG65838.1 

OQY40657.1-  
OQY40661.1  

Atribacteria 4572_76  

Na+ efflux  natB RXG65900.1 OGD31203.1 Atribacteria RBG....  
Threonine efflux  rhtB RXG66248.1 OGD15641.1  Atribacteria RBG....   
Na+ channel  DUF554 RXG63559.1 KUK55705.1  Atribacteria 34_128 

 Mechanosensitive  
ion channel 

mscS RXG63036.1 
 

KUK56353.1  
 

Trehalose  
transporter 

sugAB RXG66833.1- 
RXG66834.1 

KUK55397.1  
KUK55398.1  

Glutamine synthetase glnA RXG65164.1 KUK55578.1  
K+ transport  trkAH* 

 
RXG63511.1 
RXG63512.1 

PKP56013.1  
PKP56012.1  

Atribacteria HGW-1  
 

Aromatic aa exporter yddG* RXG63201.1 PKP55084.1  
Glutamate synthase gltD RXG66270.1 PKP56573.1  
Proline racemase prdF RXG63210.1 PKP58887.1  
Poly-gamma  
glutamate synthase 

pgsCBW RXG66317.1- 
RXG66319.1 

PKP60458.1-  
PKP60460.1  

Glycerol uptake  glpF RXG65629.1 OHV10031.1 (61%) Kushneria YCWA18  
Betaine-aldehyde 
dehydrogenase  

betB RXG62957.1 KUJ28189.1 (56%) Catabacter  
hongkongensis  

Dihydroxy- 
acetone kinase 

dhaKLM RXG65626.1- 
RXG65628.1 

RLC64130.1- (67%) 
RLC64131.1 (61%) 

Chloroflexi 
bacterium  

DIPP synthesis  
pathway 

MIPS/IPCT-
DIPPS* 

RXG66889.1 
RXG66888.1 

AAU82306.1 (76%) 
PKP58414.1  

Archaeon GZfos13E1 
Atribacteria HGW-1 
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Imp/OstA (increased membrane permeability/organic solvent tolerance (Braun and Silhavy, 239 

2002). Another was a capsular polysaccharide biosynthesis protein (YveK). The other expressed 240 

peptides were predicted to be transporters of purines (BmpA), branched chain amino acids (LivH, 241 

LivM), and C4-dicarboxylates (DctQ). All liv genes on the operon with the expressed livH had 242 

homologs in other Atribacteria genomes (Table S8) with the exception of livG, which encodes a 243 

protein related to the lipopolysaccharide export system ATP-binding protein LptB that may serve 244 

a specific purpose in methane-hydrate Atribacteria. Upstream of liv genes we found a ykkC-yxkD 245 

riboswitch implicated in detoxification and efflux control (Barrick et al., 2004), suggesting that 246 

branched chain amino acids may be involved in environmental stress response, as seen in other 247 

microbes (Liu et al., 2005). 248 

Table 2. Metaproteomic peptide hits for B2.    249 

 250 

In addition to numerous transporters for branched chain amino acids, B2 encoded abundant 251 

TRAP (tripartite ATP-independent periplasmic) transporters of dicarboxylic (DctPQM) and 252 

tricarboxylic (TctCBA) acids (Table S7; Fig. 5). TRAP transporters use an electrochemical 253 

gradient (H+ or Na+) and a substrate-binding protein to transport solutes across the membrane 254 

(Fischer et al., 2010). A conserved arginine residue in the DctP substrate-binding protein confers 255 

specificity for carboxylate groups (Lecher et al., 2009; Fischer et al., 2015). 256 

Peptide Protein  Contig  Gene  Top hit (% identity) Top hit 

EYKPKEDWKMNFSS
SYNLNTK 

LptD C10125 33494 OQY39007.1 (90%) Atribacteria 4572_76  

GIIILIFLIAVITAVLV
SYFVLSPTP 

YveK C456 RXG64813.1 PKP59499.1 (74%) Atribacteria HGW-1  

CSNLIIKALLVVLVL
SLGITLGIAKAP 

BmpA C473 RXG64193.1 PKP58720.1 (94%) Atribacteria HGW-1 

KPFRKSPGLIILLSTV
AVGFIIR 

LivH C8009 30420 OQY40503.1 (94%) Atribacteria 4572_76  

LIFLLLLAVAVVVPF
LLGLLILRF 

LivM C2171 15004 RKY02958.1 (46%) Spirochaetes bacterium 

NKINLIFSILIIIFLIVL
TYEGIILVKVGLNA 

DctQ C95 RXG62936.1 AEG13811.1 (34%) Desulfofundulus kuznetsovii  
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 257 

Figure 5: Phylogeny of HTH-XRE regulators/antitoxins (yellow), hereafter “AtiR”, from B2 258 
and synteny of downstream genes. Genes highlighted in thick red lines were expressed in the 259 
metaproteome. A) AtiR maximum likelihood phylogeny based on contigs (labeled on the right) 260 
from E10-H5 B2, with Anaerococcus prevotii as the outgroup. B) Additional putative operons from 261 
B2 likely regulated by atiR, which is truncated partially or completely on these contigs. C) Legend 262 
for panels A and B; D) AtiR amino acid alignment for the 13 AtiR sequences from Atribacteria 263 
E10-H5-B2 shown in panel A. Abbreviations: bmpA: basic membrane protein A; dctPQM: C4-264 
dicarboxylate transporter; gabT: 4-aminobutyrate aminotransferase; livHMGF: branched chain 265 
amino acid transporter; rbs: ribose transporter; sat: sulfate adenylyltransferase; tctCBA: 266 
tricarboxylate transporter; ugpBAE: sn-glycerol-3-phosphate transporter. See Table S7 for 267 
accession numbers and % identity to closest gene hits in other genomes. 268 
 269 
A novel regulator. Three out of six of the expressed transporter proteins were encoded by genes 270 

located downstream from a novel gene predicted to encode a helix-turn-helix xenobiotic response 271 

element transcriptional regulator, which we named “AtiR” (Table S8; Fig. 5). AtiR was not 272 

found in Atribacteria MAGs (the top BLAST hit was the skin firmicute Anaerococcus prevotii 273 

(41-49% AAI)), suggesting that it may serve a specific purpose in methane-hydrate Atribacteria. 274 

Genes downstream of atiR were dominated by transporters for organic solutes (tct, dct, ugp), 275 

branched chain amino acids (liv), hydrolases (choline sulfatase, sialidase, tryptophanase, cysteine 276 

desulfurase), peptidases, and racemases (Table S8; Fig. 5). In two instances, genes encoding 277 

RTX-toxin repeats were located on atiR contigs (Table S8). B2 also contained numerous MazEF 278 

toxin-antitoxin systems (Table S9), which trigger programmed cell death in response to stress 279 

(Engelberg-Kulka et al., 2005). Atribacteria may use AtiR to regulate cellular degradation of 280 
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peptides and proteins to amino acids, either for nutrients acquisition or for survival under 281 

environmental stress (Bergkessel et al., 2016).  282 

 283 

Adaptations to life in methane hydrates. The GHSZ in deep subsurface sediments is dominated 284 

by Atribacteria that appear to contain unique adaptations for survival in an extreme system with 285 

high salinity, high pressure, low water activity, and low temperatures. Our analysis of the B2 286 

Atribacteria MAG from the GHSZ (69 mbsf at Hydrate Ridge, offshore Oregon, in situ sediment 287 

temperature ~6-11°C) revealed multiple survival strategies with similarity to hyperthermophiles. 288 

In B2, these “hot traits in cold life” included genes for an ancient respiratory system (Hun) and an 289 

unusual osmolyte (DIP). Other probable environmental stress adaptations include glycosylation, 290 

membrane modifications, and a novel regulatory mechanism (AtiR) for transport of carboxylic 291 

acids and branched chain amino acids.  292 

Our findings suggest that Atribacteria may actively modulate the composition and 293 

concentration of organic compounds in methane hydrate sediments. Active cellular transport of 294 

organics would change environmental concentrations, which in turn could influence hydrate 295 

stability. The hydrophobicity of branched chain amino acids has been shown to influence hydrate 296 

stability; less hydrophobic amino acids like glycine and alanine inhibit hydrate formation by 297 

disrupting the hydrogen bond network, while more hydrophobic amino acids, such as leucine, 298 

valine and isoleucine, promote hydrate growth by strengthening the local water structure (Sa et 299 

al., 2013; Liu et al., 2015; Veluswamy et al., 2017). Gas hydrate growth is also promoted by 300 

anionic surfactants (Kumar et al., 2015), which include carboxylic acids. Thus, we surmise that 301 

bacterial transport of organic compounds may influence hydrate stability. Our results motivate 302 

future studies of methane stability that account for the influence of microbial processes, in 303 

particular those of abundant Atribacteria. 304 

  305 
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Experimental Procedures 319 

Sample collection. Sediments were cored at ODP site 1244 (44°35.1784´N; 125°7.1902´W; 895 320 
m water depth; Fig. S1) on the eastern flank of Hydrate Ridge ~3 km northeast of the southern 321 
summit on ODP Leg 204 in 2002 (Tréhu et al., 2003) and stored at -80°C at the ODP Gulf Coast 322 
Repository.  323 
 324 
Geochemistry. Data for dissolved methane, sulfate, manganese, iron, and iodide in sediment 325 
porewaters were obtained from (Tréhu et al., 2003). Reactive iron and manganese were extracted 326 
from frozen sediments using the citrate-dithionite method (Roy et al., 2013) and measured by 327 
inductively coupled plasma optical emission spectrometer (Agilent Technologies 700 Series). 328 
Total carbon, total nitrogen and total sulfur were determined by CNS analyzer (Perkin Elmer 329 
2400). Total inorganic carbon was measured by CO2 coulometer (CM5130) with a CM5130 330 
acidification module. Geochemical metadata are given in Table S1 and archived in BCO-DMO 331 
project 626690.  332 
 333 
DNA extraction. DNA was extracted, in duplicate, from 8-20 g of sediment from the following 334 
depths in meters below seafloor (mbsf): 1.95-2.25 (C1-H2); 3.45-3.75 (C1-H3); 8.60 (F2-H4); 335 
18.10 (F3-H4); 20.69 (C3-H4); 35.65 (E5-H5); 68.55 (E10-H5); 138.89 (core E19-H5) using a 336 
MO-BIO PowerSoil total RNA Isolation Kit with the DNA Elution Accessory Kit, following the 337 
manufacturer protocol without beads. Approximately 2 grams of sediments were used per 338 
extraction, and DNA pellets from the two replicates from each depth were pooled together. DNA 339 
concentrations were measured using a Qubit 2.0 fluorometer with dsDNA High Sensitivity 340 
reagents (Invitrogen, Grand Island, NY, USA). DNA yields ranged from 4-15 ng per gram of 341 
sediments. Core E19-H5 (139 mbsf) yielded only 2 ng DNA per gram of sediment and yielded 342 
unreliable data due to contamination with sequences from the enzymes used in the library 343 
preparations. Therefore, this core segment was excluded from further analysis.  344 
 345 
16S rRNA gene amplicon sequencing. Microbial community composition was assessed by 346 
Illumina sequencing of the V3-V4 region of the 16S rRNA gene. The V3-V4 region was PCR-347 
amplified using primers F515 and R806 (Caporaso et al., 2011), each appended with barcodes 348 
and Illumina-specific adapters according to (Kozich et al., 2013). Reactions consisted of 1-2 µL 349 
DNA template (2 ng), 5 µL of 10x Taq Mutant reaction buffer, 0.4 µL of Klentaq LA Taq 350 
Polymerase (DNA Polymerase Technology, St. Louis, MO, USA), 2 µL of 10 mM dNTP mix 351 
(Sigma Aldrich, St. Louis, MO, USA), 2 µL of reverse and forward primers (total concentration 352 
0.4 µM), and the remainder DNA-free water to 50 µL (Ambion, Grand Island, NY, USA). PCR 353 
conditions were an initial 5-min denaturation at 94oC, followed by 35 cycles of denaturation at 354 
94oC (40 sec), primer annealing at 55oC (40 sec), and primer extension at 68oC (30 sec). 355 
Amplicon libraries were purified using a QIAquick PCR Purification Kit (Qiagen, Germantown, 356 
MD, USA), quantified by Qubit (Life Technologies), and pooled in equimolar concentration. 357 
Amplicons were sequenced on an Illumina MiSeq across two different runs using the V2 500-358 
cycle kit with 5% PhiX to increase read diversity. 16S rRNA sequences were deposited into 359 
NCBI SAMN04214977-04214990 (PRJNA295201).  360 
 361 
16S rRNA gene amplicon analysis. Sequences were trimmed using Trim Galore (criteria: length 362 
>100 bp length, Phred score >25), and paired reads were merged using FLASH (Magoč & 363 
Salzberg, 2011) with the criteria of a minimum length of 250 bp per input read, minimum length 364 
of 300 bp for merged fragments, and maximum fragment standard deviation of 30 bp. Merged 365 
reads were imported into QIIME1 (Caporaso et al., 2010) and chimeric sequences were detected 366 
by searches using ‘identity_chimeric_seqs’ and then removed. Sequences sharing 97% nucleotide 367 
similarity were clustered into operational taxonomic units (OTUs) using 368 
‘pick_open_reference_otus’ with taxonomy assigned to OTUs by comparison to the greengenes 369 
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database (DeSantis et al., 2006). The datasets were rarefied to a uniform depth of 14,391 370 
sequences, and the rarefied OTU table was used for all downstream analyses. A core set of 371 
QIIME diversity analyses was performed using ‘core_diversity_analyses’. The phylogenetic 372 
diversity (PD) metric (Faith, 1992) was used to quantify alpha diversity across samples.  373 
 374 
Atribacteria OTU phylogenetic analysis. We generated a reference alignment of Atribacteria 375 
full length 16S rRNA sequences to use as a scaffold for mapping OTU sequences generated in 376 
this study. The reference alignment included Atribacteria 16S rRNA gene sequences from 377 
environmental clones (from Nobu et al. (2016), Carr et al. (2015) and Yarza et al. (2014)) and 378 
published SAGs and MAGs available in Prokka at the time of analysis (spring 2018), as well as 8 379 
sequences from Firmicutes bacteria for use as an outgroup. The sequences were aligned in 380 
MAFFT with the linsi option, alignment reordering, and reverse complement matching enabled.  381 
We then extracted representative sequences from 230 OTU clusters identified as Atribacteria OP-382 
9 and JS-1 in the E10-H5 amplicon dataset; OTUs represented by only a single sequence were 383 
excluded. These sequences were recruited to the reference alignment via MAFFT using 384 
previously described parameters, without modifying base pair positions in the reference 385 
alignment. The alignment was manually inspected and trimmed to include only the V3-V4 region 386 
spanned by the Atribacteria OTU sequences, resulting in a final alignment with 275 bases.  387 

This alignment was used for phylogeny reconstruction in RAxML with a GTR model of 388 
base substitution and GAMMA model of rate heterogeneity, and 500 rapid bootstraps followed by 389 
a thorough ML search. The resulting phylogenetic tree was edited for viewing in iTOL. The 390 
relative abundance of each OTU (from which a representative sequence was extracted) was 391 
mapped onto the resulting phylogeny and shown as a proportion of total sequences in the 392 
amplicon dataset. 393 

Pairwise distances between all Atribacteria sequences in the alignment were calculated 394 
using the p-distance method in MEGA7 and summarized in R as: min 0.0, 1st quartile 0.5, median 395 
0.09, mean 0.11, 3rd quartile 0.18 and max 0.27. Pairwise distances between only the OTUs 396 
generated in this study were summarized in R as: min 0.004, 1st quartile 0.056, median 0.075, 397 
mean 0.076, 3rd quartile 0.095 and max 0.194.   398 
 399 
Atribacteria community structure. OTU abundance from the rarified Atribacteria OTU table 400 
(previously generated during diversity analysis) was used for NMDS analysis after square root 401 
transformation and calculation of Bray-Curtis dissimilarity metrics, all processed via the 402 
metaMDS function from Vegan package in R. After examination of the Shepard plot for scatter 403 
around the regression line, the NMDS plot was created showing individual OTUs and the 404 
midpoint for whole communities. A hierarchical clustering dendrogram was generated using 405 
Bray-Curtis dissimilarities. 406 
 407 
Multiple displacement amplification, library preparation, and sequencing. Genomic DNA 408 
was amplified using a REPLI-g Single Cell Kit (Qiagen, Germantown, MD, USA) using UV-409 
treated sterile plasticware and reverse transcription-PCR grade water (Ambion, Grand Island, NY, 410 
USA). Quantitative PCR showed that the negative control began amplifying after 5 hr of 411 
incubation at 30°C, and therefore, the 30°C incubation step was shortened to 5 hr using a Bio-Rad 412 
C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA). DNA concentrations were measured 413 
by Qubit. Two micrograms of MDA-amplified DNA were used to generate genome libraries 414 
using a TruSeq DNA PCR-Free Kit following the manufacturer’s protocol (Illumina, San Diego, 415 
CA, USA). The resulting libraries were sequenced using a Rapid-Run on an Illumina HiSeq 2500 416 
to obtain 100 bp paired-end reads. Sequencing statistics are provided in Table S3. Metagenomic 417 
sequences were deposited into NCBI SAMN07256342-07256348 (PRJNA390944).  418 
 419 
Metagenome assembly, binning, and annotation. Demultiplexed Illumina reads were mapped 420 
to known adapters using Bowtie2 in local mode to remove any reads with adapter contamination. 421 
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Demultiplexed Illumina read pairs were quality trimmed with Trim Galore (Babraham 422 
Bioinformatics) using a base Phred33 score threshold of Q25 and a minimum length cutoff of 80 423 
bp. Paired-end reads were then assembled into contigs using SPAdes assembler with --meta 424 
option for assembling metagenomes, iterating over a range of k-mer values 425 
(21,27,33,37,43,47,51,55,61,65,71,75,81,85,91,95). Assemblies were assessed with reports 426 
generated with QUAST. Features on contigs were predicted through the Prokka pipeline with 427 
RNAmmer for rRNA, Aragorn for tRNA, Infernal and Rfam for other non-coding RNA and 428 
Prodigal for protein coding genes. Metagenomic 16S rRNA sequences were analyzed by 429 
BLASTN analysis against the Greengenes reference database. Matches with a bit score above 50 430 
and reads matching multiple reference genes with the highest bit score were retained for 431 
comparison with 16S rRNA amplicons (Fig. S3). Annotation of protein-coding genes was 432 
performed as follows: 1) BLASTP search against the default set of core genomes, followed by 433 
HMM search against a set of default core HMM profiles available in Prokka, 2) use of the 434 
BLAST Descriptor Annotator algorithm in BLAST2GO, which conducts BLAST against the 435 
NCBI nr database, 3) KEGG orthology assignment using GhostKoala and 4) InterProScan 436 
analysis, which involves cross-reference HMM searches across multiple databases to find Pfam 437 
families with close homology. 438 

Metagenome contigs were partitioned through MetaBAT (Kang et al., 2015) into 439 
metagenome-assembled genomes (MAGs) using tetranucleotide frequency and sequencing depth. 440 
Sequencing depth was estimated by mapping reads on to assembled contigs using Bowtie2 and 441 
Samtools. Completeness, contamination and strain level heterogeneity were assessed using single 442 
copy marker genes in CheckM (Parks et al., 2015). Gene features and their functional annotations 443 
for genome bins were extracted from the metagenome for the contigs that belong to the bins. 444 
Initial taxonomic affiliation for bins was inferred via the least common ancestor (LCA) algorithm 445 
in MEGAN6 and by the top BLAST matches to the marker gene rpoB. The B2 MAG was 446 
deposited into Genbank as “Candidatus Atribacteria bacterium 1244-E10-H5-B2” 447 
(SAMN07342547; NMQN00000000.1).  448 
 449 
Phylogeny reconstruction for MAGS. Coding sequences from whole genomes were 450 
downloaded from the NCBI representative genomes collection using NCBI e-utilities, comprising 451 
405 genomes in total, spanning all bacterial lineages. Only one candidate per genus with more 452 
than 1000 genes and maximum isolate information available was selected for this purpose. 453 
Sequence duplication (100% identity, unlikely to be biological duplication) within genomes was 454 
removed using CD-HIT. Available reference Atribacteria genomes, 24 in total, as either single-455 
cell amplified genomes (SAGs) or MAGs, were downloaded and annotated using the Prokka 456 
pipeline. A list of 139 core single copy genes (CSCG) as HMM profiles was obtained from Rinke 457 
et al. (2013). B2 and representative reference Atribacteria genomes were then scanned for the 458 
presence of these HMM profiles using HMMer with the recommended score threshold for each 459 
profile as provided in Rinke et al. (2013). In a series of manual subsampling steps, 69 CSCG 460 
clusters were selected in 220 representative genomes and 20 Atribacteria genomes where 1) 69 461 
clusters were present in only a single copy, 2) all 69 clusters were present in 220 representative 462 
genomes and 3) the minimum number of clusters present in any Atribacteria genome was 6. All 463 
69 CSCG clusters were aligned individually using the L-INS-i mode in MAFFT. Alignments 464 
were then concatenated using a custom script Aln.cat.rb from the Enveomics collection (link) 465 
with invariable sites removed. Phylogeny reconstruction was performed in RAxML using a 466 
GAMMA model of rate heterogeneity, iterating over all models of protein substitution to choose 467 
the one with best log likelihood. The analysis was performed with 1000 rapid bootstraps with the 468 
MRE convergence bootstrap criterion (50 bootstrap replicates performed), followed by a 469 
thorough ML search. The resulting phylogenetic tree was modified for optimal viewing in iTOL 470 
with a full view including all lineages and a pruned view confirming placement of MAG B2 in 471 
the Atribacteria phylogeny. Atribacteria taxonomic classifications were based on Yarza et al. 472 
(2014). To examine gene orthology between B2 and other reference Atribacteria, 23 reference 473 
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Atribacteria (MAGs and SAGs) genomes were annotated using Prokka. The predicted genes were 474 
analyzed by BLAST best hit (BBH) clustering for orthologous group identification through 475 
Proteinortho5. In B2, 55% of genes (2333/4254) lacked orthologs in other Atribacteria genomes. 476 
 477 
Metaproteomic sample preparation, mass spectrometry, and data analyses.  Proteins from 478 
E10-H5 were extracted from a 10 g of frozen sediment using a protocol adapted from Nicora et 479 
al. (2013). Briefly, 2.5 mL of desorption buffer (0.5 M NaCl, 0.1 M glycerol, 0.2% SDS, 6 M 480 
urea, 1 mM EDTA, 100 mM ammonium bicarbonate) and 2 mL of a pH-buffered amino acid 481 
solution (containing equimolar histidine, lysine, and arginine, all 83 g 1 L-1 in ultra-pure water, 482 
pH 7.0) was added to the sample on ice. The goal of the pH-buffered amino acid solution is to fill 483 
the electronegative mineral sites in the sample with positively charged amino acids to reduce 484 
absorption of proteins to the particles. Samples were vortexed 4x, alternating 5 minutes vortexing 485 
and 5 min ice. The sediment slurry was then sonicated with Bronson probe sonicator (4 x 30 s) to 486 
lyse cells and heated at 95oC for 5 min. The sediment was pelleted by centrifugation (10,000 x g, 487 
30 min, 4oC), and the supernatant was collected and stored on ice. The sediment pellet was 488 
washed 2 more times with 3 mL desorption buffer and supernatants were combined. In order to 489 
remove the SDS prior to protein digestion and mass spectrometry analysis, the filter aided sample 490 
preparation (FASP) method was used (Ostasiewicz et al., 2010). Millipore Amicon 10 kDa filter 491 
units were used and cleaned following manufacturer’s directions. Samples were loaded on top of 492 
filters (~9 mL) and centrifuged (3000 rpm, 90 min, 4oC).  In order to remove all SDS, proteins 493 
retained on the filter were rinsed 3 times by adding 5 mL of 8 M urea in 50 mM ammonium 494 
bicarbonate and repeating the prior centrifugation step. Iodoacetamide (3 mL, 15 mM) was added 495 
to samples, incubated in the dark at room temperature for 30 minutes, and then centrifuged (3000 496 
rpm, 90 min, 4oC). Proteins were then rinsed two times with 10 mL of 100 mM ammonium 497 
bicarbonate and centrifuged to remove liquid (3000 rpm, 90 min, 4oC). To digest protein on the 498 
filter, 0.5 µg of trypsin (modified, sequencing grade, Promega) was added to the filter, topped 499 
with 2.5 mL of 25 mM ammonium bicarbonate, vortexed, and incubated 12 hr at room 500 
temperature. Filtrate was collected by centrifugation (3000 rpm, 90 min, 4oC), and SpeedVaced to 501 
near dryness at 4oC. Peptides were then resuspended in 50 µL of 2% acetonitrile and 0.1% formic 502 
acid and desalted using Nest Group C18 Proto centrifugal macro columns following 503 
manufacturer’s instructions. Each 10 µL sample was separated on a NanoAquity UPLC with a 60 504 
min gradient (2-35% acetonitrile) and analyzed on a Thermo Scientific Orbitrap Fusion Tribrid 505 
Mass Spectrometer operated in top20 data dependent acquisition mode. 506 

A protein database for identifying the collected fragmentation spectra was generated from 507 
Atribacteria MAGs (C1H2_C3H4ab_E10H5_contam.fasta).These databases were concatenated 508 
with 50 common contaminants, yielding a protein database of 10,325 proteins. To assign spectra 509 
to peptide sequences, correlative database searches were completed using Comet v. 2015.01 rev. 510 
2 (Eng et al., 2013; Eng et al., 2015). Comet parameters included: trypsin enzyme specificity, 511 
semi-digested, allowance of 1 missed cleavage, 10 ppm mass tolerance, cysteine modification of 512 
57 Da (resulting from the iodoacetamide) and modifications on methionine of 15.999 Da 513 
(oxidation). Minimum protein and peptide thresholds were set at P > 0.95 on Protein and Peptide 514 
Prophet (Nesvizhskii et al., 2003). Protein inferences from the whole-cell lysates were accepted 515 
by ProteinProphet if the thresholds noted above were passed, two or more peptides were 516 
identified, and at least one terminus was tryptic (Keller et al., 2002; Nesvizhskii et al., 2003; 517 
Pedrioli, 2010). For each peptide discussed in the manuscript, manual inspection of the spectral 518 
identification was completed. The mass spectrometry proteomics data have been deposited to the 519 
ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2015) with the 520 
dataset identifier PXD01247 (https://www.ebi.ac.uk/pride/archive/ Login: 521 
reviewer08969@ebi.ac.uk Password: BP2V3yGA). 522 

 523 
  524 
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