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Abstract 

Expectancy shapes our perception of impending events. Although such an interplay 

between cognitive and affective processes is often impaired in mental disorders, it is 

not well understood how top-down expectancy signals modulate future affect. We 

therefore track the information flow in the brain during cognitive and affective 

processing segregated in time using task-specific cross-correlations. Participants in 

two independent fMRI studies (N1 = 37 & N2 = 55) were instructed to imagine a situation 

with affective content as indicated by a cue, which was then followed by an emotional 

picture congruent with expectancy. To correct for intrinsic covariance of brain function, 

we calculate resting-state cross-correlations analogous to the task. First, using factorial 

modeling of delta cross-correlations (task-rest) of the first study, we find that the 

magnitude of expectancy signals in the anterior insula cortex (AIC) modulates the 

BOLD response to emotional pictures in the anterior cingulate and dorsomedial 

prefrontal cortex in opposite directions. Second, using hierarchical linear modeling of 

lagged connectivity, we demonstrate that expectancy signals in the AIC indeed 

foreshadow this opposing pattern in the prefrontal cortex. Third, we replicate the results 

in the second study using a higher temporal resolution, showing that our task-specific 

cross-correlation approach robustly uncovers the dynamics of information flow. We 

conclude that the AIC arbitrates the recruitment of distinct prefrontal networks during 

cued picture processing according to triggered expectations. Taken together, our study 

provides new insights into neuronal pathways channeling cognition and affect within 

well-defined brain networks. Better understanding of such dynamics could lead to new 

applications tracking aberrant information processing in mental disorders. 

Keywords: signaling dynamics; cross-correlation; functional networks, fMRI; 

expectancy; hierarchical linear modeling 
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Introduction 

Whenever we are confronted with a stirring situation, our prior beliefs and expectations 

will influence future perception. For example, if you have to give a talk, the preparation 

can be associated with different expectations on how it will resonate with the audience. 

In turn, this will shape your perception of the listeners: If you are affected by stage 

fright, your expectations are likely negative and you may interpret an ambiguous facial 

expression as disapproving. In contrast, if you expect the audience to respond well, 

you may interpret the same expression as showing focused attention. Although such 

processes often come into play in our daily life (de Lange, Heilbron, & Kok, 2018) and 

aberrant expectations play an important role in affective disorders (Disner, Beevers, 

Haigh, & Beck, 2011; Holtzheimer & Mayberg, 2011), the exact neural processes 

subserving the channeling of expectancy are not well understood to date. 

So far, neuroimaging research on cognitive-affective processing has largely 

focused on either delineating neural circuits encoding cognitive and affective 

processes or studying the affective modulation of cognitive processing. On the one 

hand, brain regions involved in either expectancy or emotional-picture processing have 

been identified. For example, pioneering studies (Bermpohl et al., 2006b) have 

suggested that expectancy primarily recruits regions in the parieto-occipital sulcus and 

anterior cingulate. In contrast, affective processing led to increased activation in 

prefrontal as well as limbic regions. On the other hand, brain regions associated with 

the simultaneous representation of attention and affect have been identified (Dolan, 

2002; J. R. Gray, Braver, & Raichle, 2002; Ho, Gonzalez, Abelson, & Liberzon, 2012; 

Pessoa, 2008, 2016) pointing to the dorsomedial prefrontal cortex (dmPFC) as a prime 

candidate for the arbitration of expectancy (Bermpohl et al., 2006a; Walter et al., 2009). 

The dmPFC is involved in a variety of related task domains ranging from emotional 
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judgement (Northoff et al., 2004) over memory retrieval (Macrae, Moran, Heatherton, 

Banfield, & Kelley, 2004) to decision making (Ruff & Fehr, 2014), suggesting a role as 

hub in processing of task demands. In line with this, hyperconnectivity of the dmPFC 

with other key networks has been shown in patients suffering from major depressive 

disorder (MDD) compared to healthy controls  (Sheline, Price, Yan, & Mintun, 2010). 

Congruously, marked differences in dmPFC signaling during expected versus 

unexpected picture viewing between MDD patients and healthy controls were 

previously shown (Bermpohl et al., 2009; Zhang et al., 2017), illustrating aberrant 

interplay between cognitive and affective processes in depression. Thus, whereas the 

mediating role of the dmPFC has been widely established, it is still an open question 

how prior information encoded during the cue phase is carried over to inform picture 

processing as the link between both phases has not been detailed so far. 

In the past decade, studies moved from mapping functions to specific regions 

to well-defined networks instead, defined by correlated BOLD responses reflecting 

intrinsic functional connectivity. Task-negative (or internally-oriented) processes are 

primarily associated with the default mode network (DMN) comprising the ventromedial 

prefrontal and the posterior cingulate cortex as key nodes. In contrast, task-positive (or 

externally-oriented) processes are primarily associated with the central executive 

network (CEN) comprising dorsomedial and dorsolateral prefrontal cortices, the frontal 

eye fields as well as the posterior parietal cortex as key nodes (Bressler & Menon, 

2010). The salience network (SN) orchestrates the switching between internally versus 

externally oriented processes and comprises the dorsal anterior cingulate cortex and 

the AIC as key nodes. In line with its key role in arbitrating task-positive versus task-

negative components, differences in the SN have been related to various dysfunctions 

in mental disorders (Menon, 2011; Uddin, 2015). Critically, separate cue and picture 
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processing phases help to differentiate task-negative versus task-positive brain 

networks as processing of expectancy cues is primarily based on (internal) mentalizing 

whereas picture processing relies on external affective input. Such a complementary 

network architecture is further substantiated in Embodied Predictive Interoceptive 

Coding (EPIC model, Feldman Barrett & Simmons, 2015). According to the EPIC 

model, regions within the DMN generate expectations of upcoming stimuli based on 

previous experiences whereas regions within the CEN (i.e., the dmPFC) compute 

prediction errors in matching sensations with expectations. Hence, task-negative (i.e. 

interoceptive) networks may form expectations based on cues that are evaluated by 

task-positive, prediction error networks, but how task-specific dynamics unfold within 

these functional networks remains to be tested.  

Consequently, the idea to capture temporal dynamics in neural information 

processing has gained considerable traction recently (Buckner, Krienen, & Yeo, 2013; 

Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013; Preti, Bolton, & Van De Ville, 

2017). Whereas dynamic functional connectivity analyses of resting-state data has 

shown the emergence of coordinated functional networks even in the absence of a 

dedicated task (Deco, Jirsa, & McIntosh, 2011; Hutchison et al., 2013), these studies 

are necessarily limited in uncovering causes for shifts in connectivity due to the 

absence of experimental control over events (Gonzalez-Castillo & Bandettini, 2017; 

Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017). In contrast, a task 

provides temporal structure allowing for more nuanced testing of the link between 

cognition and affect. Across time such a link can be studied via cross-correlation 

analysis. To calculate cross-correlation, a set of time-shifted (lagged) versions of a 

time series is correlated with a second (unshifted) time series (Figure 1). This 

technique has been widely used to study the neuronal signal transduction in single- or 
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multi-unit recordings of the cat visual cortex (C. M. Gray, Konig, Engel, & Singer, 1989; 

Innocenti, Lehmann, & Houzel, 1994; Munk, Nowak, Nelson, & Bullier, 1995; Nowak, 

Munk, Nelson, James, & Bullier, 1995; Schwarz & Bolz, 1991). Crucially, although 

cross-correlations reliably uncovered the temporal structure of signal transduction 

(Munk et al., 1995; Nowak et al., 1995), its use remained primarily restricted to coupling 

between single neurons. To explore the functional coupling of networks over time as 

measured with fMRI, we employed cross-correlation analysis to track information flow 

from regions encoding expectancy to prefrontal networks encoding affective pictures. 

To summarize, although extensive work has recently uncovered the dynamic 

interplay between functional networks at rest, less is known about task-inherent event-

related dynamics that are key in affective processing. To bridge this gap, we employ 

cross-correlation analysis to determine the temporal dynamics in the brain reflecting 

cue-induced expectations and their neural traces during emotional processing. Thus, 

we expected BOLD signals in areas involved in cue processing to foreshadow 

expectancy traces in prefrontal regions associated with cognitive-emotional 

integration. Accordingly, in two independent datasets, our cross-correlation approach 

identified the AIC as the key switch channeling BOLD response to emotional pictures 

towards either DMN (anterior cingulate) or CEN (dmPFC) nodes indicating opposing 

processing streams in the prefrontal cortex. 

 

Methods 

Participants and procedure 
 

We conducted two independent functional MRI studies. In the first study (exploration: 

EXP), 37 healthy males were included in the current analysis (Mage = 43.7 years ± 9.8, 
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range: 31-59). Two participants had to be excluded due to excessive motion. 

Participants completed the emotional expectancy task and resting-state sessions as 

part of a clinical trial (NCT02602275) where after baseline measurements, subjects 

took either placebo or verum (Neurexan) in a counterbalanced order. Neurexan (Nx4) 

is a medicinal product, consisting of three herbal extracts (Avena sativa, Coffea 

arabica, Passiflora incarnate) and one mineral salt (Zincum isovalericum). Data was 

recorded with a simultaneous EEG-fMRI setup in which EEG was recorded during fMRI 

scans using a BrainAmp MR system (Brain Products) with a 64-channel Easycap 

augmented with six carbon-wire loops (CWLs) (Sikka et al., submitted; van der Meer 

et al., 2016). Due to session effects when participants complete the task for a second 

time, we restricted our analyses to the first day and pooled the data across conditions 

(verum vs. placebo) to establish the method orthogonal to treatment. 

In Study two (replication: REP), we included 55 healthy participants (13 female, 

Mage = 32.1 years ± 8.5, range: 22-52). One participant had to be excluded due to 

excessive motion. Participants in this study completed a resting-state fMRI 

measurement (10 minutes) before the salience expectancy task (14 minutes; for 

details, see SI). 

 

Paradigm 
 

In our exploration study, we employed an emotional expectancy task adapted from 

Walter et al. (2009) which included passive cue and picture viewing (Figure 1A). The 

paradigm was based on a factorial design with the two factors expectancy (expected, 

unexpected) and emotion (positive, negative, and neutral). Every trial started with a 

fixation cross which was shown for a jittered interval between 4 and 6.5 seconds. In 

half of the trials, the fixation cross was followed by the cue phase, in which the valence 
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of the subsequently presented picture was cued by an arrow (positive: upwards 

pointing, negative: downwards pointing, neutral: pointing to the right) for a varying 

duration of 3-5 seconds. To generate an expectation of a following stimulus 

presentation, participants were instructed to envision a situation congruent with the 

cue. In the subsequent picture phase, a picture congruent to the cued valence was 

shown for 4 seconds. In the other half of the trials, unexpected pictures were not 

preceded by a cue phase but were shown directly after the fixation cross. In total, 60 

pictures from the International Affective Picture System (Lang, Bradley, & Cuthbert, 

2008) were used in a counterbalanced design (i.e., 20 pictures per valence category). 

Completing the paradigm took about 15 minutes. 

In the replication study, we used a similar paradigm described in detail 

elsewhere  (Li et al., 2017). Briefly, the design was modified to show expected or 

unexpected emotional pictures of low or high salience. Moreover, an exclamation mark 

appeared next to the arrow as well as points indicating how many objects will be shown 

on screen (for details, see SI).  

 

MRI data acquisition and preprocessing 
 

For the exploration study, structural and functional MRI data was acquired on a 3T 

Philips Achieva magnetic resonance imaging scanner. Structural T1-weighted images 

were measured using a Turbo Field Echo sequence with 274 sagittal slices covering 

the whole brain, flip angle = 8°, 256 × 256 matrix size and voxel size = 0.7 × 0.7 × 0.7 

mm³. The functional MRI data were T2*-weighted echo-planar images (EPIs) with 429 

volumes, 34 axial slices covering the whole brain, repetition time (TR) = 2 s, echo time 

(TE) = 30 ms, flip angle = 90°, 96 × 94 matrix, field of view = 240 × 240 mm² and voxel 

size = 2.5 × 2.5 × 3 mm³. The resting-state data consisted of 355 volumes of T2*-
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weighted echo-planar images (EPIs) that were measured with the same sequence 

parameters as the task data. 

For the replication study, structural and functional MRI data was acquired on a 

3T Siemens Trio magnetic resonance imaging scanner. Structural T1-weighted images 

were measured using a MPRAGE sequence with 192 sagittal slices covering the whole 

brain, flip angle = 7°, 256 × 256 matrix size and voxel size = 1 × 1 × 1 mm³. As the main 

interest of this study was the temporal decomposition of dynamic network changes, 

the functional MRI data for the replication was acquired with a higher temporal, but 

lower spatial resolution. Thus, the functional data comprised 672 volumes of T2*-

weighted echo-planar images (EPIs), 26 axial slices covering the whole brain, 

TR = 1.25 s, TE = 25 ms, flip angle = 70°, 44 × 44 matrix, field of view = 220 × 220 mm² 

and voxel size = 5 × 5 × 5 mm³. The resting-state data consisted of 478 volumes of 

T2*-weighted EPIs that were measured with the same sequence parameters as the 

task data. 

 

MRI data preprocessing 
 

Task fMRI data was submitted to SPM12 (Statistical parametric mapping, Wellcome 

Department of Imaging Neuroscience, London, UK) using MATLAB (The Mathworks 

Inc., Natick, MA, USA). First, slice timing was corrected for each volume by 

interpolating the slices to the middle slice, then all volumes were realigned to the first 

volume by applying a rigid-body transformation to correct for head motion. Participants 

with head movement exceeding 3 mm for translation head motion parameters or 3° for 

rotation head motion parameters were excluded from further analyses. The anatomical 

images were co-registered to match the functional images. All images were then 

spatially normalized to standard MNI space following tissue segmentation of the 
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anatomical images and subsequent application of the generated deformation field to 

the functional images. All images were smoothed with a Gaussian kernel with 8 mm 

FWHM. 

Resting-state (rs-) fMRI data was preprocessed using SPM12 and DPABI 

(http://rfmri.org/dpabi). The first 5 volumes were discarded to allow the MR signal to 

achieve T1 equilibrium. Then, slice timing was corrected for each volume by 

interpolating the slices to the middle slice and all volumes were realigned to the first 

volume by applying a rigid-body transformation to correct for head motion. The 

anatomical images were co-registered to match the functional images, then segmented 

into gray matter and white matter. Subject-specific templates were created with 

diffeomorphic anatomical registration using DARTEL (Ashburner, 2007). A group-

specific template was then created from all subject-specific templates. Co-registered 

rs-fMRI data were subsequently normalized to the MNI template. Physiological noise 

was reduced by regressing out signals from white matter, cerebrospinal fluid and the 

6-rigid body realignment parameters. All images were smoothed with a Gaussian 

kernel with 8 mm FWHM. Importantly, global signal removal was not performed to 

avoid false induction of anti-correlations between time-series (Murphy, Birn, 

Handwerker, Jones, & Bandettini, 2009). For more detailed information, see SI. 

 

Definition of regions of interest (ROI) 
 

To capture the representation of general expectancy (collapsed over valence) during 

the cue phase, a mask was defined that represented voxels showing activation within 

the cue phase compared to baseline. Based on the linear association of cue 

representation with the contrast expected picture viewing > unexpected picture 

viewing, we defined a cluster in the pregenual anterior cingulate cortex (pgACC) that 
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represented the task-negative (or internally-driven) aspect of affective picture 

processing. We also hypothesized that the dmPFC plays a key role in handling 

affective picture processing given its continuous recruitment in simultaneous 

processing of cognitive and emotional demands (Bermpohl et al., 2006a; Walter et al., 

2009). Thus, we selected a second ROI in the dmPFC taken from Walter et al. (2009). 

To ensure comparable analysis pathways for the exploration and the replication 

datasets, all masks were resliced to the dimensions and voxel size of the replication 

datasets. A detailed description of mask and ROI generation can be found in the SI.  

 

Time-series data extraction 
 

For the subsequent calculation of the time-shifted functional connectivities (FC, Figure 

1B), the time-series of each voxel inside the three different masks (cue phase mask, 

picture phase / pgACC mask and picture phase / dmPFC mask) was extracted from 

the preprocessed resting-state and task MRI data in the exploration and replication 

datasets. Critically, individual differences in intrinsic fluctuations of brain function could 

lead to spurious FC in group statistics. To conquer this problem, we ran the time-series 

extraction not only on task EPI, but also on the resting-state EPI of the same 

participants. By reflecting the individual task-independent FC, correlational maps of 

resting-state time-series represent a subject-specific baseline for the lag-based 

analysis. Given the large spatial extent of the network related to the cue phase, 

different aspects of this phase might be encoded in spatially distinct subregions. 

Therefore, the extracted time-series of each voxel inside this mask were analyzed 

separately to allow for regional differences. Building on results of previous studies, the 

masks related to the picture phase on the other hand were distinctively localized 
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(Walter et al., 2009). Thus, we calculated mean BOLD time-series by averaging the 

time-series across all voxels inside each of the two masks (pgACC and dmPFC). 

 

Cross-correlation analysis 
 

Based on the temporal structure of the expectancy paradigm, we used the voxel-based 

cue-related time-series as seeds in our cross-correlation approach. The picture phase 

ROIs served as the connectivity targets. To get an estimate of effective or causal 

connectivity, dynamic causal modeling could be used (DCM, Friston, Harrison, and 

Penny (2003)). DCM however, assumes causal effects to happen in succession which 

does not fit with the temporal structure of our task where the difference between cue 

and picture processing amounts to several seconds. Given the different TR of the 

exploration and the replication datasets, different lag steps were used for each of the 

studies to get a maximum time shift of 10 seconds. Imposed by the paradigm, the onset 

of the picture presentation takes place 3-5 seconds after the cue. Due to the sluggish 

nature of the BOLD response, we thus expected the corresponding effect within this 

time window with a peak around 4 seconds. Consequently, the cue-based resting-state 

and task time-series were cross-correlated with each of the respective picture phase 

(pgACC, dmPFC) mean time-series using lag steps from -5 to 5 TR for the exploration 

datasets (5 × 2 TR = 10 seconds) and lag steps of -8 to 8 TR (8 × 1.25 TR = 10 seconds) 

for the replication datasets. Time-shifted FC values were z-transformed to achieve a 

compression to a value range between -1 and 1 and normalize the distribution. To 

ensure that differences in FC arise primarily due to the task demands as described in 

the previous section, resting-state FC values were subtracted from task FC values 

yielding delta functional connectivities (dFC, Figure 1C). The dFC values were stored 

as a 3D image at their respective seed voxel coordinates from the cue mask. 
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Figure 1. Data-analysis workflow with (A) definition of the cue phase related mask and the ROIs 
associated with the picture processing phase. Due to bioRxiv's policy to avoid the inclusion of 
photographs and any other identifying information of people, stimulus pictures were replaced for this 
figure. (B) Time series from the mask (voxel-wise) and ROIs (mean time-series) associated with task-
positive (dmPFC, blue) and task-negative (pgACC, red) networks were extracted and cross-correlated. 
Cross-correlation maps were generated for task and resting-state data in the same way. (C) Resting-
state cross-correlation maps were subtracted from task-based cross-correlation maps to create time-
lagged delta functional connectivity (dFC) maps which were submitted to statistical analyses. We 
hypothesized the anterior insula (AIC) to act as a switch, modulating BOLD responses in task-positive 
and task-negative regions. This channeling of information based on the preceding cue would be 
reflected by a modulatory connectivity profile over time between the AIC and the two picture phase ROIs 
(dmPFC and pgACC), respectively. 

 

 

 

Statistical analysis 

 

Identification of regions exhibiting a modulatory connectivity profile with the 

picture processing ROIs 
 

Since we hypothesized to see information transfer from the cue phase to the picture 

processing phase, we reasoned that regions varying in activation with regard to the 

respective modality (task or rest), the ROI (pgACC or dmPFC) and lag (time shift in the 

direction concordant with the paradigm vs time shift in the non-concordant direction) 
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would exhibit a key modulatory role. To test for regions within the cue mask that exhibit 

this modulatory connectivity profile with the picture phase ROIs in task over rest, we 

then submitted the 3D maps containing the dFC values to SPM as input for two factorial 

models (one for each study). Specifically, we tested for regions showing an increased 

activation for the time shift of 4 seconds that represented the average duration between 

cue and picture phase versus a time shift of 4 seconds in the negative direction (thus, 

shifting the cue phase further away from the picture phase). Hence, we set up the 

models to include the factors modality (task, rest), ROI (pgACC, dmPFC) and lag in 

seconds (4, -4) and tested for a directed, positive three-way-interaction between 

modality, ROI and lag. 

Given that our dFC maps only contained values within the predefined cue mask, 

using the standard SPM procedure would have led to incorrect results as thresholding 

based on random field theory is not applicable to incontinuous masks. AlphaSim was 

used to simulate the probability of a field of noise based on our cue mask producing a 

cluster of a given size after the noise has been thresholded at α ≤ .001. We then 

compared the cluster sizes obtained from the three-way-interaction in SPM to the 

AlphaSim chance level to identify significant clusters at a corrected α ≤ .05.  

Moreover, to test the combined probability of clusters significant in both studies 

to arise from chance (a conjunction), we used Fisher's combined probability test. This 

method combines the p-values from independent test results into one test statistic 

which follows a Χ² distribution and thus allows to calculate a conjoint chance probability 

across both studies. 
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Modeling lag-dependent connectivity changes reflecting AIC modulation 

 

As the AIC was the only region showing a preferential modulation of time-shifted 

connectivity with the two picture processing ROIs (pgACC & dmPFC) in the factorial 

model, we set up a follow-up analysis to test for differential changes in connectivity 

profiles over the computed lag steps. In this in-depth analysis of signaling dynamics, 

we computed the time-shifted connectivity from the AIC (based anatomically on the 

Hammers atlas; Faillenot, Heckemann, Frot, and Hammers (2017)) to the picture 

processing ROIs. To investigate if dFC changes over time between AIC and pgACC 

can be explained by an increase in time shift as would be imposed by the time shift 

between cue and picture processing phase, we set up a hierarchical linear model 

where we predicted the time-shifted dFC between AIC and pgACC. 

Hierarchical linear models are analogous to full mixed-effects models. They 

account for the nested nature and corresponding dependency of experimental 

conditions while allowing for variability in responses both within- and between subjects. 

For concision, models will be described in terms of their explanatory value for the 

question at hand (for a more detailed description, see SI). As predictors we included 

the linear lag steps in seconds (from -10 to 10 seconds) as well as the squared lag 

steps to model the effect of time shift between cue and picture processing phase. We 

further added the dFC between AIC and dmPFC on each lag step to control for inter-

individual differences in brain responses. Participants were modeled as a random 

effect to estimate deviations of each individual from the group average. The data 

hierarchies were then combined using HLM7 (Raudenbush, Bryk, Cheong, Congdon, 

& du Toit, 2011) for parameter estimation using restricted maximum likelihood.  
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Modeling single-trial cue responses as specific predictors of time shifted 

affective picture processing 

 

By employing cross-correlation analyses on dFC maps, we investigated if a time lag 

congruent with the paradigms’ temporal structure is evident in the connectivity profile 

of SN nodes with picture processing regions. Given that the entire time-series is used 

for the cross-correlation analysis, this, however, is not yet sufficient to establish the 

critical role of cue processing. Hence, building on these previous results, we wanted to 

assess the stronger hypothesis that time shifted changes in connectivity are 

specifically following cue phases in the paradigm with the next set of analyses. If the 

AIC acts as the hypothesized switch, it should exert a modulatory influence on the task-

positive and task-negative nodes preferentially for the trials comprising a cue as these 

deliver the predictive information necessary for switching. Moreover, the magnitude of 

the cue response in the AIC should be predictive of the lagged activation in the target 

regions over and above the activation in the target brain region (i.e., due to 

autocorrelation of the signals). To test this stronger version of the hypothesis, we first 

needed to estimate single-trial level brain responses employing a second set of HLM 

analyses (Kroemer et al., 2014; Kroemer et al., 2016). For this first model, we extracted 

the regressors for the cue phase, the presentation of an expected picture, and the 

presentation of an unexpected picture from the unfiltered design matrix of the SPM 

first-level statistics. Based on these regressors, we then predicted the AIC time series 

to estimate single-trial beta weights of AIC signal for all trials containing a cue as we 

hypothesized the AIC to act as a switch specifically in response to the cue signal. 

Next, we set up the second part of this HLM analysis to test if a lagged 

connectivity modulation from the AIC to the dmPFC preferentially occurs for AIC signal 

increases during the cue phase which would indicate that the AIC based switching is 

not driven by general task demands. The dmPFC is associated with task-positive 
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processing and is considered to be the target for the cue related information forwarded 

by the AIC to enhance picture processing 4 seconds later. Thus, we set up the single-

trial AIC cue-response weights estimated in the previous model to predict the dmPFC 

signal lagged by 4 seconds. Critically, the unshifted time series of the dmPFC was also 

added to control for autocorrelation within the time series. Hence, a predictive effect of 

the estimated single-trial cue responses on the time shifted dmPFC signal in this case 

would indicate a transfer of information over time rather than a mere effect of 

information redundancy in the BOLD responses as variance due to autocorrelative 

effects is already removed. 

 

 

Results 

AIC channels task-specific functional connectivity 
 

To elucidate how top-down expectancy signals modulate future affect, we analyzed 

two independent samples where participants viewed cued and uncued emotional 

pictures. First, we sought to identify regions within the cue mask (see SI) that exhibit a 

modulatory connectivity profile with the prefrontal ROIs involved in affective 

processing. A factorial model showed a significant Modality (task, rest) × ROI (pgACC, 

dmPFC) × Lag (4, -4) interaction in the AIC (Figure 2; EXP: T = 3.66, pcorrected = 0.047; 

REP: T = 4.84, pcorrected = 0.035, conjunction of whole-brain corrected p-values: 

pEXP∩REP = 0.012). Thus, the AIC was the only region modulating the two picture 

processing ROIs lagged task-specific functional connectivity in opposite directions. 
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Figure 2. Results from a factorial second-level model on the individual functional connectivity maps, 
showing that the anterior insula differentially modulates task-specific functional connectivity with the two 
picture processing ROIs (pgACC and dmPFC). The model included the factors Modality (task, rest), 
Region of interest (pgACC, dmPFC) and Lag in seconds (4, -4). Depicted here are thresholded T-maps 
(α ≤ 0.001, uncorrected) of the Modality × Region × Lag interaction in the anterior insula for (A) the 
Exploration study, (B) the Replication study and (C) the overlap between both studies’ maps. For 
comparison, (D) depicts the anterior insula (AIC) mask based on the Hammers atlas (Faillenot et al., 
2017) used in the follow-up analyses. 

 

 

AIC modulates lag-dependent FC differentially for task-positive and task-

negative nodes 

 

To investigate the temporal modulation of task-specific connectivity between AIC and 

the picture processing ROIs, hierarchical linear models were estimated (Figure 3). 

Thus, we predicted the time-lagged delta connectivity between the AIC and the pgACC 

using linear and squared lag as predictors. Furthermore, we added the time-lagged 

delta connectivity between the AIC and the dmPFC to control for inter-individual 

differences in connectivity within this network. This revealed a significant effect of the 

linear lag (Table 1; EXP: Tdf=36 = -2.787, p = 0.008; REP: Tdf=54 = -2.7, p = 0.009, 

conjunction pEXP∩REP < 0.001) and AIC – dmPFC dFC (EXP: Tdf=36 = 5.821, p < 0.001; 

REP: Tdf=54 = 10.047, p < 0.001, conjunction pEXP∩REP < 0.001). The squared lag 

component was only significant in the exploration study (EXP: Tdf=36 = 3.299, p = 0.002; 

REP: p = 0.112). Thus, in line with the temporal structure imposed by our paradigm, 
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task-specific functional connectivity between the AIC and picture processing nodes is 

modulated over several steps of time shift.  

 

 

 
Table 2. Results from Hierarchical Linear Models predicting delta functional 
connectivity (task-rest) between the pgACC and the AIC for (A) the Exploration study 
and (B) the Replication study show, that time shift predicts changes in functional 
connectivity profiles.  

(A) Exploration study 

 Coefficient T p 

Intercept  -0.057 -3.517 0.001 

Lag linear -0.004 -2.787 0.008 

Lag squared 0.001 3.299 0.002 

dmPFC <> AIC dFC 0.468 5.821 < 0.001 

   df = 36 

(B) Replication study 

 Coefficient T p 

Intercept  -0.016 -1.620 0.111 

Lag linear -0.012 -2.700 0.009 

Lag squared 0.025 3.506 < 0.001 

dmPFC <> AIC dFC 0.554 10.047 < 0.001 

   df = 54 

Note. Models included an intercept and the linear and squared lag in seconds as predictors while the 
delta functional connectivity (task-rest) between the dmPFC and the AIC was added to control for inter-
individual differences in brain response.  
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Figure 3. (A) Delta functional connectivity (task-rest) between the AIC and the two picture processing 
ROIs pgACC (red) and dmPFC (blue) over the lag steps of -10 to 10 seconds in the Exploration study 
(upper panel) and the Replication study (lower panel). Vertical striped lines indicate the lag window of 
3-5 seconds that corresponds to the delay between cue presentation and onset of picture presentation. 
(B) Significant interaction between lag (linear and squared) and estimated change in delta functional 
connectivity (task-rest) between the AIC and pgACC (red) as well as dmPFC (blue) shows that delta 
functional connectivity for the two picture processing ROIs is modulated in opposite directions for both 
studies. While delta functional connectivity between the AIC and pgACC decreases before it returns to 
baseline, delta functional connectivity between the AIC and dmPFC increases in anticipation of task 
demands. (C) Single-trial estimates of the AIC cue response and the lagged dmPFC cue response 
including the unshifted dmPFC cue response and uncued trials as a covariate, show that the AIC based 
switching is specific for expected picture processing. A higher response of the AIC to the cue is 
associated with a higher response of the dmPFC to the cue after it has been shifted by 4 seconds which 
corresponds to the delay between cue presentation and onset of picture presentation. 
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Lag-dependent FC changes are associated with signals of the AIC specifically 

during cue phase 

 

After we showed a replicable link between time-lagged task-specific functional 

connectivity in line with the temporal prediction of cue processing, we tested more 

specifically if the magnitude of the cue response in the AIC is predictive of the time-

shifted activation in the dmPFC over and above the unshifted dmPFC activation. We 

found that single-trial betas for cue signals in the AIC significantly predicted time-

shifted dmPFC activation (Table 2, EXP: Tdf=36 = -5.704, p < 0.001; REP: Tdf=54 = -

6.269, p < 0.001, conjunction pEXP∩REP < 0.001). Hence, the results of this single-trial 

model corroborate the notion that the AIC based switching and modulation of task-

positive and task-negative network nodes is restricted to AIC signal increases in 

response to cues (Figure 4 & 5).  
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Table 2. Results from Hierarchical Linear Models predicting dmPFC BOLD signal 
lagged by 4 seconds for (A) the Exploration study and (B) the Replication study show, 
that the single-trial AIC response to cues predicts the lagged dmPFC signal beyond 
mere effects of autocorrelation.  

(A) Exploration study 

 Coefficient T p 

Intercept  0.007 0.617 0.541 

AIC cue beta -0.122 -5.704 < 0.001 

Unshifted dmPFC time-series 0.210 8.942 < 0.001 

   df = 36 

(B) Replication study 

 Coefficient T p 

Intercept  -0.018 -1.625 0.110 

AIC cue beta -0.095 -6.269 < 0.001 

Unshifted dmPFC time-series 0.207 11.004 < 0.001 

   df = 54 

Note. Models included an intercept and the beta weight for AIC signal during cue phases as predictors 
while the unshifted dmPFC signal was added to control for autocorrelation. 
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Figure 4. BOLD response of the two picture processing ROIs dmPFC (A & B) and pgACC (C & D) for 
the Exploration (A & C) and Replication (B & D) study depending on either a high or low BOLD signal of 
the AIC during the cue phase. On the x-axis, the time in seconds after cue onset is plotted. Vertical 
striped lines indicate the lag window of 3-5 seconds that corresponds to the delay between cue 
presentation and onset of picture presentation. While a high AIC signal is associated with an increase 
in the dmPFC signal in the target lag window, a low AIC signal leads to a substantially delayed signal 
increase in this task-positive region. Contrary to that, the pgACC signal is modulated specifically for the 
low AIC signal. 
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Figure 5. BOLD response of the two picture processing ROIs dmPFC (A & B) and pgACC (C & D) for 
the Exploration (A & C) and Replication (B & D) study depending on either a high or low BOLD signal of 
the AIC during the cue phase. On the x-axis, the time in seconds after the onset of a cued picture is 
plotted. A high AIC cue signal is associated with an increase in both dmPFC and pgACC signal 
suggesting that cue information is preserved into the picture phase given the cue was processed actively 
within the AIC. 
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Discussion 

Expectations modulate impending affective responses, yet it was unknown how this 

tuning is implemented and transferred from the processing of cues to emotional 

pictures in the brain. Using cross-correlation analysis of BOLD time series, we found 

that expectancy signals in the AIC channel salience, leading to differential coupling 

with prefrontal networks related to task-positive (dmPFC) and task-negative (pgACC) 

processing. Critically, we observed that stronger cue signals in the AIC predicted 

lagged signal increases in the dmPFC (controlled for its autocorrelation) indicating 

neural traces of expectations elicited by the cue. Moreover, these temporal profiles of 

AIC-based modulation were robust across two independent studies cueing the 

impending presentation of affective pictures. Thus, our results shed new light on the 

putative role of the AIC as a hub of the SN implementing dynamic switching between 

prefrontal networks implementing task-positive and task-negative processing. 

The AIC has been previously hypothesized to gate information processing and 

our results corroborate this interpretation by demonstrating that the AIC channels the 

recruitment of differential prefrontal networks depending on salience elicited by the 

cue. This is also well in line with the functional specialization and resulting network 

interactions described in the EPIC model (Feldman Barrett & Simmons, 2015). 

Feldman Barrett and Simmons (2015) argue that agranular regions such as the AIC 

and the pgACC primarily generate predictions while granular regions such as the 

dmPFC compare received sensory signals with predictions to compute prediction 

errors. Thus, our results corroborate the idea that cytoarchitecture can inform 

computational principles within extended neural networks such as expectancy-based 

channeling of affective processing according to principles of active inference. Notably, 

we showed that the synchronization between regions generating (AIC, pgACC) versus 
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updating (dmPFC) predictions is lagged in correspondence with the interval between 

phases of cue and picture presentation. Collectively, this suggests that the lagged 

connectivity may reflect traces of active inference where the AIC generates predictions 

that channel future processing of affective pictures. 

Critically, our results also show that the lagged functional connectivity between 

AIC and prefrontal networks did not result from the fixed temporal structure of the 

paradigm as lagged signal changes in the dmPFC were predicted from the magnitude 

of the cue-induced signal in the AIC. This result reemphasizes influential ideas that the 

cue-induced response magnitude of the AIC reflects the expected saliency of incoming 

stimuli. Such saliency encoding may directly serve the channeling (Dehaene, 

Changeux, Naccache, Sackur, & Sergent, 2006; Dehaene & Naccache, 2001) or 

“gating” function (Michel, 2017) assigned to the AIC determining how sensory input as 

information is forwarded for further processing to higher-order prefrontal areas. 

Likewise, the global neuronal workspace hypothesis (Dehaene & Naccache, 2001) 

posits that top-down influence needs to be exerted for information to become 

conscious and represented within a network of fronto-parietal regions with long-

distance connections (global neuronal workspace). Moreover, the central role of the 

AIC across a wide range of tasks and functions (Uddin, Nomi, Hebert-Seropian, 

Ghaziri, & Boucher, 2017), its stable hub-like network properties (Gollo et al., 2018; 

van den Heuvel & Sporns, 2011), and the converging inputs from different sensory 

modalities (Butti & Hof, 2010; Downar, Crawley, Mikulis, & Davis, 2000; Evrard, 

Logothetis, & Craig, 2014) make the AIC a prime candidate for channeling 

expectations. Such rapid long-distance integration of cortical afferents may be 

supported by strongly localized von Economo neurons that have been identified in the 

primate AIC (Evrard, 2018) and might enable the synchronization between networks 
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such as SN, CEN, and DMN. Intriguingly, the function of the AIC and ACC is also most 

commonly affected across neuropsychiatric disorders (Goodkind et al., 2015), 

particularly in major depressive disorder (DeVille et al., 2018; Iwabuchi et al., 2014; 

Namkung, Kim, & Sawa, 2017) pointing to a vital role of keeping expectations and 

outcomes in sync (Feldman Barrett & Simmons, 2015). Thus, our results support the 

notion that the magnitude of the cue-induced signal in the AIC reflects a salience 

estimate necessary to subsequently engage higher-order processing areas like the 

dmPFC. 

Furthermore, our results show that by channeling cue-related information the 

AIC also induces a switch between DMN and CEN network nodes. While a wealth of 

studies has been conducted investigating the effects of expectation on subsequent 

(affective) processing using regressor based analyses of the separated stages of the 

paradigm (Bermpohl et al., 2006a, 2006b; Bermpohl et al., 2009; Blair et al., 2007; de 

Lange et al., 2018; Northoff et al., 2004; Pessoa, 2008, 2016; Walter et al., 2009), our 

proposed method of using cross-correlations on fMRI time-series allows to track the 

information transfer between key functional networks over time by exploiting the timing 

information imposed by our task. Interestingly, our results suggest, that an increase in 

the AIC signal during the cue phase modulates the signal in the dmPFC, while the 

pgACC is modulated specifically for low AIC cue-signals. Expanding the view on the 

commonly reported network interplay in resting-state (Bressler & Menon, 2010; Menon, 

2011; Seeley et al., 2007; Uddin, 2015), this indicates that the SN and DMN may be 

synchronized by default. This notion is also supported by studies showing a combined 

network of the AIC and ACC inducing switching between the DMN and CEN 

(Sridharan, Levitin, & Menon, 2008) as well as improved performance for attention 

switching based on increased DMN activity before task execution (Bogler, Vowinkel, 
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Zhutovsky, & Haynes, 2017). Hence, a low signal of the AIC may be a precondition for 

the DMN to be active as the basic state the brain reverts to in absence of any external 

task demands until an increased AIC signal induces the switching from an active DMN 

to an active CEN in light of emerging task demands. 

Nevertheless, our results are limited by several factors which need to be 

addressed in future studies. First, as we were interested in the general mechanism of 

expectancy channeling, we did not differentiate between the valence categories of 

stimuli. Recent studies modeling mood fluctuations indicate AIC modulation might 

partially depend on stimulus valence (Vinckier, Rigoux, Oudiette, & Pessiglione, 2018). 

However, replication of our results in the second dataset containing no negatively-

valenced stimuli suggests that the lagged channeling of prefrontal networks via the AIC 

can be seen as a generalizable mechanism in cued processing. Second, the 

characterization of the AIC as one homogeneous agranular region generating 

prediction as proposed in the EPIC framework might be too simplistic (Evrard et al., 

2014). However, limitations in spatial and temporal resolution with current imaging 

sequences impede the functional localization of such fine-grained details in humans to 

date. Thus, high-resolution laminar fMRI techniques may allow to shed light on layer-

specific origins of prediction and prediction-error signals to further delineate 

expectancy-based channeling of sensory input.  

To conclude, expectancy shapes our perception of impending events and 

aberrant expectations are well-known to play an important role in affective disorders. 

Based on cross-correlation analysis and single-trial hierarchical linear modeling of 

BOLD responses, we have shown that cue signals in the AIC channel salience, 

implementing a switch in functional coupling with either the DMN (as indexed by the 

pgACC) or the CEN (as indexed by dmPFC). Collectively, our results suggest that the 
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SN and DMN are synchronized “by default”. As the AIC monitors and integrates 

external information to determine the priority of external demands, it orchestrates the 

switch of prefrontal functional coupling from internally-oriented to externally-oriented 

processing. Thereby, our results add a crucial novel facet to the understanding of 

signaling dynamics supporting the interplay of top-down expectations and bottom-up 

affective input by identifying the AIC as a critical switch channeling the subsequent 

affective reception of events. 
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