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ABSTRACT 

Cancer evolution is driven by the acquisition of somatic mutations that provide cells with 

a beneficial phenotype in a changing microenvironment. However, mutations that give 

rise to neoantigens, novel cancer-specific peptides that elicit an immune response, are 

likely to be disadvantageous. Here we show how the clonal structure and 

immunogenotype of growing tumours is shaped by negative selection in response to 

neoantigenic mutations. We construct a mathematical model of neoantigen evolution in a 

growing tumour, and verify the model using genomic sequencing data.  The model 

predicts that, in the absence of active immune escape mechanisms, tumours either 

evolve clonal neoantigens (antigen-‘hot’), or have no clonally-expanded neoantigens at 

all (antigen-‘cold’), whereas antigen-‘warm’ tumours (with high frequency subclonal 

neoantigens) form only following the evolution of immune evasion. Counterintuitively, 

strong negative selection for neoantigens during tumour formation leads to an increased 

number of antigen-warm or -hot tumours, as a consequence of selective pressure for 
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immune escape. Further, we show that the clone size distribution under negative 

selection is effectively-neutral, and moreover, that stronger negative selection 

paradoxically leads to more neutral-like dynamics. Analysis of antigen clone sizes and 

immune escape in colorectal cancer exome sequencing data confirms these results. 

Overall, we provide and verify a mathematical framework to understand the evolutionary 

dynamics and clonality of neoantigens in human cancers that may inform patient-

specific immunotherapy decision-making. 

 

INTRODUCTION 

Mutations accrue throughout tumour development and provide ‘fuel for the fire’ of cancer 

evolution. Driver mutations cause evolutionary adaptive (beneficial) changes to the phenotype 

of the cancer cell within its microenvironment. However, mutations can also hinder tumour 

evolution if they lead to an anti-tumour immune response, via the generation of neoantigens, 

novel peptides presented on the cell’s surface recognised as ‘non-self’ by tumour-infiltrating 

lymphocytes of the adaptive immune system1,2. Highlighting the broad importance of the 

immune system in tumour evolution is the observation that the abundance of immune-infiltration 

in tumours correlates with patient survival3, and with the success of immunotherapy approaches 

that lead to an anti-tumour immune response4. 

The landscape of neoantigen-associated mutations is shaped by ecological and evolutionary 

interactions between a tumour and its microenvironment1,5. In a scenario where the tumour is 

isolated from the immune system, neoantigens accumulate as a ‘side-effect’ of mutation 

acquisition6, and are expected to follow neutral evolutionary dynamics7. Consequently, by 

default the overall mutational load of a tumour is expected to contain a proportion of 

neoantigens that will elicit an immune response. The ultimate consequence of the immune 
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response is to kill the antigenic cells, such that only the non-antigenic cells survive – a process 

often referred to as immuno-editing1. In face of this selective pressure, tumour cells benefit if 

they evolve a mechanism to inhibit the immune system’s ability to recognise or react to cancer-

associated antigens: these mechanisms are termed immune escape or immune evasion 

mechanisms6,8,9. Together this means that the neoantigenic repertoire found in tumours has 

been evolutionary-selected to survive in the tumour-specific immune microenvironment10. 

Adaptive evolution to immune control is recognised as a ‘hallmark of cancer’11. 

 

Therapies that counteract immune escape by targeting the (re)activation of immune response 

can achieve an exceptional success in cancers12,13, especially in those with a high mutational 

load14–16. For example, pharmacological interference with inhibitory immune checkpoint such as 

CTLA-4 or PD-L1 restores cytotoxicity of existing cancer-specific T-cells and hence initiates a 

potent response against cancer-associated neoantigens, often achieving long-term remission 

even in advanced cancers2,17,18. However, accurate prediction of immune-therapy 

responsiveness remains challenging, as a significant number of patients do not experience a 

complete or even partial response, regardless of a high mutational load and the presence of 

molecular markers of immune escape19,20.  Therefore, understanding the evolutionary processes 

that contributed to an individual cancer’s neoantigen landscape may usefully inform therapeutic 

decision-making. 

 

The evolutionary dynamics of tumour development are encoded in the pattern of intra-tumour 

genetic heterogeneity. Specifically, strongly beneficial or strongly disadvantageous mutations by 

definition affect the net reproduction of cells that carry them, and consequently will be present 

in, respectively, higher or lower numbers of cells in the final population. Utilising this idea, 

mathematical modelling of the clone size distribution of mutations in tumours (as measured by 

the distribution of variant allele frequencies (VAF)) facilitates inference of the evolutionary 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536433doi: bioRxiv preprint 

https://doi.org/10.1101/536433
http://creativecommons.org/licenses/by/4.0/


	 4	

dynamics that shaped the mutational landscape of individual tumours21.  We have previously 

developed models to infer the presence of strong positive selection or effectively-neutral 

dynamics from sequencing data7,22 and theoretical analysis of selection have been extended for 

disadvantageous mutation sites23,24. However, the influence of negative selection acting on 

neoantigens, as observed in the clone size distribution of cancers, remains to be determined25. 

Here we used a stochastic modelling approach to study how the clonal structure and 

immunological phenotype of growing tumours is shaped by negative selection in response to 

neoantigenic mutations. We establish the characteristic clone size distribution under pervasive 

negative selection for neoantigens, and determine how this is changed by immune-escape. We 

use colorectal cancer sequencing data to verify these predictions. 
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RESULTS 

Mathematical model of tumour growth and mutation accumulation  

We created a stochastic branching process based mathematical model of negatively-selected 

neoantigen evolution during tumour growth (Figure 1A). In the model, tumour evolution was 

initiated by a single transformed cell that produced two surviving offspring at birth rate b per unit 

time, and for simplicity, we set b=1. Cells in clone i died at rate di per unit time, where the death 

rate increased with the neoantigen burden of the clone. Each time a cell divided, it acquired new 

unique mutations at overall rate µ (Poisson distribution), which were assigned as neoantigens at 

rate pna, or as passengers (evolutionary neutral) at rate 1-pna. Neoantigens caused the death 

rate di of the lineage to increase from a basal rate of db=0.1 to a higher value determined by the 

strength of negative selection against each new neoantigen s, and the number of neoantigens 

harboured in the lineage ni. We defined the selective (dis)advantage of a subclone by its 

effective proliferation rate (the difference of its birth and death rate), as compared to a non-

immunogenic clone: 

1 + 𝑠 ∗ 𝑛! =
𝑏 − 𝑑!
𝑏 −  𝑑!

 

where s=0 for no selection pressure (neoantigens carry no disadvantage, neutral evolution), and 

s<0 for selection against neoantigens (following 23). Consequently, the death rate of a subclone 

was computed as: 

𝑑! = (1 + 𝑠 ∗ 𝑛!) 𝑑! − 1 +  1. 

This neoantigen number-dependent increase in the clone death rate represented an aggregate 

of the many factors that lead to the negative selection of neoantigens, including; (i) sufficient 

presentation of neoantigens on the cell surface; (ii) recognition of neoantigens by T-cell; (iii) T-
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cell killing efficiency. Different values of selection strength, s, included in the death rate should 

be interpreted as a measure of the efficacy of immune predation. 

Tumour growth was simulated until the tumour reached a predefined population size 

(approximating a clinically detectable size) or until a sufficiently long time elapsed without 

tumour establishment (corresponding to no cancer formation in a patient’s lifetime). We 

examined the clonal structure of the tumour, both of neutral and neoantigenic mutations, 

throughout the simulation of tumour growth. 

 

Figure 1: Tumour growth model predicts two distinct types of immune phenotypes and the necessity of 

immune escape. (A) Schematic representation of a simulation of the tumour growth model. Filled circles 

represent cells, and characters represent (sets of) mutations harboured in each cell: blue stars are neutral, red 

‘n’s are neoantigen-associated mutations. The horizontal axis indicates time. Starting from a single progenitor 

cell, in each step a tumour cell is randomly selected (denoted by the red square) and undergoes proliferation or 

death. Daughter cells inherit the mutations of the parent cell and also accumulate new alterations. The 

probability of death events depends on the selection pressure, s. (B) Growth curve of six simulated tumours. 

The colour of the line shows the antigenicity of the tumour population at that time. The inset depicts the first 

segment of the growth curves on a logarithmic scale. (C) The proportion of tumour cells sharing the highest 

frequency antigenic mutation in 100 tumours simulated at selection strength s=-0.4, each dot representing a 
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separate tumour. The colour of the dots shows the final antigenicity of the tumour. (D) Distribution of the 

maximum tumour size (measured as the highest number of tumour cells) reached by simulated antigen hot 

tumours under strong negative selection (s=-0.8). The inset depicts the growth and extinction of such a tumour. 

(E) Distribution of final antigenicity values measured over 100 identical tumours at selection s=-0.4, without (left) 

and with (right) clonal immune escape. (F) Frequency of the most shared antigenic mutation in 100 immune 

escaped tumours at selection pressure s=-0.4. The colour of the dots shows the final antigenicity of the tumour 

(scale in panel B). 

Modelling predicts tumours are distinctively antigen-cold or hot 

We simulated neoantigen evolution during tumour growth and examined the neoantigen burden 

of the resulting tumours.  To quantify population-level immunogenicity, we defined the ‘antigen 

score’ of a tumour as the proportion of tumour cells that were antigenic (carried at least one 

neoantigen-associated mutation). Large variations in antigenicity were observed between 

tumours simulated under identical conditions (e.g. constant antigen production rate pna=0.1, and 

negative selection strength s=-0.4) (Figure 1B). Specifically, the simulated tumours divided into 

two clear groups: ‘antigen-hot’ and ‘antigen-cold’. Antigen-hot tumours had an antigen score of 

1, corresponding to every tumour cell carrying at least one antigenic mutation, whereas in 

antigen-cold tumours the majority of cells lacked immunogenic mutations. We note that, as new 

neoantigens are generated at a constant rate, there was always a non-zero population of cells 

(multiple small subclones) that carried neoantigens. The proportion of antigen-hot tumours 

depended on the neoantigen-production rate and selection strength (Figure S1A):  decreased 

production rate and increased negative selection for neoantigens diminished the probability of 

observing an antigen-hot tumour. In antigen-cold tumours, the proportion of neoantigen-carrying 

cells similarly decreased with production rate and increased negative selection against antigens.  

In antigen-hot tumours the most common antigenic mutation was always clonal or very close to 

complete clonality (Figure 1C), showing that these tumours arose if, through random drift, a 

neoantigen-carrier cell was ‘lucky’ and became the progenitor of the final tumour. Within an 
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antigen-hot tumour, the entire tumour cell population is then subject to the increased death rate 

(due to immune predation) resulting from the clonal neoantigen, and correspondingly, antigen-

hot tumours had a slower net growth rate and so required a longer time to reach detectable 

size. In antigen-cold tumours, the immunogenic population was composed of a highly 

heterogeneous collection of small subclones wherein no individual neoantigen could be found in 

more than 10% of cells, despite over 40% of the total tumour cells carrying a neoantigen (Figure 

1C). In these cases, a non-antigenic clone founded the tumour, and later arising neoantigens 

experienced immuno-editing preventing their clonal expansion. Non-antigenic clones 

experienced no negative selection, and so expanded unperturbed. Therefore, due to this 

disparity in growth between immunogenic and non-immunogenic parts of the tumour, the clones 

carrying neoantigens declined in frequency over time. 

We explored the overall antigen burden under low, medium and high negative selection (s=-0.1, 

-0.4 and -0.8, respectively). We simulated error-prone sequencing (see Methods), and 

measured the burden of each simulated tumour as the number of antigenic mutations thus 

detected. The strength of the selection pressure led to highly variable detectable antigen burden 

distributions (Figure S1B), with a negative correlation between the average antigen burden and 

selection strength, as expected. 

We observed that strong negative selection for neoantigens led to the evolution of only antigen-

cold tumours (Figure S1A), implying that tumours carrying clonal antigens are not viable when 

immune selection is strong. To confirm this, we simulated antigen-hot tumours, by introducing 

an antigenic mutation in the founder cell of the population, and measured resulting tumour 

growth under high negative selection pressure (s=-0.8). In this selective regime, the acquisition 

of a second antigen lead to the rapid eradication of the double-antigen clone; consequently, 

tumour size was severely restricted (Figure 1D). We observed the same trend when simulating 

hyper-mutated tumours that generated 4-10 exonic mutations per cell division. The high rate of 
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neoantigen production under this scenario led to the number of non-antigenic cells in a given 

clone declining over cell divisions, and growing subclones rapidly becoming neoantigen-hot and 

thus leading to tumour death via immune predation (Figure S2A), recapitulating the behaviour 

proposed previously26. 

Modelling predicts immune escape leads to increased antigen-hot and -warm tumours 

We next investigated the evolutionary consequence of immune escape. We simulated the 

scenario where an immune escape alteration in one cell (potentially the founding cell of the 

tumour) renders that cell and its descendants less susceptible to immune predation. Known 

immune escape mechanisms include mutations to antigen presenting machinery and 

expression of immune checkpoint molecules27,28. While some immune evasion mechanisms are 

considered phenotypic, we argued that they still can partially originate from underlying heritable 

changes (e.g. copy number alteration of the PD-L1 gene), and hence can be modelled in our 

mutational framework. We set the death rate of immune escaped cells to the baseline non-

immunogenic death rate, db, irrespective of the antigenic mutations harboured by the cell. 

Therefore, immune escape effectively meant the clone returned to evolve under neutral 

dynamics.  

If the founder cell of the tumour contained an escape mutation (clonal immune escape) there 

was no longer separation into antigen-hot or -cold tumours (Figure 1E and S1D). Stochastic 

evolution of immune escape could ‘rescue’ a fledging tumour from extinction and lead to a 

cancer of detectable size even under conditions previously found to be unviable (Figure S2). 

Furthermore, the resulting tumours were often either antigen-hot or antigen-warm (containing 

high frequency neoantigens), by virtue of the majority of cells in the tumour carrying (multiple) 

neoantigens, irrespective of selection strength (Figure 1E & F and S1C & E). Both hot and warm 

tumours appeared more frequently than for simulations where immune-escape was not 
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permitted. 

Taken together, these results predicted that tumours that grow to detectable size in an 

environment with high levels of immune surveillance are likely to be enriched for immune 

escape, and consequently show an unexpectedly high proportion of antigen-warm and –hot 

tumours. These observations will be more pronounced in hyper-mutated samples where the 

selective pressure to acquire immune escape will be stronger due to the continual acquisition of 

neoantigens. 

Most colorectal cancers are antigen-hot and enriched for immune evasion 

To verify the mathematical model, we explored the clonality of neoantigens in colorectal cancer 

(CRC, combined colon and rectal adenocarcinoma dataset) samples from The Cancer Genome 

Atlas (TCGA) database. We focused on CRC because of the prevalence of mutator phenotypes: 

cancers with polymerase-ε mutation (POLE – very high mutation rate), with microsatellite 

instability (MSI – high mutation rate), and microsatellite stable tumours (MSS – normal mutation 

rate). Therefore, CRC provides a good model to explore the effect of different tumour-immune 

environments. Furthermore, therapy based on immune checkpoint inhibitors has been 

successfully applied for MSI tumours, but the efficacy is still not known for the majority of CRC 

cases29.  

CRC samples filtered for high sequencing depth and purity were first HLA-typed in silico from 

associated blood-derived normals30, and neoantigens called from tumours using the 

NeoPredPipe pipeline31. We filtered neoantigen calls based on predicted HLA binding affinity 

and similarity to known antigens to leave only neoantigens predicted to be highly antigenic32.  

We then assessed the cancer cell fraction (CCF) of these ‘strong’ neoantigens (see Methods).  

The vast majority of tumours (90%) had clonal neoantigens and so were defined as “antigen-
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hot” (Figure 2A). There was a more than two-fold order of magnitude difference in the 

neoantigen burden between tumours (Figure 2B) and the level of T-cell presence (as measured 

from paired RNA-seq data 33) – a proxy measure of the intensity of immune surveillance, 

represented in our model by the negative selection strength s - varied dramatically between 

samples. Colorectal cancers with low or medium T-cell infiltration (putative small or moderate s) 

tended to have proportionally fewer clonal neoantigens than tumours with high levels of T-cells 

infiltrate (putative high s) (Figure 2B), suggesting a critical role of immune escape in the initial 

evolution of these tumours. These findings are in accordance with previous studies exploring 

the connection between neoantigen burden and the efficacy of therapies targeting immune-

escape mechanisms34. 

 

Figure 2: Colorectal tumours from TCGA are antigen-hot and enriched for immune escape. (A) The 

proportion of tumour cells sharing the most common neoantigen-associated mutation in each tumour in the 

TCGA CRC domain, each dot representing a single tumour. Tumours are ordered according to their T-cell 

score, and divided up to low (light purple), medium (blue) and high (green) immune infiltration categories. (B) 
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immune infiltration (T-cell average) score. (C) Distribution of the number of detected antigenic mutations in 

TCGA samples with and without detected immune escape (magenta and grey violins, respectively). The p-value 

of a Mann-Whitney test comparing the means of the two populations is reported above the violin plots. (D) 

Prevalence of immune escape in the colorectal TCGA domain divided into MSS, MSI and POLE samples. Chi-

squared test is indicated on top of the panel. (E) Number of neoantigens present in high subclonal proportions 

(between 30% and 60% of cells) in MSI TCGA CRC samples with and without immune escape. The p-value of 

one-sided Mann-Whitney test is reported above the plot. 

 

We then sought evidence of immune escape in these cancers.  Using exome and RNAseq data, 

we tested for the presence of three types of immune escape mechanisms: (i) somatic mutations 

in either one of the HLA alleles or in the B2M gene30,33; (ii) loss of an HLA haplotype through 

loss of heterozygosity (LOH) in the corresponding genomic locus28; and (iii) PD-L1 or CTLA-4 

over-expression35. Confirming the prediction of the simulation, tumours with immune-escape 

had a higher antigen burden, and the majority of highly antigenic tumours (with antigen burden 

>100) were immune-escaped (Figure 2C).  

We next explored the prevalence of immune escape as a function of the underlying mutation 

rate, and consequently, neoantigen burden, by comparing the frequency of escape mechanisms 

detected in cancers with POLE, MSI, and MSS genotype. Overall, 55% of all cancers showed 

evidence of at least one escape mechanism, with increased prevalence of escape in MSI (86%) 

and POLE (100%) cases. We note that the extent of the impact of these escape alterations is 

not always known – especially for non-synonymous mutations affecting HLA – but we argued 

that they might influence the evolution of the antigen landscape. We found that hyper-mutated 

tumours also showed significantly different patterns of immune escape (Figure 2D and Figure 

S3), in agreement with previous studies16,33. They were dominated by immune checkpoint over-

expression and point mutations in important immune genes, compared to an enrichment of 

chromosomal loss of HLA in MSS tumours, in agreement with the high percentage of 
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chromosomal aberrations observed in MSS CRC36. Further work is needed to determine 

whether these differences between mutational subtypes arose solely as a result of underlying 

mutational frequency, or different selective pressures on immune evasion. 

We also tested if the presence of immune escape had altered the strength of immuno-editing. 

The interplay between negative selection and immune evasion had a most profound effect in the 

regime of large subclones (Figure 1C & F): neoantigen-associated mutations are most 

significantly under-represented amongst subclonal mutations at high CCF. Therefore, we 

compared the number of neoantigens at high CCF (present in 30% to 60% of cells) between 

MSI CRC cases with and without immune escape. High-CCF subclonal neoantigens were 

enriched in hyper-mutated cases with immune escape (Figure 2E), consistent with immune-

surveillance and immuno-editing strongly shaping the clonal structure of hyper-mutated 

tumours.  

Together, these data suggest that colorectal cancers usually evolve in the face of stringent 

immune-selective pressures (strong immuno-editing) and consequently that immune-escape is 

frequently selected for at the onset of tumour growth, allowing for tumours with high antigen 

load.  

Subclonal immune escape shapes local neoantigen evolution and response to therapy 

Next, we explored the evidence for subclonal immune escape in our previously published multi-

region sequenced colorectal tumour dataset37. Overall, loss of heterozygosity (LOH) at HLA loci 

was found in 5/10 (50%) carcinomas and 1/6 (17%) adenomas and no HLA or B2M mutations 

were detected (immune checkpoint over-expression could not be inferred as only genomic data 

was available) (Figure 3A). In four of the cases with evidence of immune escape, we detected 

HLA LOH events that were present only subclonally, in spatially distinct region(s) of the tumour 
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(Figure 3B). 

Simulations of subclonal immune-evasion in our model predicted that subclones should become 

proportionally enriched for neoantigens following immune evasion (Figure 3C), with the 

detectability of this effect dependent on the sequencing depth and strength of negative selection 

for neoantigens (Methods). To test this prediction, we compared neoantigen burdens in 

immune-escaped versus not-escaped tumour subregions to explore the effects of spatial 

heterogeneity in immune selective pressures within individual tumours. We hypothesised that in 

case of HLA-LOH, antigens binding to the (subclonally) lost HLA allele would similarly 

experience a release of selection pressure and rise to higher frequencies. Consistent with this 

hypothesis, a significantly higher proportion of detected neoantigens were predicted to bind to 

the lost allele in escaped clones than in clones without LOH (Figure 3D). These results confirm 

that negative selection for neoantigens shapes the neoantigen landscape of individual 

subclones inside a tumour.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536433doi: bioRxiv preprint 

https://doi.org/10.1101/536433
http://creativecommons.org/licenses/by/4.0/


	 15	

 

Figure 3: Subclonal immune evasion shapes neoantigen landscape and tumour growth after therapy. (A) 

Immune escape through LOH at an HLA locus in the multi-region sequenced colorectal cohort. LOH events are 

divided up according to whether the alteration is detected in all (clonal) or not all (subclonal) biopsies. (B) HLA 

LOH in individual biopsies in tumours with at least one subclonal or clonal loss event. Unfilled boxes represent 

homozygous HLA alleles. (C) The number of antigenic mutations detected in two distinct (with and without 

immune escape) subclones of a simulated tumour. Antigenic mutations are detected after simulated sequencing 

with read depth of 50x. (D) The proportion of all neoantigens binding to the HLA allele lost in the LOH event in 

the colorectal tumours that show subclonal HLA LOH. P-values of one-sided Wilcoxon signed-rank tests are 
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reported on (C) and (D). (E) Growth curve of simulated tumours following anti-PD-L1-type immunotherapy. The 

tumours have previously developed active immune evasion, but also harbour a small subclone with different 

escape mechanism. Black dashed lines show the number of cells in this subclone over time. The inset shows 

growth around the point when the subclone takes over, on a logarithmic scale. 

 

Evolutionary dynamics under immunotherapy 

We extended our simulations to include immunotherapy after tumour detection, to study how 

harbouring different evasion mechanisms can influence the efficiency of therapy. The most 

commonly used agents in immunotherapy target and inhibit immune checkpoint pathways, 

helping the immune system to overcome immune evasion achieved by PD-L1 or CTLA-4 

overexpression and re-activate immune predation of (neo)antigenic cancer cells. This treatment 

method had highly promising results in hyper-mutated tumours, which often over-express 

immune checkpoint proteins16,38 – however, some patients do not respond to therapy, or 

relapse, and the mechanism of resistance is poorly understood. A potential explanation is the 

presence of an additional immune escape mechanism, such as loss of function alterations in the 

antigen presentation machinery. We therefore used our model to simulate hyper-mutated 

tumours with active immune evasion that also harboured a subclone with defective presentation.  

We introduced two different types of escape (PDL1 expression and loss of HLA) stochastically 

during tumour growth (Methods). After the tumour population grew up to detection, we simulated 

immunotherapy (anti-PDL1) by cancelling the effect of immune-evasion, and also increasing 

selection pressure to model re-activation of the immune system. Under this scenario, the cell 

population whose survival relied on active escape (PDL1 expression) rapidly declined – 

however, small clones that harboured passive-type immune escape (HLA-LOH) continued 

growing and eventually overtook the tumour (Figure 3E). Neoantigens were progressively 

pruned from the expanding passively-escaped clone, leading eventually to an immune cold 
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tumour. The same behaviour was observed if a mainly antigen-hot tumour contained a small 

antigen-cold subclone that underwent sufficient immuno-editing prior to therapy. As a result, any 

residual tumour post-therapy was predicted to have an immune phenotype distinct from the 

original tumour, which would likely be resistant to reapplication of the same mode of therapy. 

Therefore, the modelling predicts that the re-introduction of strong selection through 

immunotherapy promotes the emergence of resistance, and, combination or evolutionary 

therapeutic approaches39 might be needed to successfully control a tumour in the long term. 

Negative selection leads to effectively neutral evolutionary dynamics 

Finally, we sought to explore how negative selection shapes the distribution of subclone sizes 

within a cancer. We have previously shown that the distribution of variant allele frequencies 

(VAFs) of somatic mutations provides a way to infer the evolutionary dynamics of individual 

tumours7,22. Specifically, here we aimed to establish the ‘signature of immuno-editing’ on the 

VAF distribution, as measured in a single individual. We returned to the model of tumour growth 

to simulate tumours with negatively selected subclones, and analysed the resulting synthetic 

VAF distributions.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/536433doi: bioRxiv preprint 

https://doi.org/10.1101/536433
http://creativecommons.org/licenses/by/4.0/


	 18	

 

Figure 4: Negative selection leads to effectively-neutral clone size distributions. (A-D) Cumulative number 

of mutations plotted as a function of the inverse of the frequency of all mutations (grey, left y axis) and 

neoantigen-associated mutations (red, right y axis) harboured in at least 30 cells in (A) an antigen-cold tumour; 
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(B) an antigen-hot tumour; (C) a tumour with clonal immune evasion; and (D) a tumour with subclonal immune 

escape, introduced at the tumour size of 2000 cells. All tumours are simulated with selection strength s=-0.4. (E) 

Detection rate to identify negative selection from the overall VAF distribution as a function of sequencing read 

depth (x axis) and false neoantigen rate (y axis). Detection rate is computed as the proportion of 100 simulated 

tumours with significant difference (Kolmogorov-Smirnov test, α = 0.1) between the distribution of all mutations 

and neoantigen-associated mutations. (F) Synthetic cumulative VAF distribution as a function of the inverse of 

the frequency of all (in grey) and neoantigen-associated mutations (in red) detected with a sequencing depth of 

800x in all antigen cold tumours from a simulated set of 100. (G) Cumulative VAF distribution of mutations 

detected in the filtered subset of TCGA MSS CRCs. The distribution is shown for all mutations (grey), only 

mutations located in exons (blue), exonic mutations in essential genes (purple) and neoantigen-associated 

mutations in essential genes (red). 

 

First, we considered the VAF distribution in antigen-hot and -cold tumours separately (Figure 

4A-B). We have previously shown that neutral subclone evolution leads to a characteristic 

distribution of subclonal mutations, whereby the number of mutations at frequency f (M(f)) is 

proportional to 1/f2 (or 1/f in the cumulative distribution)7. In negatively selected cancers, 

subclonal neoantigens are depleted such that they are rarely present in large subclones, and 

hence the vast majority of higher frequency mutations in the VAF distribution are neutral 

passenger mutations, that naturally evolve according to neutral dynamics (Figure 4A).  In 

antigen-hot tumours, the same phenomenon is exacerbated: since all tumours cells already 

carry a negative-selected neoantigen, subclones that then acquire additional neoantigens 

experience even stronger selection, leading to rapid extinction via immuno-editing.  

The evolutionary dynamics under negative selection are the inverse of those under positive 

selection. Under positive selection, the expanding clone carries passenger mutations within the 

clone to higher frequency than expected from the neutral expectation, and hence positive 

selection is evident from these passenger mutations at high frequency22. Under negative 

selection, a contracting clone never has the opportunity to acquire passenger mutations, and so 

the VAF distribution consists of only neutrally evolving mutations. Correspondingly, in both 
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antigen-cold and antigen-hot tumours the VAF distribution for all mutations (grey lines in Figure 

4A-B) is dominated by neutral non-antigenic mutations and is not discernibly different from the 

neutral expectation; and paradoxically the stronger the strength of negative selection, the more 

neutral-like the evolutionary dynamics.   

The VAF distribution computed of solely neoantigens shows depletion relative to the neutral 

expectation (red lines in Figure 4A-B), consistent with population genetics theory23,24 and so in 

theory negative selection could be detected by considering the VAF distribution of neoantigens.  

However, we reiterate that negative selection means very few neoantigens persist in the tumour 

and most of the antigens that persist are at very low VAF. For instance, in the tumour in Figure 

4B, neoantigens make up <0.05% of the total detectable mutations (~3/7000 mutations), despite 

10% of all new mutations in the simulation being antigenic. In practice, this means that detecting 

negative selection from the VAF distribution of neoantigens in tumour sequencing data is 

problematic, since (a) there are expected to be too few subclonal neoantigens to resolve the 

distribution, and (b) most antigens are at low VAF where the power to detect variants and 

accuracy of VAF measurement are both lowest. Moreover, neoantigen identification from DNA 

sequencing alone has a high rate of false positive calls40, and so the VAF distribution of 

neoantigens is expected to be ‘contaminated’ with a large proportion of neutrally-evolving 

passenger mutations. 

Simulations of clonal immune escape show a curve consistent with neutral dynamics, as is 

expected (Figure 4C). Subclonal immune escape, experienced when immune escape occurs at 

a late stage of cancer growth, on the other hand leads to non-neutral, but apparently less 

selected dynamics. This is due to the escaped subclone effectively experiencing decreased 

death rate relative to other antigenic tumour cells, and dampening the effect of depletion 

measured in the total set of neoantigens (Figure 4D).   
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We performed power calculations on simulated tumours to determine the detectability of 

negative selection in currently available sequencing data. Real sequencing data naturally 

introduces uncertainty about mutation VAF due to limited sequencing depth and several sources 

of sampling bias41 and imperfect prediction of antigenicity40. We explored the effect of read 

depth and neoantigen mislabelling on the ability to identify negative selection from the VAF 

distribution in individual tumours. We compared the distribution of all detected mutations to that 

of the neoantigen-associated subset using the Kolmogorov-Smirnov test, and identified any 

samples as under selection in which the p-value of the test was below 0.1. The simulations 

predicted that very high depth sequencing was required to robustly call negative selection from 

VAF distributions (Figure 4E). A major pitfall in tumours with high selection was that they 

contained too few neoantigens to construct the VAF distribution, whilst low selection pressure 

decreased the confidence in detecting a signal of systemic depletion (Figure S4). Erroneously 

labelling neoantigens also had a major impact on the detection of negative selection, though this 

could be mitigated by very high-depth sequencing depth.  

In order to overcome the technical issues of limited sequence depth and low antigen numbers, 

we pooled mutations from groups of tumours and considered their combined CCF distribution. 

Within the pool, there were adequate subclonal neoantigens to resolve the clone size 

distribution and detect negative selection (Figure 4F), in a similar manner how cohort-wide 

positive selection by dn/ds analysis is evaluated42. However, the efficacy of pooling strongly 

relies on the similarity of the tumours included in the cohort, and a heterogeneous mixture of 

mutations could hinder any selection signal. To this end, we filtered TCGA CRCs to retrieve only 

MSS samples with tumour content above 75% 43, without detected immune escape; and pooled 

mutation from this cohort. We investigated a specific subset of genes identified as essential 

genes44 that we expect to be both expressed in the cohort and under more controlled selection. 

The emerging CCF distribution in the subclonal regime, shown in Figure 4G, revealed, as 
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expected, a slight depletion of mutations that are located in essential genes, and a stronger 

signal in antigenic mutations that occurred in these genes. 

Proportional neoantigen burden can measure selection pressure 

As a practical limitation of detecting negative selection lies in the low number of neoantigens, 

we next investigated if the degree of depletion holds information on the evolutionary dynamics. 

To study the effect of selection pressure, we needed a measure that could isolate between 

variations of immunogenic burden arising by chance (e.g. due to different overall mutation 

burden45) and as a result of evolutionary dynamics. Therefore, we calculated the proportional 

neoantigen burden (the proportion of missense mutations in the tumour that are immunogenic) 

as a tool to quantify the depletion of neo-epitopes. This quantity is independent of the overall 

mutation rate or turnover in the tumour population, and only influenced by two rates: (i) the 

emergence of new neoantigens and (ii) the death of cells carrying neoantigens.  

In simulations, we set the proportional neoantigen production rate to a known value pna=0.1 and 

considered how the negative selection strength (manifested by an increased death rate of 

antigenic clones) determined the proportional neoantigen burden. Proportional neoantigen 

burden decreased as the strength of negative selection increased, and as expected, the 

proportional neoantigen burden mirrored the input ratio in the absence of negative selection 

(Figure 5A).  
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Figure 5: Proportional neoantigen burden as a measure of selection. (A) The proportion of neoantigen-

associated mutations (the percentage of all mutations) as a function of negative selection pressure, computed 

from 100 tumours each. The neoantigen generation rate per mutation is indicated with a horizontal dashed line. 

(B) Effective mutation rate (per cell division mutation rate divided by per cell division death rate) computed from 

the VAF distribution of mutations in antigen hot tumours as a function of negative selection pressure. (C) 

Proportional neoantigen burden of MSS and MSI CRC samples from TCGA. The p-value of Mann-Whitney test 

is reported above the violin plots. (D) Scatter plot of total somatic missense mutation burden and the proportion 

of neoantigen-associated mutations for the same samples. Results of Pearson’s correlation test are reported for 

MSS (green), MSI (orange) and all samples combined (black). 
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We have previously shown that in the case of effectively-neutral subclonal dynamics, the 

effective mutation rate (µ/ß), defined as the ratio of the per-cell division mutation rate (µ) divided 

by the per-cell division death rate (ß), is specified by the steepness of the 1/f2 VAF distribution7. 

Since negative selection leads to effectively-neutral dynamics, this method can be validly 

applied to tumours experiencing negative selection.  We measured the effective mutation rate 

as a function of increasing negative selection for neoantigens. Stronger negative selection 

caused higher effective mutation rates in antigen-hot tumours (Figure 5B).  This is because 

stronger negative selection increased the death rate (ß) of all cells in clonally antigenic 

populations, increasing the ratio (µ/ß). In other words, stronger negative selection acting on 

antigen carrier cells leads to more cell division and mutations, between each tumour population 

size doubling. The apparently high mutation rates observed in hyper-mutated tumours might be 

a consequence of the same mechanism: a moderate mutation rate could appear to be much 

higher because of a significantly increased rate of cell death (due to deleterious mutations or 

immune predation). 

We tested the proportional neoantigen burden in TCGA cancers stratified by MSI status 

(samples with less than 30 missense mutations and with polymerase-ε (POLE) mutations were 

omitted from the analysis). Relative neoantigen burden was significantly lower in MSI than in 

MSS samples (Figure 5C), despite MSI cancers harbouring a higher number of neoantigens 

overall. This suggested that MSI cancers experienced stronger negative selection for 

neoantigens than MSS cancers. This could be a consequence of the high degree of immune 

infiltration in MSI tumours relative to MSS cancers46. The relation could also emerge if there was 

a negative correlation between overall missense mutation burden and relative neoantigen 

burden. However, no such negative correlation was observed (Figure 5D) therefore we 

conclude that via proportional neoantigen burden, we quantified differences in selective 

pressures between the two groups of tumours. 
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DISCUSSION 

Here we have investigated the evolutionary dynamics of neoantigens and immune escape in 

growing tumours using a simple mathematical model of tumour evolution. We validated the 

model against genetic data characterising the neoantigen burdens in colorectal cancers. Our 

analysis shows how negative selection by the immune system (immuno-editing) sculpts the 

clonal architecture of the tumour in a subtle way:  the hallmark of negative selection is a lack of 

neoantigens at intermediate frequency within a tumour, and conversely, that the presence of 

antigens at intermediate frequency is a hallmark of immune escape.  Moreover, strong negative 

selection for neoantigens effectively inhibits tumour growth, but inevitably provides a strong 

selective pressure for the evolution of immune escape. Consequently, the observation that 

many colorectal cancers are both highly (neo)antigenic and also have immune escape points to 

a critical role for immune evasion in the genesis of malignancy. Further work directly measuring 

the immune repertoire at the time invasion first occurs is now required. 

 

We showed that negative selection is detectable via relative depletion of neoantigens, giving 

rise to a characteristic ‘signature’ VAF distribution of the mutations under selection. Our 

simulations agree well with theoretical predictions for clone size distributions under purifying 

selection 23,24. However, we show that both weak and strong selection (depletion) are hard to 

detect at the currently available sequencing resolutions. The former due to an evolution 

following effectively-neutral dynamics, and the latter because strong depletion leads to an 

insufficient number of disadvantageous mutations. However, recent evidence suggests that 

mutations present in a low proportion of cells might not elicit an immune response depending on 

the characteristics of the arising neopeptides47, and we expect this effect to be reinforced in 

tumours with complex spatial architecture such as colorectal cancer which allows cancer cells to 

‘hide’ from the immune system. This means that negative selection only operates on larger 
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clones – and we note that potentially this shift from neutral to negatively-selected dynamics 

could be detected with very high depth sequencing or over a sufficient cohort of cancer cases.  

Nevertheless, negative selection may be evident in clone-size distributions at the cohort level 

(despite not being detectable in individual tumours) wherein pooling data from multiple tumours 

allows for sufficient mutations to resolve clone size distributions. Applying a pooling method 

across a cohort of TCGA CRCs assumed to be of similar immune-phenotype, we have detected 

a trend of negative selection in both essential genes and antigenic mutations harboured in 

essential genes. This is consistent with the previous observation that binding affinity to the MHC 

determines which driver mutations will be found in cancer, and that this immune filtering occurs 

differentially between MHC-I and MHC-II 48,49. The approach of testing for relative neoantigen 

depletion could also be applied to test other sets of mutations presumed to be under negative 

selection, such as genes encoding essential cell functions, natural antigenic peptides50 or 

modified peptides presented to CD4+ T-cells through the MHC-II complex. 

Our simulations show that under negative selection, the overall VAF distribution of a tumour will 

be effectively-neutral, since only neutral passenger mutations survive immune predation and are 

able to spread through the tumour. Paradoxically, the clone size distribution becomes more 

neutral-like as the strength of negative selection increases, as negatively selected clones 

cannot become established in the tumour and so have no effect in the clone size distribution. 

Together, these results highlight a practical issue for detecting negative selection in currently 

available sequencing data: negative selection causes only very slight deviations from the neutral 

expectation in the overall mutational spectrum, while specifically detecting selection requires 

correct characterisation of mutations into putative neoantigens and non-antigenic mutations. 

The latter is still an open problem as many steps of the immune presentation process are not 

well understood, and therefore current methods might be identifying a high number of false 

positives, whilst also missing other significant neoantigens, e.g. spliced peptides40,51. 
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Our findings have potential implications for the stratification of patients for immunotherapy.  Our 

simulations show that tumour mutational burden (TMB) may not necessarily be the best 

predictor of immune-checkpoint blockade response. This is because effective immune 

surveillance (e.g. no immune escape) leads to the killing of antigen bearing clones, with the net 

result of increasing the effective mutation rate of the surviving tumour cells, and enrichment for 

non-antigenic mutations.  Thus, we predict that tumours with a high TMB and without evidence 

of evolved immune escape mechanisms are unlikely to respond to immune blockade therapy.  

We predict that tumours with clonal neoantigens are very likely to have evolved immune 

escape, particularly if the patient’s immune system is highly predatory. In such cases, our model 

predicts the observation that clonal antigens elicit sensitivity to immune checkpoint blockade 34. 

Our modelling also predicts that immune therapies ‘targeted’ against a specific neoantigen (e.g. 

CAR-T therapies) can only hope to affect a cure if directed against clonal neoantigens, 

otherwise a subclone without the neoantigen target will experience net positive selection when 

the therapy is applied52,53. Relatedly, a subclone that escapes immune blockade therapy and 

reforms a tumour is predicted to have a very different immuno-genotype/phenotype to the 

original tumour due to the action of immune predation during clone emergence, with 

ramifications for metastatic potential and choice of second-line therapy.  

In summary, we have provided a mathematical framework to explore the evolution of 

neoantigens in growing tumours, and illustrated how quantitative understanding of tumour-

immune co-evolution can provide new insight into the choice and effectiveness of 

immunotherapies. 
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METHODS 

Mathematical model of tumour growth and mutation accumulation 

We created a minimal model to capture the growth of a tumour population and accumulation of 

mutations under selection pressure from the environment. Since the scope of the model was to 

match information derived from bulk sequencing of tumours, we chose to only model explicitly 

the proliferation, death and mutation of tumour cells, and include environmental information (e.g. 

the level of T-cell infiltration) implicitly through appropriately chosen model parameters. In order 

to capture the inherent randomness in the modelled events, we used a stochastic birth-death 

process. To reduce computational burden, we applied a rejection-kinetic Monte Carlo algorithm 

22,54 that allowed for the efficient simulation of large populations of cells with identical birth/death 

kinetics. The steps of the simulation algorithm are detailed below and illustrated in Figure 1A. 

First, a single progenitor cell is defined that already carries a set of mutations providing it with 

sufficient growth/survival advantage to outgrow a normal cell population. Each of the cell’s 

mutations have a unique identifier, and that cell has an intrinsic immunogenicity value 

determined by its mutations. Starting from this single-cell tumour, in each simulation step a cell 

in the population is selected, and that cell undergoes one of three possible life events: 

– Proliferation: The cell divides and gives birth to two daughter cells. These cells carry all 

mutations and information contained in the mother cell, but also acquire new mutations. For 

each newly generated mutation, it is randomly decided whether the mutation is antigenic. 

– Death: The cell dies and is removed from the population.   

– Waiting: No proliferation or death event happens; the cell is not altered in any way.   

The probability of each event is defined by the cell’s proliferation and death rate (b and di) as 

b/(b + dmax), di/(b + dmax) and 1 – (b+di)/(b + dmax), respectively. 
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In proliferation events, each daughter cell gains Nm new, independent mutations, where Nm is 

sampled from a Poisson distribution with parameter µ, the cell’s mutation rate. Antigenicity is 

randomly assigned to newly generated mutations according to the antigen production rate, pna; 

the probability that a newly generated mutation has immunogenic properties. 

The above step of randomly selecting a cell and one of the three possible events is repeated 

until the tumour reaches a predefined population size (representing the tumour reaching a 

clinically detectable size, for simplification we set it to 105 cells) or sufficiently long time elapsed 

without tumour establishment (corresponding to no cancer formation in the patient’s lifetime, set 

to 300 time units). 

 

For simplicity, we assumed that each cell had the same proliferation rate, b = 1, and cells with 

different properties in the tumour could only differ in their death rate determined by the 

immunogenicity status of the cell. As the average dynamics of a subclone’s growth are 

determined by the ratio of its birth and death rate, this simplification does not compromise the 

generality of the results derived from the model. Cells were considered immunogenic if they 

carried at least one (neo)antigenic mutation. We modelled the effect of immune system on 

neoantigen-carrier cells as an increase in cell death probability, representing additional T-cell 

mediated death. Non-immunogenic cells were assigned a basal death rate of db = 0.1, to 

account for any detrimental mutations present in the first progenitor cell and immune-

independent cell death. Immunogenic cells, on the other hand, had an increased death rate, di, 

computed as 𝑑! = (1 + 𝑠 ∗ 𝑛!) 𝑑! − 1 +  1. Note, that di represents a summary of many 

processes not modelled explicitly, such as (i) sufficient presentation of neoantigens on the cell 

surface; (ii) recognition of neoantigens by T-cell; (iii) active killing of carrier cells initiated by 

recognition. As each of these processes have inherent randomness (e.g. the chance meeting of 

a neoantigen-carrier and an approriate T-cell is necessary for recognition), similar selection 

pressures can arise from different combinations of the above. We chose to integrate all 
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variability into a single probabilistic rate to be able to observe general qualities of the tumour-

immune interaction without the need for precise parametrisation. 

In an extension of the model, we also considered the acquisition of immune escape through 

tumour growth. Immune escape was modelled as a heritable property of a cell, gained through 

either escape-associated mutations that were sampled from newly generated mutations, 

similarly to neoantigens, with probability pesc; or through manual introduction of the escape 

alteration at a pre-determined clone size to achieve clonal or subclonal immune escape. We 

considered two different types of escape mechanism: (i) active evasion, which shields the cell 

from negative selection (decreasing its death probability to db) but leaves neoantigen-carrier 

cells highly immunogenic (corresponding to escape mechanisms such as PD-L1 

overexpression); and (ii) passive evasion, which lowers the cell’s immunogenicity in the 

presence of neoantigens (representing escape mechanisms arising from loss/mutation of 

antigen-presentation machinery). 

We chose this level of abstraction in the model to enable us to investigate evolutionary 

paradigms on a general level, without having to rely on precise parameterisation of many sub-

processes. Therefore, while the reactions and parameters included in the model might not 

correspond to a single biological event, the model can provide a qualitative description of a high 

range of tumour-immune environments with appropriate choice of parameters. Furthermore, the 

model can be easily extended to account for further biological processes, in the same manner in 

which immune escape was included, to provide predictions on therapeutic interventions. 

Choice of model parameters  

We chose model parameters to represent a wide range of possible tumour-immune 

environments, and be easily interpreted in terms of growth dynamics. Therefore, all rate values 

time units in the simulation are scaled to the rate of proliferation/birth events (which is 1), and for 
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example the death rate of 0.9 or 1.2 correspond to overall population growth or decline, 

respectively. 

The probability of proliferation, death and waiting events (see steps above and Figure 1A) for a 

cell with birth rate b and death rate di were b/(b + dmax), di/(b + dmax) and 1 – (b+di)/(b + dmax), 

respectively. Due to the linear connection between the number of neoantigen harboured by a 

cell, and its death rate, dmax was computed from the maximum number of simultaneous antigens 

in any cell in the population. 

Mutation rate values (µ and pna) were fixed for the entire population in the beginning of each 

simulation. To correspond to tumour samples that were sequenced using whole-exome 

sequencing, we set the mutation rate relatively low, µ = 1, with the exception of hyper-mutated 

cancer, which had a higher mutation rate, µ = 6. This effectively meant that not all cell divisions 

introduced new (exonic) mutation in the daughter cells. The value of neoantigen probability, pna, 

by default was set to 0.1 based on the experimental observation that roughly 10% of mutations 

that induce a change in protein-sequence resulted in new peptides identified as neoantigens. 

However, we explored values of 0.2 and 0.05 as well, and found model predictions were in good 

agreement with those derived using the 10% setting. 

Alterations that induce immune escape are rare, because these can only arise from a very 

limited set of exonic loci. We therefore set pesc to 1x10-6 for all immune escape alterations. The 

decrease in immunogenicity in passive evasion was set to 0.9. This decrease in antigenicity 

indirectly affected death, as we assumed that only a fraction of the total number of antigens 

harboured in the cell remained antigenic, and updated the number of antigens, ni, accordingly. 

In summary, the following parameters were used in all simulations: b = 1; db = 0.1; µ = 1 (not 

hyper-mutated) and µ = 6 (hyper-mutated); -1 ≤ s ≤ 0 (as indicated in figures or in caption); pna = 

0.1 (high) and pna = 0.05 (low antigen rate); pesc = 1x10-6 (where applicable). 
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Simulation of CCF values 

At the end of each tumour growth simulation, mutations harboured in currently living cells 

(identified by unique mutation ids) were collected in a dictionary with their respective 

abundance: the total number of cells harbouring the mutation. Only mutations harboured in at 

least 10 cells out of 105 were considered in any analysis. CCF values were either computed by 

taking the raw frequency values (mutation abundance divided by the total tumour population 

size), or via a simulated sequencing step introducing noise to these frequencies with indicated 

read depth. For a given read depth, D, each frequency value, f, was substituted by a new 

frequency sampled from a binomial distribution with parameters D and f: 𝑓~𝐵𝑖𝑛𝑜𝑚(𝐷, 𝑓)/𝐷. 

Many mutations will have a sequenced frequency of 0, corresponding to mutations that are not 

picked up due to limited detection power. Therefore, we filtered for mutations with 𝑓 above 0, 

effectively enforcing a simulating a depth-based detection limit.   

TCGA sample acquisition and processing 

All samples from the TCGA COAD and READ (merged together as CRC) were retrieved 

through the NCI Genomics Data Commons (GDC) portal55. Only patients with available matched 

germline information (from blood samples) were considered. For each sample, purity (fraction of 

tumour cells in the sample) and overall ploidy were evaluated using ASCAT43 on Affymetrix SNP 

array data. Samples with purity below 0.4 and ploidy above 3.6 were excluded from further 

analysis, leaving 363 CRC samples for which HLA typing and neoantigen calls were performed 

(Table S1). For analysing immune escape, the cohort was narrowed down to patients for whom 

gene expression data was available in GDC; and at least one pair of their HLA A/B/C alleles 

were heterozygous and distinct enough to allow for loss of heterozygosity calls (n = 339).  

For each patient considered, the following information was downloaded: blood derived normal 

bam files; primary tumour bam files; variant call (vcf) files processed with Mutect2; SNP array 
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files; gene expression HTSeq counts (where available); and clinical information. We used the 

controlled-access variant call format (vcf) files to avoid over-filtering and missing antigenic 

variants. The variants were filtered to only include variants not present (allelic depth of 0) in 

normal samples. 

Samples were divided into MSS, MSI and POLE subtypes using data integrated from clinical 

TCGA annotation56, calls derived for the software MANTIS57, and mutational signature activities 

computed using non-negative least squares regression58,59. Samples with a MANTIS score ≥ 0.5 

and TCGA annotation of ’MSI-H’ (where available) were considered MSI, and those with 

MANTIS < 0.5 and ‘MSI-L’/‘MSS’ were labelled MSS. In case the two sources of information 

contradicted each other, neither of the categories was assigned. Samples with at least 1500 

mutations inferred to originate from the characteristic POLE signature (signature 10 in 

Martincorena et al.58) labelled as POLE tumours regardless of their MSI status.  

Multi-region sequenced dataset processing 

The multi-region sequenced colorectal dataset was accessed from Cross et al.37. Raw data is 

available from European Genome-Phenome Archive (https://ega-archive.org/) at accession 

code: EGAS00001003066. Bam files with marked duplicates were used for HLA calling and 

HLA variant detection. As in the original work, variants were called using Platypus60, annotated 

by ANNOVAR61, and filtered to only contain somatic single nucleotide variations that were 

present in at least 1 tumour sample and in either 0 reads in the normal sample (for normal 

coverage <=40 reads) or in at most 1 read (for normal coverage above 40 reads).  

Computation of VAF and CCF 

For each mutation, we calculated the variant allele frequency (VAF) as the number of mutant 

reads spanning the position, divided by the number of total reads of the position. The proportion 
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of cancer cells carrying a particular mutation (cancer cell fraction, CCF) was calculated from the 

VAF of the mutation, sample purity (tumour content), and copy number (CN) of the mutation’s 

genomic locus as: (𝑉𝐴𝐹 ∗ 𝐶𝑁) 𝑝𝑢𝑟𝑖𝑡𝑦. CCF values above 1 (arising from sequencing noise and 

copy-neutral loss-of-heterozygosity events) were assumed to be 1. 

HLA haplotyping and calling immune escape  

HLA-A, -B and -C haplotyping was performed on blood derived normal bam files using 

POLYSOLVER, which performs high precision HLA-haplotyping on whole-exome sequencing 

data, and also enables subsequent mutation detection based on the inferred alleles for 

detection of mutations in the highly polymorphic HLA genes30. As POLYSOLVER takes into 

account the patient’s race to compute the likelihood of each allele haplotype, we supplied 

ethnicity data, where available from clinical TCGA information, and ran haplotyping with race 

’Unknown’ otherwise. Mutations in HLA alleles were called using the specialised variant calling 

and annotation functionality of the same software, using the previously called HLA haplotypes. 

Variant calling was run using default settings and HLA was considered mutated if at least one 

allele had a nonsynonymous somatic mutation located in an exon or at a splice-site. Mutations 

in B2M were called if the sample contained a nonsynonymous somatic mutation located inside 

one of the exons of the B2M gene, as annotated by ANNOVAR61 and confirmed using Variant 

Effect Predictor62.  

Loss of heterozygosity at the HLA locus was assessed using the software LOHHLA, which 

permits allele-specific copy number estimation using reference information specific to the 

particular HLA haplotype28. Blood derived normal, and tumour bam files were used. Tumour 

purity and ploidy estimates were derived from ASCAT (for TCGA data) and from Sequenza (for 

the multi-region sequenced colorectal tumours). A sample was considered to have Allelic 

Imbalance at an HLA locus if the corresponding p-value was below 0.01 and LOH if, in addition, 
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the copy number prediction of that allele was below 0.5, with the confidence interval strictly 

below 0.7.  

Immune checkpoint over-expression was assessed using RNA-seq data. Normal expression 

values (in transcripts per million (TPM)) of PD-L1 and CTLA-4 were established for each cohort 

from TCGA based on RNA-seq counts of the two proteins in ‘solid tissue normal’ samples. 

Checkpoint over-expression was called if either PD-L1 or CTLA-4 expression in the tumour was 

higher than the mean plus two standard deviations of normal expression.  

Neoantigen prediction  

Neoantigens were predicted from variant call tables and HLA types using NeoPredPipe31, a 

neoantigen prediction and evaluation pipeline designed for parallel analysis of single- and multi-

region samples. The pipeline was run with default analysis settings and preserving intermediate 

files (–p flag), using hg38 and hg19 ANNOVAR61 reference files for annotation of the TCGA and 

multi-region CRC samples, respectively. The analysis outputted a table of novel peptides 

binding the patient’s MHC-I molecules and their respective recognition potential calculated from 

their MHC-binding affinity and similarity to pathogenic peptides, as described in 32. Unless 

stated otherwise, we labelled a peptide as neoantigen if its recognition potential was >= 10-1 to 

focus on antigens with the highest predicted probability of eliciting an immune response: both 

similar to known pathogens and significantly stronger MHC-binders than their wild-type 

counterpart. Similarly, a mutation was considered (neo)antigenic if at least one altered peptide 

produced from the mutated genomic region was a neoantigen. Essential genes, and 

neoantigens located in essential genes were identified using the list of shared genes in 44. 

Statistical analysis 

All data processing and statistical tests were performed in R (version 3.5.0) using built-in 
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functions. The tests and functions used were as follows: Figure 2C: Mann-Whitney U-test/ 

Wilcoxon sum-rank test (wilcox.test, default settings). Figures 2D and S3: Chi-squared test 

(chisq.test). Figure 2E: One-sided Mann-Whitney U-test (wilcox.test with option 

alternative=’greater’). Figure 3C and D: One-sided Wilcoxon signed-rank test (wilcox.test with 

options paired=TRUE and alternative=’greater’). Figure 5E: Kolmogorov-Smirnov test (ks.test) 

between the raw VAF distribution of neoantigens and all mutations. The two distributions were 

deemed significant if the p-value was below 0.1. Figure 5C: Mann-Whitney U-test/ Wilcoxon 

sum-rank test (wilcox.test, default settings); Figure 5D: Pearson’s correlation test (cor.test). 

On all boxplots presented (Figures 2E, 3C and 5C), visual elements correspond to the following 

summary statistics: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

inter-quartile range; additional points, outliers below/above 1.5x inter-quartile range. 
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