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Originality-Significance Statement: This work provides insights into the metabolism and 20 

adaptations of microbes that are ubiquitous and abundant in methane-rich ecosystems. Our findings 21 

suggest that bacterial fermentation is a source of acetate for aceticlastic methanogenesis and a 22 

driver of iron reduction in the metal reduction zone. Atribacteria, the most abundant phylum in gas 23 

hydrate-bearing sediments, possess multiple strategies to cope with environmental stress.  24 
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Summary: Gas hydrates harbor gigatons of natural gas, yet their microbiomes remain 25 

understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from 26 

methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 27 

2-69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences 28 

generally increased in relative sequence abundance with increasing sediment depth. Most 29 

Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-30 

bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three 31 

geochemical zones in the sediment core: the sulfate-methane transition zone, metal 32 

(iron/manganese) reduction zone, and gas hydrate stability zone. We found evidence for bacterial 33 

fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction 34 

in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+/H+ 35 

antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface 36 

bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed 37 

tripartite ATP-independent (TRAP) transporters downstream from a novel regulator (AtiR). 38 

Atribacteria also possessed adaptations to survive extreme conditions (e.g., high salt brines, high 39 

pressure, and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-40 

phosphate as well as expression of K+-stimulated pyrophosphatase and capsule proteins. 41 

 42 

Introduction 43 

Gas clathrate hydrates are composed of solid water cages encasing gas molecules, commonly 44 

methane (CH4). Methane hydrates form naturally under high pressure and low temperature along 45 

continental margins (Kvenvolden, 1993; Mazurenko and Soloviev, 2003; Hester and Brewer, 2009; 46 

Collett et al., 2015). Continental margins and shelves harbor gigatons of natural gas in hydrates, 47 

which are susceptible to dissociation due to rising ocean temperatures, with potential for releasing 48 

massive methane reservoirs to the ocean and the atmosphere, which could exacerbate global 49 

warming (Archer et al., 2009; Ruppel and Kessler, 2017).  50 
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 Despite the global importance of gas hydrates, their microbiomes remain largely unknown. 51 

Microbial cells are physically associated with hydrates (Lanoil et al., 2001), and the taxonomy of 52 

these hydrate-associated microbiomes is distinct from non-hydrate-bearing sites (Inagaki et al., 53 

2006), possibly due to more extreme environmental conditions. Because salt ions are excluded 54 

during hydrate formation, porewaters of hydrate-bearing sediments are hypersaline (Ussler III and 55 

Paull, 2001; Bohrmann and Torres, 2006). Hydrate-associated microbes may possess adaptations 56 

to survive high salinity and low water activity, as well as low temperatures and high pressures 57 

(Honkalas et al., 2016). However, knowledge of the genetic basis of such adaptations is incomplete, 58 

as genomic data for hydrate communities are sparse and most hydrate microbiomes have been 59 

characterized primarily through single-gene taxonomic surveys.  60 

 Global 16S rRNA gene surveys show that the JS-1 sub-clade of the uncultivated bacterial 61 

candidate phylum Atribacteria, also known as Caldiatribacteriota, is the dominant taxon in gas 62 

hydrates (Reed et al., 2002; Inagaki et al., 2003; Kormas et al., 2003; Newberry et al., 2004; 63 

Webster et al., 2004; Inagaki et al., 2006; Webster et al., 2007; Fry et al., 2008; Kadnikov et al., 64 

2012; Parkes et al., 2014; Yanagawa et al., 2014; Chernitsyna et al., 2016; Gründger et al., 2019) 65 

and in other marine and freshwater sediment ecosystems with abundant methane (Blazejak and 66 

Schippers, 2010; Gies et al., 2014; Carr et al., 2015; Hu et al., 2016; Nobu et al., 2016; Lee et al., 67 

2018; Bird et al., 2019). The other major Atribacteria lineage, OP-9, primarily occurs in hot springs 68 

(Dodsworth et al., 2013; Rinke et al., 2013) and thermal bioreactors (Nobu et al., 2015). Marine 69 

Atribacteria are dispersed through ejection from submarine mud volcanoes (Hoshino et al., 2017; 70 

Ruff et al., 2019), and environmental heterogeneity may select for locally adapted genotypes. 71 

Atribacteria are highly enriched in anoxic, organic, and hydrocarbon rich sediments (Chakraborty 72 

et al., 2020; Hoshino et al., 2020) and have recently been discovered to be actively reproducing in 73 

the deep subsurface (Vuillemin et al., 2020). The phylogenetic diversity of Atribacteria genera 74 

suggests the potential for uncharacterized variation in functional niches.  75 
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Atribacteria appear to rely primarily on heterotrophic fermentative metabolisms. The high-76 

temperature OP-9 lineage ferments sugars to hydrogen, acetate, and ethanol (Dodsworth et al., 77 

2013; Katayama et al., 2020). The low-temperature JS-1 lineage ferments propionate to hydrogen, 78 

acetate, and ethanol (Nobu et al., 2016). Some JS-1 strains can also ferment short-chain n-alkanes 79 

(e.g. propane) into fatty acids by fumarate addition (Liu et al., 2019). Both JS-1 and OP-9 lineages 80 

possess genes encoding bacterial microcompartment shell proteins that may sequester toxic 81 

aldehydes and enable their condensation to carbohydrates (Nobu et al., 2016). Marine sediment JS-82 

1 express genes to use allantoin as an energy source or chemical protectant and, unlike most deep 83 

subsurface bacteria, also encode a membrane-bound hydrogenase complex cotranscribed with an 84 

oxidoreductase, suggesting the ability for anaerobic respiration (Bird et al., 2019). 85 

 Here we examined the distribution, phylogeny, and metabolic potential of uncultivated JS-86 

1 Atribacteria beneath Hydrate Ridge, off the coast of Oregon, USA, using a combination of 16S 87 

rRNA gene amplicon, metagenomic, and metaproteomic analysis. We found that Atribacteria from 88 

JS-1 Genus-1 are abundant throughout in the gas hydrate stability zone (GHSZ) and that they harbor 89 

numerous strategies for tolerance of osmotic stress, including many biosynthesis pathways for 90 

unusual osmolytes.  91 

 92 

Results and Discussion 93 

Geochemical gradients. Sediment core samples spanned three geochemical zones from 0-94 

69 meters below seafloor (mbsf) at the ODP Site 1244 at Hydrate Ridge, off the coast of Oregon, 95 

USA (Fig. S1; Tréhu et al., 2003): the sulfate-methane transition zone (SMTZ; 2-9 mbsf; cores 96 

C1H2, C1H3, F2H4), the metal (iron/manganese) reduction zone (MRZ; 18-36 mbsf; cores F3H4, 97 

C3H4, E5H5), and the GHSZ (45-124 mbsf; cores E10H5, E19H5; Fig. 1A, Table S1). Sediment 98 

porewater methane concentrations (approximate, due to loss during sampling) increased from 99 

negligible at the seafloor to 8% by volume at 3-5 mbsf, and remained <5% below 5 mbsf, except 100 

for sample C3H4 (21 mbsf, MRZ) with ~18% methane (Fig. 1A). Sulfate dropped from 28 to <1 101 
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mM from 0-9 mbsf (the SMTZ) and remained <1 mM below 9 mbsf (Fig. 1A). In the MRZ, 102 

dissolved Mn and Fe peaked at 6 and 33 µM, respectively, while outside of the MRZ, dissolved 103 

Mn was ~1 µM and dissolved Fe was 7-20 µM (Fig. 1A). Dithionite-extractable (see Roy et al. 104 

(2013)), termed here “reactive”, Fe (0.4-1.4%) and Mn (0.002-0.012%) generally increased with 105 

depth (Table S1). Total organic carbon concentrations varied between 1-2 weight % (Table S1). 106 

Gas hydrate was observed from 45-125 mbsf in freshly recovered sediment cores, which contained 107 

up to 20% hydrate in the pore space, primarily as hydrate lenses or nodule patches (Tréhu et al., 108 

2004; Fig. 1A). Estimated in situ salinity ranged from seawater salinity (35 g kg-1) to >100 g kg-1 109 

and was highest in the GHSZ (Milkov et al., 2004). In situ temperature ranged from ~4°C at the 110 

seafloor to ~6-11°C in the GHSZ (ShipboardScientificParty, 2003). 111 

Atribacteria dominate ASVs in gas hydrate stability zone. Actinobacteria, Atribacteria, 112 

Chloroflexi, and Planctomycetota were the dominant bacterial phyla at Site 1244 (Fig. 1B). 113 

Asgardarchaeota and Thermosplasmata were the dominant archaeal phyla, with a notable rise in 114 

Hadesarchaea in the MRZ. Phylogenetic diversity in 16S rRNA gene amplicons based on the 115 

Shannon index and species richness based on the Chao1 index were highest in the SMTZ and MRZ, 116 

and lowest in the zones dominated by Atribacteria, in between the SMTZ and MRZ, and in the 117 

GHSZ (Fig. 1C). The relative sequence abundance of Atribacteria 16S rRNA amplicons ranged 118 

from 10-15% in the near surface to 80-85% at the top of the MRZ and the GHSZ (Fig. 1B). Most 119 

of the Atribacteria ASVs (n=20) belonged to JS-1 Genus 1 and clustered with other seep- and 120 

hydrate-associated sequences (Fig. 2A). ASV_368 comprised 54% of all amplicons in the GHSZ, 121 

and most GenBank sequences with 100% similarity to ASV_368 were from hydrate-bearing 122 

sediments from the Pacific Ocean basin (Table S2).  123 

Metagenome-assembled binning yielded 21 MAGs with >35% completeness and <10% 124 

contamination including 17 bacteria and 4 archaea (Table S3). These MAGs included five 125 

Dehalococcoidia (Chloroflexi) in the SMTZ, MRZ, and GHSZ, and five Firmicutes (Clostridia) in 126 
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the SMTZ and MRZ (Table S3). Other MAGs included one Calditrichaeota in the SMTZ, one each 127 

of Bacteroidetes, Spirochaeta, Hadesarchaea, and Methanosarcinales (Euryarchaeota) in the 128 

MRZ, and one Atribacteria in the GHSZ (MAG E10H5-B2). The higher relative sequence 129 

abundance of Atribacteria 16S rRNA sequences at the top of the MRZ and the GHSZ is consistent 130 

with higher read recruitment (~4-8%) of Atribacteria MAG E10H5-B2 metagenomes from those 131 

zones vs. other depths (<1%). Although E10H5-B2 lacked a 16S rRNA gene, the 16S rRNA gene 132 

in RS-JS1 was 99.68% identical to 16S rRNA sequences from hydrate sediments from offshore 133 

Japan (Shimokita Peninsula) and Taiwan (Lin et al., 2014), and 99.43% identical to a clone from 134 

the South China Sea (Li and Wang, 2013; Fig. 2A, Table S2). Phylogeny based on eight 135 

concatenated ribosomal proteins confirmed that MAG E10H5-B2 belonged to JS-1 Genus 1, and 136 

formed a monophyletic group with MAGs from petroleum seeps in the Gulf of Mexico (E44-bin65; 137 

Dong et al., 2019; Chakraborty et al., 2020) and marine sediments in the Ross Sea (RS-JS1; Lee et 138 

al., 2018; Fig. 2B). Average amino acid identities between MAGs in JS-1 Genus 1 was 72-83% 139 

(Table S4). 140 

Anaerobic hydrocarbon degradation, aceticlastic methanogenesis, and fermentative 141 

iron reduction. A recent study suggested that JS-1 can anaerobically degrade short-chain n-alkanes 142 

using fumarate addition enzymes (FAEs; Liu et al., 2019). Like oil reservoir Atribacteria, MAG 143 

E10H5-B2 contained genes encoding the glycyl radical protein subunit A (faeA, RXG63988, in the 144 

pyruvate formate lyase family) and D (faeD, RXG63989) on the same contig. However, the faeA 145 

gene product in MAG E10H5-B2 was shorter (786 aa) than in the oil reservoir MAGs (~860 aa) 146 

and the fae operon lacked the signature faeC gene between faeD and faeA that is characteristic of 147 

FAEs, suggesting that they may produce a different product.  148 

Byproducts of fumarate addition enzymes (e.g., fatty acids) can be further degraded by 149 

other bacterial fermentation in marine sediments. Firmicutes degrade benzoate to acetate and 150 

transfer the electrons to crystalline Fe(III) minerals, producing dissolved Fe2+; thereafter, the 151 

acetate is converted to methane by syntrophic aceticlastic methanogenic archaea (Aromokeye et 152 
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al., 2020). The relative sequence abundance of Firmicutes and the presence of aceticlastic 153 

Methanosarcinales (MAG F3H4-B6; Table S3) indicate that fermentative iron reduction was likely 154 

the source of the Fe2+ peak and the methane peak in the MRZ (Fig. 1A). Acetate for aceticlastic 155 

methanogenesis could also come from other acetogens including Atribacteria (Carr et al., 2015).  156 

A biogenic source of methane to the gas hydrates at Hydrate Ridge is consistent with 157 

previous isotopic analyses (Kastner et al., 1998). Production of acetate by fermentative bacteria 158 

below the SMTZ challenges the previous paradigm that acetate was completely consumed in the 159 

SMTZ and therefore that biogenic methane in gas hydrates originated solely from 160 

hydrogenotrophic methanogenesis via CO2 reduction (Whiticar et al., 1995). However, the carbon 161 

isotopic composition of methane in the gas hydrate at Hydrate Ridge is more consistent with a CO2 162 

reduction pathway, and there may be additional deeper sources of hydrogenotrophic methane that 163 

mask the contribution from aceticlastic methanogenesis.  164 

Predicted respiratory function of novel Hun supercomplex. Two MAGs (Atribacteria 165 

E10H5-B2 and Firmicutes E5H5-B3) contained genes for a putative operon encoding a 16-subunit 166 

respiratory complex, hereafter designated Hun. The hun operon was also present in Atribacteria 167 

MAGs and SAGs from Baltic Sea sediments (Bird et al., 2019), in diverse deep biosphere bacterial 168 

MAGs (e.g. Atribacteria, Omnitrophica, Elusimicrobia, Bacteriodetes (Fig. 3A, Table S5)), and in 169 

hyperthermophilic bacterial isolates from the genus Kosmotoga (Thermotogae phylum; Fig. 3A). 170 

Atribacteria hun genes likely encode a complex of four protein modules that couple H+ and Na+ 171 

translocation to H2 production (Fig. 3B) based on their similarity to characterized proteins (Schut 172 

et al., 2016). 173 

Additional analysis provided more insights into Hun function and phylogeny. The large 174 

hydrogenase subunit HunG was classified as a [NiFe] Group 4g-hydrogenase according to the 175 

Hydrogenase Database (Søndergaard et al., 2016). Group 4g-hydrogenases are biochemically 176 

unclassified but predicted to be ferredoxin-coupled and may couple reduced ferredoxin oxidation 177 

to proton reduction and H+/Na+ translocation (Greening et al., 2016). Based on the similarity of 178 
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HunAB to anaerobic sulfite reductase (Asr) subunits A and B, which transfer electrons from 179 

ferredoxin to the active site in AsrC (missing in the hun operon), HunABC likely accept electrons 180 

from ferredoxin and pass them through iron-sulfur clusters to 2H+ for reduction to H2 at HunEFGP’s 181 

Ni-Fe active site, as suggested by the presence of two conserved CxxC motifs (L1 and L2) for Ni-182 

Fe cofactor binding in HunG (Fig. 4A). Further analysis revealed that conserved residues for the 183 

Ni-Fe active site were different for HunG than other hydrogenases: CGIC-CYCC vs. CGIC-CxxC 184 

in other Group 4 hydrogenases (Fig. 4A). HunG was evolutionarily distant from other Group 4g 185 

sequences (Fig. 4A, B). In some MAGs, a 4Fe-4S molybdopterin domain-containing protein was 186 

present in between HunB and HunC (Fig. 3A). P-module-like subunits HunDHILK are predicted 187 

to be proton-pumping transmembrane proteins and Na-module-like subunits HunIJKLMNO are 188 

homologs of the Na+/H+ antiporter MnhABCDEFGH in Mrp-Mbh-type complexes. ATP is then 189 

generated via Na+-specific ATP synthases (Bird et al., 2019). Electrons from H2 could be transferred 190 

back to ferredoxin by the activity of the heterodisulfide reductase (HdrA)-methyl viologen 191 

hydrogenase (MvhAGD) complex.  192 

Transporters expressed in metaproteome. To assess gene expression, we analyzed 193 

metaproteomes from a subset of Site 1244 cores (C1H2, C3H4, and E10H5, from ~2, 20, and ~69 194 

mbsf, respectively). Although we recovered few peptides of high quality, several robust hits were 195 

identified, including several types of transporters and cell envelope-associated proteins (Table 1). 196 

The expressed proteins were identified using Atribacteria MAGs from IODP Site 1244 as the 197 

reference database (see Methods) and had closest matches to other Atribacteria genomes (Table 1), 198 

suggesting that they originated from Atribacteria. Expressed proteins included a high-affinity 199 

branched-chain amino acid transport system permease (LivH) and multiple tripartite ATP-200 

independent (TRAP) transporters (Fig. 5A). TRAP transporters use an electrochemical gradient 201 

(H+ or Na+) and a substrate-binding protein to transport a wide variety of molecules across the 202 

membrane (Rosa et al., 2018). Conserved residues within the TRAP substrate-binding protein 203 

confer specificity, with a conserved arginine residue essential for carboxylate transport (Fischer et 204 
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al., 2015). In JS-1 MAGs from oil reservoirs, TRAP transport genes were associated with fumarate 205 

addition genes and likely transport fumarate or succinate for addition to hydrocarbons (Liu et al., 206 

2019). In MAG E10H5-B2, genes for choline, inositol, and D-galacturonate catabolism often 207 

surrounded TRAP transporters (Fig. 5A), consistent with the finding that TRAP transporters can 208 

transport a much broader range of compounds than originally known (Vetting et al., 2015). 209 

AtiR, a novel regulator. Several of the expressed transporter proteins were encoded by 210 

genes downstream from a novel gene predicted to encode an ~85-amino acid helix-turn-helix 211 

xenobiotic response element (XRE) transcriptional regulator, which we named “AtiR” (Table S6; 212 

Fig. 5). AtiR was present in other genomes from Site 1244, in an Atribacteria MAG from marine 213 

hydrothermal sediment from Guaymas Basin (Zhou et al., 2020), and in unbinned contigs from 214 

marine hydrate-bearing sediments from offshore Shimokita Peninsula (Kawai et al., 2014 mbsf, 215 

core S12H4; ). AtiR was also found in Firmicutes from other depths in Site 1244, including 216 

Clostridia MAG 1244-F3-H4-B2, Firmicutes MAG 1244-F2-H4-B10, and Aminicenantes MAG 217 

1244-C3H4-B23. AtiR was also found in Omnitrophica genomes from Mid-Cayman Rise vent 218 

fluid plumes and in JS-1 genomes from Aarhus Bay, Denmark. Genes downstream of atiR were 219 

dominated by transporters for organic solutes (tct, dct, ugp), branched chain amino acids (liv), 220 

hydrolases (choline sulfatase, sialidase, tryptophanase, cysteine desulfurase), peptidases, 221 

racemases, and RTX-toxin (Tables S6; Fig. 5A). XRE regulators are widely distributed across the 222 

tree of life and regulate diverse metabolic functions and oxidative stress responses, typically as 223 

repressors that bind to DNA (Fig. 5B) to prevent transcription in the absence of a ligand. Methane-224 

hydrate bacteria may use AtiR to regulate cellular degradation of peptides and proteins to amino 225 

acids, either for nutrient acquisition or for survival under environmental stress (Bergkessel et al., 226 

2016).  227 

Osmotic stress survival. Any life that can persist in brine pockets within methane hydrate 228 

must contend with high salinity (up to ~3x that of seawater) and low water potential. We found a 229 

K+ stimulated pyrophosphatase, which is involved in salt stress in other bacteria (López-Marqués 230 
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et al., 2004; Tsai et al., 2014), expressed the GHSZ sample (Table 1). Atribacteria MAG E10H5-231 

B2 also contained numerous genes for the “salt out” survival strategy, in which osmotic pressure 232 

is maintained by exporting cations (Wood, 2015). Cation export systems included efflux systems, 233 

mechanosensitive ion channels, and Na+-H+ antiporters (Table 2). Atribacteria MAG E10H5-B2 234 

also contained numerous MazEF toxin-antitoxin systems (Table S7), which are involved in 235 

translational control during stress response (Culviner and Laub, 2018).  236 

A second salt survival strategy is import and/or biosynthesis of osmolytes, most often polar, 237 

water-soluble, and uncharged organic compounds and/or extracellular polymers. For example, 238 

glycine betaine is abundant in saline fluids from deep sediment basins (Daly et al., 2016). 239 

Atribacteria MAG E10H5-B2 contained genes for transport of trehalose and biosynthesis of the 240 

common osmolytes glutamine, glutamate, and poly-gamma-glutamate, all of which had homologs 241 

in other Atribacteria MAGs (Table 2). A capsular polysaccharide biosynthesis protein was among 242 

the handful of confident peptide hits (Table 1). Atribacteria transcripts for trehalose synthesis and 243 

transport were also present in other marine sediments (Bird et al., 2019). Atribacteria MAG E10H5-244 

B2 also contained multiple copies of the aromatic amino acid exporter yddG, one of the most highly 245 

transcribed Atribacteria genes in other marine sediments (Bird et al., 2019). B2 and another 246 

Atribacteria MAG from a marine mud volcano (UBA9904) encoded myo-inositol-1 phosphate 247 

synthase (MIPS)/bifunctional IPC transferase and DIPP synthase (IPCT-DIPPS) for the unusual 248 

solute di-myo-inositol-phosphate (DIP; Table 2), which was previously only known to be made by 249 

hyperthermophiles (Santos and Da Costa, 2002).  250 

The capacity for glycosylation may be another adaptation for survival of salt stress (Kho 251 

and Meredith, 2018). Atribacteria MAG E10H5-B2 and other Atribacteria encoded the non-252 

mevalonate pathway for isoprenoid biosynthesis (ispDEFGH), exopolysaccharide synthesis 253 

proteins, numerous glycosyltransferases for transferring UDP- and GDP-linked sugars to a variety 254 

of substrates, and several proteins related to N-linked glycosylation (Table S8). Carbohydrate 255 

active enzymes are secreted by Atribacteria (Orsi et al., 2018) and may be involved in stress 256 
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response. Atribacteria MAG E10H5-B2 also encoded genes for propionate catabolism and a 257 

bacterial microcompartment superlocus with 94-99% amino acid identity to a Atribacteria SAG 258 

from the Marianas Trench (Fig. S2), which is thought to be involved in sugar and aldehyde 259 

metabolism in Atribacteria (Axen et al., 2014; Nobu et al., 2016). 260 

Adaptations to life in methane hydrates. Microbes in the GHSZ in deep subsurface 261 

sediments appear to contain unique adaptations for survival in an extreme system with high salinity, 262 

high pressure, and low temperatures. Other probable environmental stress adaptations may include 263 

glycosylation and membrane modifications. It is also possible that these microbes can produce 264 

secondary metabolites that modify gas hydrate properties; we recently showed experimentally that 265 

recombinant Chloroflexi proteins from metagenomic sequences native to methane hydrate-bearing 266 

sediments alter the structure of clathrates (Johnson et al., 2020). More experiments are required to 267 

resolve the complex metabolic pathways and biosynthetic potential of life in methane hydrates, 268 

with important implications for stability of gas hydrates on our own planet (e.g. Snyder et al., 2020) 269 

and potential habitability and survival strategies of other planetary bodies in our solar system 270 

(Mousis et al., 2015; Kamata et al., 2019).  271 
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Experimental Procedures 289 

Sample collection. Sediments were cored at ODP site 1244 (44°35.1784´N; 125°7.1902´W; 895 290 
m water depth; Fig. S1) on the eastern flank of Hydrate Ridge ~3 km northeast of the southern 291 
summit on ODP Leg 204 in 2002 (Tréhu et al., 2003) and stored at -80°C at the ODP Gulf Coast 292 
Repository.  293 
 294 
Geochemistry. Data for dissolved methane, sulfate, manganese, iron, and iodide in sediment 295 
porewaters were obtained from Tréhu et al. (2003). Reactive iron and manganese were extracted 296 
from frozen sediments using the citrate-dithionite method (Roy et al., 2013) and measured by 297 
inductively coupled plasma optical emission spectrometer (Agilent Technologies 700 Series). Total 298 
carbon, total nitrogen and total sulfur were determined by CNS analyzer (Perkin Elmer 2400). Total 299 
inorganic carbon was measured by CO2 coulometer (CM5130) with a CM5130 acidification 300 
module. Geochemical metadata are given in Table S1 and archived in BCO-DMO project 626690.  301 
 302 
DNA extraction. DNA was extracted, in duplicate, from 8-20 g of sediment from the following 303 
depths in meters below seafloor (mbsf, using IODP core designations, see 304 
(ShipboardScientificParty, 2003)): 1.95-2.25 (C1-H2); 3.45-3.75 (C1-H3); 8.60 (F2-H4); 18.10 305 
(F3-H4); 20.69 (C3-H4); 35.65 (E5-H5); 68.55 (E10-H5); 138.89 (core E19-H5) using a MO-BIO 306 
PowerSoil total RNA Isolation Kit with the DNA Elution Accessory Kit, following the 307 
manufacturer protocol without beads. DNA pellets from two replicates from each depth were 308 
pooled together. DNA concentrations were measured using a Qubit 2.0 fluorometer with dsDNA 309 
High Sensitivity reagents (Invitrogen, Grand Island, NY, USA). DNA yields ranged from 4-15 ng 310 
per gram of sediments. Core E19-H5 (139 mbsf) yielded only 2 ng DNA per gram of sediment and 311 
yielded unreliable data due to contamination with sequences from the enzymes used in the library 312 
preparations. Therefore, this core segment was excluded from further analysis.  313 
 314 
16S rRNA gene amplicon sequencing. Microbial community composition was assessed by 315 
Illumina sequencing of the V3-V4 region of the 16S rRNA gene. The V3-V4 region was PCR-316 
amplified using primers F515 and R806 (Caporaso et al., 2011), each appended with barcodes and 317 
Illumina-specific adapters according to (Kozich et al., 2013). Reactions consisted of 1-2 µL DNA 318 
template (2 ng), 5 µL of 10x Taq Mutant reaction buffer, 0.4 µL of Klentaq LA Taq Polymerase 319 
(DNA Polymerase Technology, St. Louis, MO, USA), 2 µL of 10 mM dNTP mix (Sigma Aldrich, 320 
St. Louis, MO, USA), 2 µL of reverse and forward primers (total concentration 0.4 µM), and DNA-321 
free water (Ambion, Grand Island, NY, USA) for the remainder of the 50 µL total volume. PCR 322 
conditions were an initial 5-min denaturation at 94oC, followed by 35 cycles of denaturation at 323 
94oC (40 sec), primer annealing at 55oC (40 sec), and primer extension at 68oC (30 sec). Amplicon 324 
libraries were purified using a QIAquick PCR Purification Kit (Qiagen, Germantown, MD, USA), 325 
quantified by Qubit (Life Technologies), and pooled in equimolar concentration. Amplicons were 326 
sequenced on an Illumina MiSeq across two runs using the V2 500-cycle kit with 5% PhiX to 327 
increase read diversity. 16S rRNA sequences were deposited into NCBI SAMN04214977-328 
04214990 (PRJNA295201).  329 
 330 
16S rRNA gene amplicon taxonomic analysis. 16S rRNA sequences were trimmed using Trim 331 
Galore (criteria: length >100 bp length, Phred score >25). Sequences were dereplicated with a 332 
cutoff of 200 bp, chimeras were removed, and ASVs were resolved using deblur (Amir et al., 2017). 333 
Shannon and chao 1 diversity indices were calculated in R using phyloseq (McMurdie and Holmes, 334 
2013).  335 
 336 
Atribacteria ASV phylogenetic analysis. The reference alignment included Atribacteria 16S 337 
rRNA gene sequences from environmental clones from Inagaki et al. (2006); Nobu et al. (2016), 338 
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Carr et al. (2015), and Yarza et al. (2014). The alignment was trimmed to include only the V3-V4 339 
region spanned by the Atribacteria ASV sequences, resulting in a final alignment with 198 bases. 340 
The DNA sequences were aligned in MAFFT with the L-INS-i option (Katoh and Standley, 2013). 341 
A neighbor-joining phylogeny with 100 bootstraps was rooted with members of the Synergistetes 342 
bacterial phylum.  343 
 344 
Multiple displacement amplification, library preparation, and sequencing. Genomic DNA was 345 
amplified from all samples using a REPLI-g Single Cell Kit (Qiagen, Germantown, MD, USA) 346 
using UV-treated sterile plasticware and reverse transcription-PCR grade water (Ambion, Grand 347 
Island, NY, USA). Quantitative PCR showed that the negative control began amplifying after 5 hr 348 
of incubation at 30°C, and therefore, the 30°C incubation step was shortened to 5 hr using a Bio-349 
Rad C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA). DNA concentrations were 350 
measured by Qubit. Two micrograms of MDA-amplified DNA were used to generate genome 351 
libraries using a TruSeq DNA PCR-Free Kit following the manufacturer’s protocol (Illumina, San 352 
Diego, CA, USA). The resulting libraries were sequenced using a Rapid-Run on an Illumina HiSeq 353 
2500 to obtain 100 bp paired-end reads. Sequencing statistics are provided in Table S3.  354 
 355 
Metagenome assembly, binning, and annotation. Demultiplexed Illumina reads were mapped to 356 
known adapters using Bowtie2 in local mode to remove any reads with adapter contamination. 357 
Demultiplexed Illumina read pairs were quality trimmed with Trim Galore (Babraham 358 
Bioinformatics) using a base Phred33 score threshold of Q25 and a minimum length cutoff of 80 359 
bp. Paired-end reads were then assembled into contigs using SPAdes assembler with --meta option 360 
for assembling metagenomes, iterating over a range of k-mer values 361 
(21,27,33,37,43,47,51,55,61,65,71,75,81,85,91,95). Assemblies were assessed with reports 362 
generated with QUAST. Features on contigs were predicted through the Prokka pipeline with 363 
Barrnap for rRNA, Aragorn for tRNA, Infernal and Rfam for other non-coding RNA, and Prodigal 364 
for protein coding genes. Metagenomic 16S rRNA sequences predicted by Barrnap were analyzed 365 
by BLASTN analysis against the SILVA SSU database version 138.  366 

Annotation of protein-coding genes was performed as follows: 1) BLASTP search against 367 
the default set of core genomes, followed by HMM search against a set of default core HMM 368 
profiles available in Prokka, 2) use of the BLAST Descriptor Annotator algorithm in BLAST2GO, 369 
which conducts BLAST against the NCBI nr database, 3) KEGG orthology assignment using 370 
GhostKoala and 4) InterProScan analysis, which involves cross-reference HMM searches across 371 
multiple databases to find Pfam families with close homology. Metagenomic sequences were 372 
deposited into NCBI SAMN07256342-07256348 (PRJNA390944). Whole Genome Shotgun 373 
projects has been deposited at DDBJ/ENA/GenBank under the accession JABUBK000000000-374 
JABUBQ000000000. 375 
 376 
Metagenome-assembled genomes.  Metagenome contigs were partitioned through MetaBAT 377 
(Kang et al., 2015) into metagenome-assembled genomes (MAGs) using tetranucleotide frequency 378 
and sequencing depth. Sequencing depth was estimated by mapping reads on to assembled contigs 379 
using Bowtie2 and Samtools. Completeness, contamination and strain level heterogeneity were 380 
assessed using single copy marker genes in CheckM (Parks et al., 2015). Gene features and their 381 
functional annotations for genome bins were extracted from the metagenome for the contigs that 382 
belong to the bins. Taxonomic affiliation for each bin was inferred via the least common ancestor 383 
(LCA) algorithm in MEGAN6 and by the top BLAST matches to the marker gene rpoB. Twenty-384 
one MAGs with estimated completeness >50% were deposited into GenBank (Table S3). The B2 385 
MAG was deposited into GenBank as “Candidatus Atribacteria bacterium 1244-E10-H5-B2” 386 
(SAMN07342547; NMQN00000000.1). Read recruitments of metagenomic sequences to MAGs 387 
were performed using Bowtie2 (Langmead and Salzberg, 2012) normalized to the approximate 388 
number of genomes in the metagenome estimated with MicrobeCensus (Nayfach and Pollard, 389 
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2015). The average amino acid identity matrix was generated using the ANI-AAI matrix tool 390 
(Rodriguez-R and Konstantinidis, 2016). 391 
 392 
Atribacteria MAG and SAG phylogeny. Public Atribacteria single cell amplified genomes 393 
(SAGs) or MAGs (77 genomes, as of July 2020) were collected into a Genome Group workspace 394 
in Pathosystems Resource Integration Center (PATRIC; Wattam et al., 2014). Six ribosomal 395 
proteins from the large rRNA subunit (L2, L3, L4, L6, L16, L18) and two from the large rRNA 396 
subunit (S3 and S19) were collected from the Atribacteria genomes using the Features tab in 397 
Genome Group View. The eight ribosomal proteins were concatenated and the amino acid 398 
sequences were aligned in MAFFT with the L-INS-i option (Katoh and Standley, 2013). A 399 
neighbor-joining phylogeny with 1000 bootstraps was rooted with members of the Synergistetes 400 
bacterial phylum. 401 
 402 
Maximum likelihood phylogenies. Large subunit hydrogenase (HunG) and the xenobiotic 403 
response element regulator (AtiR) were made using sequences aligned in MAFFT with the L-INS-404 
i option (Katoh and Standley, 2013). Neighbor-joining phylogenies were made with 100 bootstraps. 405 
 406 
Gene neighborhood diagrams. Gene neighborhood diagrams for the hun gene neighborhood were 407 
made using the gene neighborhood tool (GNT) in EFI web tools using a “single sequence BLAST” 408 
function in “Retrieve Neighborhood Diagrams” set to an E-value of 10-5 and a window size of 20 409 
(Zallot et al., 2019). The input sequence was NCBI accession RXG63129 for HunG. 410 
 411 
Metaproteomic sample preparation, mass spectrometry, and data analyses.  Proteins from 412 
E10-H5 were extracted from a 10 g of frozen sediment using a protocol adapted from Nicora et al. 413 
(2013). Briefly, 2.5 mL of desorption buffer (0.5 M NaCl, 0.1 M glycerol, 0.2% SDS, 6 M urea, 1 414 
mM EDTA, 100 mM ammonium bicarbonate) and 2 mL of a pH-buffered amino acid solution 415 
(containing equimolar histidine, lysine, and arginine, all 83 g 1 L-1 in ultra-pure water, pH 7.0) 416 
was added to the sample on ice. The goal of the pH-buffered amino acid solution is to fill the 417 
electronegative mineral sites in the sample with positively charged amino acids to reduce 418 
absorption of proteins to the particles. Samples were vortexed 4x, alternating 5 minutes vortexing 419 
and 5 min ice. The sediment slurry was then sonicated with Bronson probe sonicator (4 x 30 s) to 420 
lyse cells and heated at 95°C for 5 min. The sediment was pelleted by centrifugation (10,000 x g, 421 
30 min, 4°C), and the supernatant was collected and stored on ice. The sediment pellet was washed 422 
2 more times with 3 mL desorption buffer and supernatants were combined. In order to remove the 423 
SDS prior to protein digestion and mass spectrometry analysis, the filter aided sample preparation 424 
(FASP) method was used (Ostasiewicz et al., 2010). Millipore Amicon 10 kDa filter units were 425 
used and cleaned following manufacturer’s directions. Samples were loaded on top of filters (~9 426 
mL) and centrifuged (3000 rpm, 90 min, 4°C).  To remove all SDS, proteins retained on the filter 427 
were rinsed 3 times by adding 5 mL of 8 M urea in 50 mM ammonium bicarbonate and repeating 428 
the prior centrifugation step. Iodoacetamide (3 mL, 15 mM) was added to samples, incubated in 429 
the dark at room temperature for 30 minutes, and then centrifuged (3000 rpm, 90 min, 4°C). 430 
Proteins were then rinsed two times with 10 mL of 100 mM ammonium bicarbonate and centrifuged 431 
to remove liquid (3000 rpm, 90 min, 4°C). To digest protein on the filter, 0.5 µg of trypsin 432 
(modified, sequencing grade, Promega) was added to the filter, topped with 2.5 mL of 25 mM 433 
ammonium bicarbonate, vortexed, and incubated 12 hr at room temperature. Filtrate was collected 434 
by centrifugation (3000 rpm, 90 min, 4°C), and SpeedVaced to near dryness at 4oC. Peptides were 435 
then resuspended in 50 µL of 2% acetonitrile and 0.1% formic acid and desalted using Nest Group 436 
C18 Proto centrifugal macro columns following manufacturer’s instructions. Each 10 µL sample 437 
was separated on a NanoAquity UPLC with a 60 min gradient (2-35% acetonitrile) and analyzed 438 
on a Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer operated in top20 data 439 
dependent acquisition mode. 440 
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A protein database for identifying the collected fragmentation spectra was generated from 441 
Atribacteria MAGs (C1H2_C3H4ab_E10H5_contam.fasta). These databases were concatenated 442 
with 50 common contaminants, yielding a protein database of 10,325 proteins. To assign spectra to 443 
peptide sequences, correlative database searches were completed using Comet v. 2015.01 rev. 2 444 
(Eng et al., 2013; Eng et al., 2015). Comet parameters included: trypsin enzyme specificity, semi-445 
digested, allowance of 1 missed cleavage, 10 ppm mass tolerance, cysteine modification of 57 Da 446 
(resulting from the iodoacetamide) and modifications on methionine of 15.999 Da (oxidation). 447 
Minimum protein and peptide thresholds were set at P > 0.95 on Protein and Peptide Prophet 448 
(Nesvizhskii et al., 2003). Protein inferences from the whole-cell lysates were accepted by 449 
ProteinProphet if the thresholds noted above were passed, two or more peptides were identified, 450 
and at least one terminus was tryptic (Keller et al., 2002; Nesvizhskii et al., 2003; Pedrioli, 2010). 451 
For each peptide discussed in the manuscript, manual inspection of the spectral identification was 452 
completed. The mass spectrometry proteomics data have been deposited to the ProteomeXchange 453 
Consortium via the PRIDE partner repository (Vizcaíno et al., 2015) with the dataset 454 
identifier PXD012479 (https://www.ebi.ac.uk/pride/archive/ Login: reviewer08969@ebi.ac.uk 455 
Password: BP2V3yGA).  456 
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Table 1. Peptide hits for ODP Site 1244 sample E10-H5 (~69 mbsf). Matches are shown 457 
for >70% identity to non-Hydrate Ridge genomes. 458 
 459 

   460 

Peptide NCBI 
accession 
number 

Conserved domains Top hit, NCBI 
accession (% identity) 

EYKPKEDWKMNFSSSY
NLNTK 

RXG64736 LPS-assembly protein 
LptD 

OQY39007 (82%), 
Atribacteria 4572_76, 
Guaymas Basin, Gulf 

of California 
YSLKQMVLPILIGLIAPIII
GFTLGVWPLAAFLIGVK
IVGALLA 

MBA7568979 K+-stimulated 
pyrophosphate-

energized proton pump 
HppA 

HDP36765 (91%), 
Atribacteria SpSt-1160, 

contaminated 
groundwater, New 

York, USA 
PRMLSYILLALSLSLILL
KFFK 

MQY74719 Tripartite tricarboxylate 
transporter TctB 

N/A 

PVSAAINLIHLLPIPLLIQ
RDLKEK RXG64647 

Tripartite ATP-
independent 

periplasmic transporter 
DctQ 

N/A 

NKINLIFSILIIIFLIVLTYE
GIILVKVGLNA 

RXG62936 Tripartite ATP-
independent 

periplasmic transporter 
DctQ 

N/A 

CSNLIIKALLVVLVLSLG
ITLGIAKAP 

RXG64193 Basic membrane 
lipoprotein BmpA 

PKP58720 (94%), 
Atribacteria HGW-1, 

groundwater, Horonobe 
URL, Japan 

KPFRKSPGLIILLSTVAV
GFIIR 

MBA7587931 High-affinity branched-
chain amino acid 
transport system 

permease protein LivH 

TET08159 (99%), 
Atribacteria 

E44_bin65, Gulf of 
Mexico petroleum 
seepage sediments 

GIIILIFLIAVITAVLVSYF
VLSPTP 

RXG64813 Capsular 
polysaccharide 

biosynthesis protein 

HBY56740 (76%), 
Atribacteria UBA9904, 

petroleum reservoir, 
North Slope Alaska 
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Table 2. Putative osmotic stress-related genes in Atribacteria MAG E10-H5 B2.  461 
*indicates multiple copies. 462 

 463 

  464 

Annotation Gene Accession  Top hit 
(% identity) 

Atribacteria 
MAG with 
top hit  

Top hit 
environment and 
reference for 
metagenomes 

Na+ efflux  natB RXG65900 TET06401 (98%) E44_bin65 
 

Gulf of Mexico 
petroleum seep 
sediments 
(Chakraborty et 
al., 2020) 

Na+ channel  DUF554 RXG63559 TET10447 (99%) 
K+ transport  trkAH* 

 
RXG63511 
RXG63512 

TET06940 (97%) 
TET06939 (99%) 

Mechanosensitive  
ion channel 

mscS RXG63036 TET10003 (97%) 

Glutamine 
synthetase 

glnA RXG65164 TET08352 (99%) 

Trehalose  
transporter 

sugAB RXG66833- 
RXG66834 

KUK55397- (94%) 
KUK55398 (99%) 

34_128 Oil reservoir, 
North Slope, 
Alaska (Hu et al., 
2016) 

Threonine/lysine 
efflux  

rhtB RXG66248 KUK55393 (91%) 

Na+/H+ antiporter mrpEFGB 
 

RXG65834-
RXG65838 

TFB09297- 
TFB09301 (91-95%) 

MT.SAG.1 
 

Marianas Trench 
(Peoples et al., 
2019) Aromatic amino 

acid exporter 
yddG* RXG63201 TFB08968 (91%) 

Glutamate 
synthase 

gltD RXG66270 PKP56573 (94%) HGW-1 
 

Horonobe 
Underground 
Laboratory, Japan 
(Hernsdorf et al., 
2017) 

Proline racemase prdF RXG63210 PKP58887 (92%) 
Poly-gamma  
glutamate 
synthase 

pgsCBW RXG66317- 
RXG66319 

PKP60458-  
PKP60460 (~90%) 

DIPP synthesis  
pathway 

MIPS/IPCT-
DIPPS* 

RXG66889- 
RXG66888 

HBY57541- 
HBY57542 (~80%) UBA9904  Haakon Mosby 

mud volcano, 
Barents Sea 
(Niemann et al., 
2006) 
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 465 

Figure 1: Porewater geochemistry and microbial taxonomy and diversity from sediment depth 466 
profiles at ODP 204 Site 1244, Hydrate Ridge, offshore Oregon, USA. A: Sulfate (yellow circles), 467 
methane (green squares), manganese (gray circles), and iron (black circles) concentrations, and 468 
depth of gas hydrate occurrences (gray dashes) from Tréhu et al. (2003). Sulfate and methane data 469 
are from core 1244B. Iron and manganese data are from core 1244E. Gas hydrate occurrence data 470 
are from core 1244C and 1244E. SMTZ: sulfate-methane transition zone; MRZ: metal reduction 471 
zone; GHSZ: gas hydrate stability zone. B: 16S rRNA gene amplicon taxonomic composition at 472 
the phylum level. “Other” category represents bacterial and archaeal phyla with <10% of total 473 
sequences. “Unclassified” represents sequences that were not classified at the phylum level. 16S 474 
rRNA amplicon data not shown for core C1H2 (see text). C: Microbial diversity based on Chao1 475 
(top axis, squares) and Shannon index (bottom axis, diamonds) for the same 16S rRNA gene 476 
amplicon samples as shown in panel B.  477 
  478 
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 479 
Figure 2: Neighbor-joining Atribacteria JS-1 Genus 1 phylogenies based on (A) 16S rRNA 480 
amplicons and (B) ribosomal proteins. Bolded sequences are from Hydrate Ridge. 16S rRNA 481 
phylogeny including the top three most abundant Atribacteria ASVs from Site 1244 (see Table S2 482 
for relative sequence abundances). ODP1251B1.5 is the dominant JS-1 16S rRNA clone from 483 
Hydrate Ridge Leg 204 cores as reported by Inagaki et al. (2006). Italicized names are from MAGs 484 
or SAGs; the rest of the sequences are from 16S amplicons. Genera labels are based on sequences 485 
from Yarza et al. (2014) and Liu et al. (2019). Conserved sites used in phylogenies: (A) 190 bases; 486 
(B) 846 amino acids.  487 
  488 
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 489 
Figure 3: Gene neighborhood and predicted function of the predicted multi-subunit Hun 490 
respiratory complex. A: conserved gene cluster arrangement, with each color representing a 491 
different predicted protein. Some gene arrangements are found in more than one genome, as 492 
indicated. All MAGs and SAGs are from sediment samples. Sample abbreviations: ADurb: 493 
wastewater; CG: Crystal Geyser, Utah, USA; GB: Guaymas Basin, Gulf of California; HGW: 494 
Horonobe Underground Laboratory, Japan; LCGC: Loki’s Castle, Mid-Atlantic Ridge, Atlantic 495 
Ocean; MT: Mariana Trench; SM: White Oak Estuary, North Carolina, USA; SURF: Stanford 496 
Underground Research Facility, South Dakota, USA; Rifle: Rifle research site, Colorado, USA; 497 
UBA12261: wetland surface sediment; UBA9627: Rifle research site, Colorado, USA. B: predicted 498 
cellular locations and functions based on homologs of the genes of the same colors encoded by the 499 
putative hun operon in panel A. Iron-sulfur clusters and the Ni-Fe active site of HunG are also 500 
shown.  501 
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 502 
Figure 4: Phylogeny and sequence clustering of HunG and related large-subunit 503 
hydrogenases from group 4. A: Maximum likelihood HunG/NuoD/HycE phylogeny, with [Ni-504 
Fe] hydrogenase group 4 labels drawn based on naming system from Søndergaard et al. (2016) and 505 
L1 and L2 motifs for the large subunit metal-binding centers for each class of group 4 hydrogenase. 506 
The NuoD subunit of NADH dehydrogenase (Complex I), which evolved from group 4 507 
hydrogenase (Schut et al., 2016), is also included. B: Sequence similarity network for Group 508 
4a,b,c,d,e,f,g and HunG hydrogenases with E-value cutoff of 10-90 and group color scheme the same 509 
as in A. Subgroups 4h and 4i are not shown in the sequence similarity network because they had 510 
no edges to the larger Group 4 cluster at E-value cutoff of 10-90. 511 

512 
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 513 
Figure 5: Phylogeny of helix-turn-helix xenobiotic response element regulators (yellow), 514 
hereafter “AtiR”, from B2 and synteny of downstream genes. Genes highlighted in thick red 515 
lines were expressed in the metaproteome. A: AtiR maximum likelihood phylogeny based on 516 
contigs (labeled on the right) from E10-H5 B2, with Anaerococcus prevotii as the outgroup. Top 517 
inset: Additional putative operons from B2 likely regulated by atiR, which is truncated partially or 518 
completely on these contigs. Bottom inset: Legend for panels A and B; B: AtiR amino acid 519 
alignment for the N-terminus of 13 AtiR sequences from Atribacteria E10-H5-B2 shown in panel 520 
A. Abbreviations: bmpA: basic membrane protein A; dctPQM: C4-dicarboxylate transporter; gabT: 521 
4-aminobutyrate aminotransferase; livHMGF: branched chain amino acid transporter; rbs: ribose 522 
transporter; sat: sulfate adenylyltransferase; tctCBA: tricarboxylate transporter; ugpBAE: sn-523 
glycerol-3-phosphate transporter. See Table S6 for accession numbers and % identity to closest 524 
gene hits in other genomes.	  525 
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