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Abstract

Motivation: There are now over 500 ontologies in the life sciences. Over the past years, significant
resources have been invested into formalizing these biomedical ontologies. Formal axioms in ontologies
have been developed and used to detect and ensure ontology consistency, find unsatisfiable classes,
improve interoperability, guide ontology extension through the application of axiom-based design patterns,
and encode domain background knowledge. At the same time, ontologies have extended their amount of
human-readable information such as labels and definitions as well as other meta-data. As a consequence,
biomedical ontologies now form large formalized domain knowledge bases and have a potential to improve
ontology-based data analysis by providing background knowledge and relations between biological entities
that are not otherwise connected.

Results: We evaluate the contribution of formal axioms and ontology meta-data to the ontology-based
prediction of protein-protein interactions and gene—disease associations. We find that the formal axioms
that have been created for the Gene Ontology and several other ontologies significantly improve ontology-
based prediction models through provision of domain-specific background knowledge. Furthermore, we
find that the labels, synonyms and definitions in ontologies can also provide background knowledge that
may be exploited for prediction. The axioms and meta-data of different ontologies contribute in varying
degrees to improving data analysis. Our results have major implications on the further development of
formal knowledge bases and ontologies in the life sciences, in particular as machine learning methods
are more frequently being applied. Our findings clearly motivate the need for further development, and the
systematic, application-driven evaluation and improvement, of formal axioms in ontologies.

Availability: https://github.com/bio-ontology-research—group/tsoe
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1 Introduction Brochhausen, 2010; Stevens et al., 2003), enables automated reasoning
and expressive queries (Hoehndorf ef al., 2015a; da Silva et al., 2017;
Jupp et al., 2012), facilitates connecting and integrating ontologies of
different domains through the application of ontology design patterns
(Osumi-Sutherland et al., 2017; Hoehndorf et al., 2010), and can be used to
guide ontology development (Kohler ef al., 2013; Alghamdi et al., 2018).

While axioms are mainly exploited through automated tools and
methods, ontologies also contain labels, synonyms, and definitions
(Hoehndorf et al., 2015b); improving the human-accessible components
of ontologies has also been a major focus of ontology development (Kohler

Biomedical ontologies are widely used to formally represent the classes
and relations within a domain and to provide a structured, controlled
vocabulary for the annotations of biological entities (Smith ez al., 2007).
Over the past years, significant efforts have been made to enrich ontologies
by incorporating formalized background knowledge as well as meta-data
that improve accessibility and utility of the ontologies (Smith et al., 2007;
Mungall et al., 2011). Incorporation of formal axioms contributes to
detecting whether ontologies are consistent (Smith et al., 2003; Smith and

et al., 2006); for example, including “good” natural language definitions
and adequate labels is a requirement for biomedical ontologies in the Open
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Biomedical Ontologies (OBO) Foundry (Smith et al., 2007), an initiative
to collaboratively develop a set of reference ontologies in the biomedical
domains.

The amount of information contained in ontologies, and the rigor
with which this information has been created, verified, and represented,
may also improve domain-specific data analysis through the provision
of background knowledge (Garcez and Lamb, 2004). Domain-specific
background knowledge can limit the solution space in optimization and
search problems (Garcez and Lamb, 2004; Besold et al., 2017; Garcez
et al., 2015) and therefore allow finding solutions faster.

The Gene Ontology (GO) (Ashburner et al., 2000) is a biomedical
ontology that formally represents several aspects of biological systems,
in particular the molecular functions that gene products may have, the
biological processes they may be involved in, and the cellular components
in which they are located (Huntley er al., 2014b). The GO has been
extensively used to provide annotations to gene products through a
combination of manual curation of literature and electronic assignments
created using algorithms based on sequence similarity, keywords, domain
information, and others (Huntley et al., 2014a). Databases such as the GO
Annotation (GOA) database (Huntley et al., 2015) use GO to annotate
more than 50 million proteins (Huntley et al., 2015).

Due to its central role and importance in molecular biology, significant
resources have been invested in the development of GO. Over the years,
substantial efforts have been made to improve the coverage of GO through
the addition of new classes (Consortium, 2014, 2016). In addition to new
classes, GO has also been extended through axioms that characterize the
intended meaning of a class formally (Mungall et al., 2011). Specifically,
GO now includes links between GO classes and classes in other biomedical
ontologies (Bada and Hunter, 2008) in an extended version of GO (which
we refer to as “GO-Plus”) (Consortium, 2014, 2016). These axioms are
particularly useful in keeping GO complete and logically consistent with
other ontologies as well as in guiding ontology development (Consortium,
2016; Bodenreider and Burgun, 2005; Johnson et al., 2006; Mungall et al.,
2011). There are now more than 90,000 inter-ontology axioms in GO-Plus
that weave GO together with several other ontologies in the biomedical
domain.

While these axioms have primarily been developed to tackle the
problem of continuously developing GO while maintaining consistency
(within GO and other ontologies) as well as to maintain biological
accuracy, they also have the potential to significantly improve GO-
based data analysis by introducing new associations between classes that
are not present in GO but arise through information in other, related
ontologies. For example, the GO class Histidine catabolic process to
glutamate and formamide (GO:0019556) and the GO class Formamide
metabolic process (GO:0043606) are not directly (or closely) related
in the GO hierarchy but both are related to the ChEBI class Formamide
(CHEBI:16397) through axioms formulated in the Web Ontology
Language (OWL) (Grau et al., 2008), a formal language based on
Description Logics (Horrocks et al., 2006). If a data analysis method
can utilize the axioms in this formal language, we expect improved
performance results when applied to different domains.

A task or method that explicitly relies on the axioms or the meta-data
in ontologies can not only be used to improve data analysis but also to
evaluate the “quality” of axioms in ontologies in contributing to such an
analysis task (Hoehndorf et al., 2012). Specifically, such a method would
enable determining whether axioms and formalized knowledge contribute
to biomedical data analysis, and allow evaluating and comparing how much
they contribute to particular tasks.

Recently, several machine learning methods became available that
make it possible to utilize different components of ontologies — axioms,
labels, definitions, and other kinds of meta-data —in machine learning tasks
without the need for manual extraction of features (which may introduce

a bias). Here, we use two recently developed techniques, Onto2Vec
(Smaili et al., 2018a) and OPA2Vec (Smaili et al., 2018b), to predict
protein interactions based on functional information and gene—disease
associations based on phenotypes. We evaluate the effect of the axioms
that have been added to the GO as well as the effect of adding the
axioms of additional domain ontologies as the background knowledge.
We demonstrate that the formal axioms that have been created for GO and
other ontologies improve predictive data analysis by providing background
knowledge about biological domains. Our approach is also applicable to
evaluation of meta-data such as labels and definitions and their contribution
to predictive analysis of biomedical data. We find that labels and definitions
in ontologies can fill gaps in domain knowledge that are not covered by the
axioms and further improve prediction; however, the labels and definitions
also have the potential to add noise or bias to prediction results. Finally,
we also improve the performance of predicting protein interactions and
gene—disease associations through ontologies.

Overall, our results demonstrate the value that ontologies provide to
biomedical data analysis not merely through their provision of controlled
vocabularies but also because they are rich formalized knowledge bases
and sources of definitions of domain entities.

2 Results

2.1 Contribution of axioms in protein-protein interaction
prediction

We follow a strategy for the external evaluation of ontologies (Hoehndorf
et al., 2012) and apply the method to the task of predicting interactions
between proteins and gene—disease associations. Specifically, we intend
to test the impact of ontology axioms and ontology meta-data on machine
learning applications that rely on ontologies. For this purpose, we use
a basic version of GO as the baseline, implement our ontology-based
prediction workflows, and evaluate the results. We then compare the
performance of ontology-based predictive analysis to the use of GO-Plus
in the same workflow and evaluate the results on the same evaluation set.
GO-Plus is GO with a large set of formal axioms added that define and
constrain GO classes and connect them to classes that are defined in other
ontologies (Mungall et al., 2011) (see Section 5.1). Furthermore, we add
additional background knowledge in the form of the complete set of axioms
in biomedical ontologies that are explicitly used in the GO-Plus axioms,
and evaluate their impact on predictive performance.

Since GO-Plus combines all axioms existing in GO with additional
axioms that describe relations to other biomedical ontologies, we expect
GO-Plus in combination with the axioms and the meta-data of other
ontologies to improve predictive performance. We apply GO and GO-Plus
to the task of predicting protein-protein interactions (PPIs), and to account
for possible differences between taxa in predicting PPIs, we evaluate our
hypothesis on human, yeast and Arabidopsis proteins and their interactions
(see Section 5.2).

To predict PPIs using GO and GO-Plus, we first assign GO functions
to human, yeast and Arabidopsis proteins based on their annotations in
the GOA database (Huntley er al., 2015). We then apply the Onto2Vec
method (Smaili et al., 2018a), using either GO or GO-Plus as background
knowledge, to obtain ontology embeddings of the proteins (see Section
5.2). An ontology embedding is a function that maps entities from an
ontology (and its annotations) into an n-dimensional vector space (Smaili
et al., 2018b), and Onto2Vec encodes for ontology-based annotations of
entities together with all the axioms in the ontology (Smaili ez al., 2018a).
This workflow generates features for proteins based on the same set of GO
annotations but utilizes different sets of axioms, and therefore allows us to
evaluate the contribution of the ontology axioms to predictions based on
these features.
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Fig. 1: ROC curves for PPI prediction using GO and GO-Plus based on Onto2Vec and Onto2Vec-NN for human, yeast, and Arabidopsis Thaliana.

We use the generated features to predict PPIs in two different ways:
first, we calculate the cosine similarity between pairs of protein feature
vectors (generated through Onto2Vec), and, second, we train a four-
layer fully connected neural network on pairs of vectors, and use a
sigmoid output to obtain a prediction confidence score (Onto2Vec-NN).
We evaluate the results of both prediction methods. Figure 1 shows the
ROC curves for PPI prediction for GO and GO-Plus using both Onto2Vec
(cosine similarity) and Onto2Vec-NN (neural network) for human, yeast
and Arabidopsis Thaliana. Table 1 shows the corresponding AUC values
for PPI prediction.

Table 1. AUC values of ROC curves for PPI prediction for GO-Plus and GO
using Onto2Vec (cosine similiarity) and Onto2Vec-NN (neural network).

Human Yeast Arabidopsis
GO_Onto2Vec 0.7660 0.7701 0.7559
GO_Onto2Vec_NN 0.8779 0.8711 0.8364
GO_plus_Onto2Vec 0.7880 0.7943 0.7889
GO_plus_Onto2Vec_NN 0.9021 0.8937 0.8834

Our results show that the PPI prediction performance obtained from
feature vectors generated using GO-Plus (and the rich set of axioms it
contains) outperforms the predictions obtained from using GO axioms
alone, both in the unsupervised model (Onto2Vec) and the supervised
model (Onto2Vec-NN). The improvement in predictive performance is
significant for the Onto2vec prediction based on cosine similarity (p =
0.021 for human, p = 0.034 for yeast, p = 0.027 for Arabidopsis;
Mann-Whitney U test), and significant for human and Arabidopsis in the
neural network based models (p = 0.047 for human, p = 0.061 for yeast,
p = 0.039 for Arabidopsis; Mann-Whitney U test).

GO-Plus uses axioms from many biomedical ontologies but only
includes small parts of these ontologies; we hypothesize that the axioms
in the ontologies that are referenced in GO-Plus can contribute additional
background knowledge that may further improve data analysis. Therefore,
we evaluate the individual contribution of each of the ontologies used
in GO-Plus axioms, i.e., we individually evaluate the axioms in the
Chemical Entities of Biological Interest (ChEBI) ontology (Degtyarenko
et al., 2007), the Plant Ontology (PO) (Jaiswal et al., 2005), the Cell
type Ontology (CL) (Bard et al., 2005), the Phenotype and Trait Ontology
(PATO) (Gkoutos et al., 2005, 2017), the Uberon ontology (Mungall et al.,
2012), the Sequence Ontology (SO) (Eilbeck et al., 2005), the Fungal

Gross Anatomy Ontology (FAO), the Ontology of Biological Attributes
(OBA), the NCBI organismal classification (NCBITaxon), the Common
Anatomy Reference Ontology (CARO) (Haendel et al., 2008) and the
Protein Ontology (PR) (Natale e al., 2010) (a detailed description of each
ontology can be found in Section 5.1).

We repeat the same workflow as before to generate features:
representation of GO annotations of the proteins in human, yeast, and
Arabidopsis, and representation learning with Onto2Vec using GO-Plus
as background knowledge; in each experiment we limit the axioms in
GO-Plus to those that contain a reference to a particular ontology. We then
again apply Onto2Vec to generate features and predict PPIs through cosine
similarity or using a neural network (Onto2Vec-NN) on human, yeast and
Arabidopsis.

The AUC values for the PPI prediction using GO-Plus but limited
to the axioms that refer a particular ontology are shown in Table 2. We
observe that most of the inter-ontology axioms generally improve the
predictive performance, with ChEBI contributing the most to improving
PPI prediction and PATO improving the least (even decreasing the
performance in some cases). The PO is a plant-specific domain ontology
and improves predictive performance mainly when predicting PPIs in
Arabidopsis, as can be expected.

As a further experiment, we combine all ontologies, i.e., we add the
complete set of axioms from each referenced ontology to the axioms of
GO-Plus so that the background knowledge in the referenced ontology
becomes available to Onto2 Vec as well, and then apply our feature learning
and prediction workflow. The AUCs for predicting PPIs based on this
comprehensive set of ontologies are shown in Table 3. We observe a similar
performance to using only the ontology-specific axioms in GO-Plus.

As a final experiment, we replace Onto2Vec with OPA2Vec to evaluate
the contribution of ontology meta-data such as labels, synonyms, and
definitions, to their predictive performance (see Section 5.2). We again
add each ontology that is referenced in a GO-Plus axiom to the axioms of
GO-Plus, this time also including the meta-data (in the form of annotation
axioms) of GO-Plus and the referenced ontology. OPA2Vec (pre-trained
on the PubMed corpus) can encode both the axioms and meta-data of
ontologies and observing the difference to the performance of Onto2Vec
can therefore help to evaluate if — and how much — the labels, definitions,
and other meta-data contribute.

We again predict PPIs in two different ways: calculating the cosine
similarity between the obtained protein feature vectors (referred to as
OPA2Vec in the results table) and using the feature vectors to train a neural
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| Human Yeast Arabidopsis

| Onto2Vec Onto2Vec_NN | Onto2Vec Onto2Vec_NN | Onto2Vec Onto2Vec_NN
GO (Baseline) 0.7660 0.8779 0.7701 0.8731 0.7559 0.8364
ChEBI 0.7899 (+0.0239)  0.8914 (+0.0135) | 0.7911 (+0.0210)  0.8851 (+0.0120) | 0.7703 (+0.0144)  0.8518 (+0.0154)
PO 0.7752 (+0.0092)  0.8776 (-0.0003) 0.7761 (+0.0060)  0.8741 (+0.0010) [ 0.7671 (+0.0112)  0.8469 (+0.0105)
CL 0.7743 (+0.0083)  0.8810 (+0.0031) | 0.7819 (+0.0118)  0.8764 (+0.0033) | 0.7612 (+0.0053)  0.8371 (+0.0007)
PATO 0.7657 (-0.0003) 0.8768 (-0.0011) 0.7707 (+0.0006)  0.8736 (+0.0005) | 0.7563 (+0.0004)  0.8380 (+0.0016)
UBERON 0.7780 (+0.0120)  0.8826 (+0.0047) [ 0.7824 (+0.0123)  0.8781 (+0.0050) | 0.7645 (+0.0086)  0.8407 (+0.0043)
SO 0.7747 (+0.0087)  0.8812 (+0.0033) | 0.7763 (+0.0062)  0.8790 (+0.0059) | 0.7609 (+0.0050)  0.8375 (+0.0011)
FAO 0.7660 (+0) 0.8782 (+0.0003) | 0.7712 (+0.0011)  0.8739 (+0.0008) | 0.7544 (-0.0015) 0.8368 (+0.0004)
OBA 0.7797 (+0.0137)  0.8831 (+0.0052) [ 0.7874 (+0.0173)  0.8803 (+0.0071) | 0.7561 (+0.0002)  0.8371 (+0.0007)
CARO 0.7872 (+0.0212)  0.8842 (+0.0063) | 0.7881 (+0.0180)  0.8811 (+0.0080) | 0.7623 (+0.0064)  0.8503 (+0.0139)
PR 0.7674 (+0.0014)  0.8784 (+0.0005) | 0.7834 (+0.0130)  0.8781 (+0.0050) | 0.7669 (+0.0110)  0.8490 (+0.0126)
NCBITaxon 0.7876 (+0.0216)  0.8891 (+0.0112) [ 0.7892 (+0.0191)  0.8834 (+0.0103) | 0.7634 (+0.0075)  0.8479 (+0.0115)

Table 2. AUC values of the ROC curves for PPI prediction showing the contribution of the GO-Plus axioms corresponding to each ontology for human, yeast and

Arabidopsis Thaliana. The improvement (blue)/ decrease (red) in performance of each ontology compared to GO is shown between parentheses.

| Human Yeast Arabidopsis

| Onto2Vec Onto2Vec_NN | Onto2Vec Onto2Vec_NN | Onto2Vec Onto2Vec_NN
GO (Baseline) 0.7660 0.8779 0.7701 0.8731 0.7559 0.8364
ChEBI 0.7905 (+0.0245)  0.8911 (+0.0132) | 0.7920 (+0.0219)  0.8854 (+0.0123) | 0.7721 (+0.0162)  0.8534 (+0.0170)
PO 0.7767 (+0.0007)  0.8790 (+0.0011) | 0.7768 (+0.0067)  0.8749 (+0.0018) | 0.7703 (+0.0144)  0.8481 (+0.0117)
CL 0.7804 (+0.0144)  0.8793 (+0.0014) [ 0.7823 (+0.0122)  0.8758 (+0.0027) | 0.7619 (+0.0060)  0.8374 (+0.0010)
PATO 0.7781 (+0.0121)  0.8788 (+0.0009) | 0.7711 (+0.0010)  0.8738 (+0.0007) | 0.7569 (+0.0010)  0.8402 (+0.0038)
UBERON 0.7761 (+0.0101)  0.8795 (+0.0016) | 0.7830 (+0.0129)  0.8777 (+0.0046) | 0.7658 (+0.0099)  0.8423 (+0.0059)
SO 0.7890 (+0.0230)  0.8788 (+0.0009) [ 0.7768 (+0.0067)  0.8793 (+0.0062) | 0.7612 (+0.0053)  0.8391 (+0.0027)
FAO 0.7703 (+0.0043)  0.8781 (+0.0002) | 0.7712 (+0.0011)  0.8738 (+0.0007) | 0.7560 (+0.0001)  0.8373 (+0.0009)
OBA 0.7657 (-0.0003) 0.8821 (+0.0042) | 0.7874 (+0.0173)  0.8804 (+0.0073) | 0.7567 (+0.0008)  0.8379 (+0.0015)
CARO 0.7742 (+0.0032)  0.8829 (+0.0050) [ 0.7890 (+0.0189)  0.8809 (+0.0078) | 0.7631 (+0.0072)  0.8511 (+0.0147)
PR 0.7710 (+0.0050)  0.8792 (+0.0013) | 0.7859 (+0.0158)  0.8781 (+0.0050) | 0.7685 (+0.0126)  0.8503 (+0.0139)
NCBITaxon 0.7780 (+0.0120)  0.8857 (+0.0078) | 0.7905 (+0.0204)  0.8737 (+0.0006) | 0.7641 (+0.0082)  0.8491 (+0.0127)

Table 3. AUC values of the ROC curves for PPI prediction for each external ontology in GO-Plus using Onto2Vec and Onto2Vec-NN. Each prediction method uses
all logical axioms from GO, all logical axioms from the referenced ontology, and all GO-Plus axioms describing relations between GO and the given ontology. The

improvement (blue)/ decrease (red) in performance of each ontology compared to GO is shown between parentheses.

network for PPI prediction (referred to as OPA2Vec-NN in the results
table). Table 4 shows the predictive performance in comparison to using
GO. We find that the additional meta-data does, in general, not improve
predictive performance; on the contrary, the predictive performance drops
markedly when adding the meta-data in several ontologies, most notably
PATO and ChEBL

2.2 Gene—disease association prediction using GO-Plus

In the first part of our analysis we apply GO and GO-Plus to the task of
predicting PPIs. Although we utilize PPI datasets from different species for
the evaluation in order to generalize our results, it is nevertheless limited
to prediction of PPIs and it is unclear if our results also hold for other types
of predictive analysis.

We extend our analysis to the evaluation of predicting gene—disease
associations based on phenotype similarity (Hoehndorf ez al.,2011). While
GO is not a phenotype ontology, it is used in the axioms that make up most
phenotype ontologies (Gkoutos et al., 2017). We use the cross-species
phenotype ontology PhenomeNET (Hoehndorf et al., 2011; Rodriguez-
Garcia et al., 2017), which relies on the GO for defining phenotypes, and
replace the GO in PhenomeNET with GO-Plus.

‘We annotate genes with mouse phenotypes from the Mouse Genome
Informatics (MGI) (Blake et al., 2017) database as well as disease

phenotypes from the Human Phenotype Ontology (HPO) (Kohler ef al.,
2017) database, and apply Onto2Vec and Onto2Vec-NN (Smaili et al.,
2018a) to encode these phenotypes and the axioms in PhenomeNET
as feature vectors (more details on the gene—phenotype and disease—
phenotype datasets can be found in Section 5.2). We then predict
gene—disease associations or mouse models of human disease based on
either cosine similarity or a neural network using both Onto2Vec and
OPA2Vec. We report the results in Figure 2 and Table 5. The results show
that the additional information that GO-Plus provides can significantly
improve the overall prediction performance of PhenomeNET in predicting
human gene-disease associations and mouse models of human disease
((p = 0.0411 and p = 0.0254, OPA2Vec, Mann-Whitney U test).

3 Discussion

We developed a method to evaluate the contribution of ontology axioms
to computational analysis of biomedical data. We use two feature learning
methods which are generic and data-driven, and encode for a large set of
information contained in ontologies. Our choice is motivated by the desire
to avoid potential biases. However, our evaluation is naturally limited to
the choice of the two methods (Onto2Vec and OPA2Vec) as well as the
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| Human Yeast Arabidopsis

| OPA2Vec OPA2Vec NN | OPA2Vec OPA2Vec NN | OPA2Vec OPA2Vec_NN
GO (Baseline) 0.8727 0.9033 0.8512 0.8891 0.8613 0.8903
ChEBI 0.8571 (-0.0156) 0.8801 (-0.0232) 0.8411 (-0.0101) 0.8823 (-0.0068) 0.8601 (-0.0012) 0.8880 (-0.0023)
PO 0.8680 (-0.0047) 0.8824 (-0.0209) 0.8439 (-0.0073) 0.8720 (-0.0171) 0.8632 (+0.0019)  0.8908 (+0.0005)
CL 0.8811 (+0.0084)  0.9037 (+0.0004) 0.8561 (+0.0049)  0.8891 (+0) 0.8614 (+0.0001)  0.8899 (-0.0004)
PATO 0.8562 (-0.0165) 0.8711 (-0.0322) 0.8369 (-0.0143) 0.8696 (-0.0195) 0.8544 (-0.0069) 0.8860 (-0.0043)
UBERON 0.8714 (-0.0013) 0.9033 (+0) 0.8514 (+0.0002)  0.8890 (-0.0001) 0.8615 (+0.0002)  0.8904 (+0.0001)
SO 0.8711 (-0.0016) 0.9028 (-0.0005) 0.8509 (-0.0003) 0.8879 (-0.0012) 0.8610 (-0.0003) 0.8891 (-0.0012)
FAO 0.8709 (-0.0018) 0.9011 (-0.0022) 0.8510 (-0.0002) 0.8882 (-0.0009) 0.8594 (-0.0019) 0.8892 (-0.0041)
OBA 0.8774 (+0.0047)  0.9033 (+0) 0.8541 (+0.0029)  0.8897 (+0.0006) 0.8600 (-0.0013) 0.8892 (-0.0011)
CARO 0.8808 (+0.0081)  0.9037 (+0.0004) 0.8588 (+0.0076)  0.8900 (+0.0009) 0.8617 (+0.0004)  0.8894 (-0.0009)
PR 0.8829 (+0.0102)  0.9041 (+0.0008) 0.8590 (+0.0078)  0.8917 (+0.0026) 0.8623 (+0.0010)  0.8911 (+0.0008)
NCBITaxon 0.8704 (-0.0023) 0.9031 (-0.0002) 0.8508 (-0.0004) 0.8886 (-0.0005) 0.8611 (-0.0002) 0.8907 (+0.0004)

Table 4. AUC values of the ROC curves for PPI prediction for different external ontologies in GO-Plus using OPA2Vec and OPA2Vec-NN. Each prediction method
uses the meta-data encoded in GO as well as the meta-data from the external ontologies. In each model, all logical axioms and annotation properties from GO, all
logical axioms and all annotation properties from the external ontology, and all GO-Plus inter-ontology axioms are included. The improvement (blue) / decrease
(red) in performance of each ontology compared to GO is shown between parentheses.
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Fig. 2: ROC curves for gene—disease prediction comparing PhenomeNET with GO (PhenomeNET + GO) to PhenomeNET with GO-Plus (PhenomeNET
+ GO-plus) using Onto2Vec and to PhenomeNET with GO-Plus with the metadata included (PhenomeNET + GO-plus + metadata) using OPA2Vec with
cosine similarity (Cos) and with a neural network (NN) for human gene—disease associations and mouse models of human disease.

Table 5. AUC values of ROC curves for gene—disease prediction using

. ] X Nevertheless, our study allows us to draw several conclusions. First,
PhenomeNET and when replacing GO in PhenomeNET with GO-Plus.

our results demonstrate that including ontology axioms generally adds

Human Mouse background knowledge that can significantly improve prediction tasks.
Phenomenet + GO_Clos 07841  0.8431 Furthermore, our results can be used to improve the axioms as well as
Phenomenet + GO_NN 08461  0.9141 textual definitions and labels in existing ontologies. For example, we
Phenomenet + GO — plus_Cos 07990  0.8507 find that the axioms in ChEBI contribute significantly to the prediction of
Phenomenet + GO — plus_ NN 0.8532 09182 PPIs because ChEBI axioms reveal relations between GO classes that are
Phenomenet + GO — plus + metadata_Cos 08013 0.8672 associated with the same chemical entities but that are not directly related
Phenomenet + GO — plus + metadata_ NN 0.8761  0.9204 in the GO hierarchy. Axioms may also add noise to a prediction if they are

not well aligned with the prediction task. For example, axioms in the PATO
ontology, despite PATO being significantly smaller in size than ChEBI, do

application to the prediction of PPIs and gene—disease associations, and not improve or even decrease performance across several applications;

the results may change with different application domains. furthermore, axioms from the PO only contribute to predicting PPIs in
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Arabidopsis but not other taxa since PO contains plant-specific domain
knowledge.

We also find some evidence that there can be a performance difference
when incorporating ontology meta-data into the data analysis. For
example, when the OWL annotation axioms of ChEBI are included,
the overall PPI prediction performance drops; the labels and definitions
in ChEBI often consist of chemical formulas and other properties
expressed in symbols or in a mathematical form (e.g., synonyms such as
‘(5Z2,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoic acid’ which
are not well represented in literature and therefore not exploited well by
our methods. Adding the meta-data (labels, definitions, synonyms, etc.) of
the PATO ontology consistently decreases predictive performance across
all our applications; a possible explanation for this observation is that the
labels and definitions in PATO are not well aligned with any of the tasks
we intend to perform; our approach provides a quantitative measure that
can be used to improve the PATO definitions and labels for our tasks if this
is deemed desirable by the PATO developers.

4 Conclusions

We evaluated the contribution of axioms in biomedical ontologies towards
predictive analysis methods and found that the background knowledge
ontologies provide can significantly improve data analysis and machine
learning. Our results have major implications on the further development
of knowledge bases and ontologies in the life sciences, in particular as
machine learning methods are more frequently applied across the life
sciences. Our findings clearly motivate the need for further development,
and the systematic, application-driven evaluation and improvement, of
formal axioms in biomedical ontologies; and our findings demonstrate
this need exists broadly across all areas of biology in which ontologies are
applied, not just for a single ontology.

5 Materials and Methods

5.1 Ontologies

GO and GO-Plus

We downloaded the Gene Ontology (GO) (Ashburner et al., 2000) in
Web Ontology Language (OWL) (Grau et al., 2008) format from http:
//www.geneontology.org/ontology/ on April 14, 2018. This
version of GO contains 107,762 logical axioms. We also downloaded the
GO protein annotations from the UniProt-GOA website (http://www.
ebi.ac.uk/G0OA)on Dec 2, 2018. All associations with evidence code
IEA were filtered, which results in a total of 3,474,539 associations for
749,938 unique proteins.

GO-Plus (downloaded from http://purl.obolibrary.org/
obo/go/extensions/go-plus.owl) is an extension of GO that
contains, in addition to all the logical axioms of GO, additional inter-
ontology axioms that describe relations between GO classes and other
external biomedical ontologies, in particular: ChEBI (The Chemical
Entities of Biological Interest ontology) (Degtyarenko et al., 2007), PO
(The Plant Ontology) (Jaiswal et al., 2005), CL (The Cell Ontology)
(Bard et al., 2005), PATO (Phenotype and Trait Ontology) (Gkoutos
et al., 2005, 2017), the Uberon ontology (Mungall et al., 2012), SO (The
Sequence Ontology) (Eilbeck et al., 2005), FAO (Fungal gross anatomy),
OBA (Ontology of Biological Attributes), NCBITaxon (NCBI organismal
classification), CARO (Common Anatomy Reference Ontology) (Haendel
et al., 2008) and PR (Protein Ontology) (Natale et al., 2010). Table 6
summarizes the number of axioms in GO-Plus describing relations to
each of these ontologies and shows an example of such axioms for each
ontology.

The ChEBI Ontology

We downloaded ChEBI in the OWL format from http://purl.
obolibrary.org/obo/chebi.owl on April 26, 2018. The ChEBI
ontology formally describes relations between molecular entities, in
particular small chemical compounds (Degtyarenko et al., 2007). It
contains a total of 432,822 logical axioms and 92,015 classes.

The Plant Ontology (PO)

We downloaded the OWL version of PO from http://purl.
obolibrary.org/obo/po.owl on April 26, 2018. This version
of PO contains 4,835 axioms and 1,649 classes. PO provides a formal
description of the vocabulary related to external and internal plant anatomy
and plant development phases. Itis mainly used to associate plant structures
and development to gene expression and phenotype data (Cooper et al.,
2013).

The Cell Type Ontology (CL)

We downloaded CL in OWL from http://purl.obolibrary.
org/obo/cl.owl on April 26, 2018. CL contains 17,958 axioms and
3,862 classes. It is an ontology that describes cell types for major animal
and plant organisms (Bard et al., 2005).

Phenotype and Trait Ontology (PATO)

The OWL version of PATO was downloaded from April 26, 2018 from
http://purl.obolibrary.org/obo/pato.owl. This version
contains 5,644 logical axioms and 2,251 different classes. PATO
provides a systematic description of phenotypes through the concepts and
relationships defined by its axioms (Gkoutos et al., 2005).

Uberon Ontology

We downloaded the Uberon ontology on April 26, 2018 from http://
purl.obolibrary.org/obo/uberon.owl. This OWL version of
Uberon contains 65,067 logical axioms and 9,866 classes. Uberon is
a multi-species anatomy ontology that describes anatomical structures
across multiple species through manually-curated cross-references
(Mungall et al., 2012).

Sequence Ontology (SO)

We obtained the SO ontology from http://purl.obolibrary.
org/obo/so.owl on November 25, 2018. This version of SO contains
5,443 logical axioms and 2,2234 classes. The SO consists of a set of classes
and relations that describe the parts of a genomic annotation (Eilbeck ez al.,
2005).

Fungal Gross Anatomy Ontology (FAO)

We downloaded the FAO ontology on November 25, 2018 from http:
//purl.obolibrary.org/obo/fao.owl. The OWL version of
FAO contains 155 axioms and 105 classes. The FAO describes the anatomy
of fungi through a set of controlled vocabulary.

Ontology of Biological Attributes (OBA)

We downloaded the OBA ontology on November 25, 2018 from http:
//purl.obolibrary.org/obo/oba.owl. This ontology contains
73,377 axioms and 27,365 classes. OBA provides a collections of
biological attributes.

NCBI organismal classification (NCBITaxon)

‘We obtained the NCBITaxon ontology fromhttp://purl.obolibrary.

org/obo/ncbitaxon.owl. This OWL version contains 3,653,676
axioms and 1,826,669 classes. This ontology provides a formal
classification of different organisms (Federhen, 2011).
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Ontology Number of axioms Example

ChEBI 69,673 ' GDP-L-fucose biosynthetic process’ EquivalentTo ’'biosynthetic
process’ and (’has output’ (some GDP-L-fucose ))

PO 935 "metaxylem development’ SubClassOf (’results in development of’ (some
metaxylem ))

CL 3,859 "epithelial cell differentiation’ SubClassOf (’results in acquisition
of features of’ (some ’'epithelial cell’ ))

PATO 205 "supramolecular polymer’ SubClassOf (’bearer of’ (some polymeric))

UBERON 17,132 "mammary gland development’ SubClassOf (’results in development of’ (
some 'mammary gland’))

SO 239 "box C/D snoRNA metabolic process’ EquivalentTo ('metabolic process’
and has participant (some ’'box C/D snoRNA’))

FAO 99 "cleistothecium development’ SubClassOf (results in development of
some ’‘cleistothecium’)

OBA 558 "Regulation of post-lysosome vacuole size’ SubClassOf (regulates
(some ’'post-lysosomal vacuole size’))

CARO 315 "Anatomical structure development’ EquivalentTo (’Developmental
process’ and ( results in development of ’anatomical structure’))

PR 1,914 "tyrosine 3-monooxygenase kinase activity’ SubClassOf (has input some

("tyrosine 3-monooxygenase’))

NCBITazxon 1,136

"chloroplast proton-transporting ATP synthase complex assembly’

SubClassOf (only_in_taxon Viridiplantae)

Table 6. Number of inter-ontology axioms (with an example) in GO-Plus corresponding to each external ontology.

Commom Anatomy Reference Ontology (CARO)

The CARO ontology was obtained on http://purl.obolibrary.
org/obo/caro.owl on November 25, 2018. This version contains
209 axioms and 158 classes. The CARO serves as a template to unify the
structure of anatomy ontologies (Haendel et al., 2008).

Protein Ontology (PR)

‘We downloaded the PR ontology from http://purl.obolibrary.
org/obo/pro_reasoned.owl on November 4, 2018. This ontology
contains 1,312,362 axioms and 400,923 classes. The PR ontology formally
represents protein-related entities and their relations at different levels of
specificity(Natale et al., 2010).

PhenomeNet Ontology

We downloaded the PhenomeNET ontology (Hoehndorf er al., 2011;
Rodriguez-Garcia et al., 2017) in OWL format from the AberOWL
repository http://aber-owl.net (Hoehndorf et al, 2015a) on
February 21, 2018. PhenomeNET is a cross-species phenotype ontology
that combines phenotype ontologies, anatomy ontologies, GO, and several
other ontologies in a formal manner (Hoehndorf et al., 2011).

5.2 Evaluation Datasets

Protein-protein interactions (PPI)

To evaluate our work, we predict PPI on three different organisms: human,
yeast, and Arabidopsis thaliana. The datasets for all three organisms were
obtained from the STRING database (Szklarczyk et al., 2017)(http:
//string-db.org).The human dataset contains 19,577 proteins and
11,353,057 interactions, the yeast dataset contains 6,392 proteins and
2,007,135 interactions, while the Arabidopsis dataset contains 10,282,070
interactions for 13,261 proteins.

Gene-disease associations

To further evaluate our method, we predict gene—disease associations. The
first dataset used in this experiment is the mouse phenotype annotations
obtained from the Mouse Genome Informatics (MGI) database (Smith and

Eppig, 2015) on February 21, 2018 with a total of 302,013 unique mouse
phenotype annotations. The second dataset used for this experiment is the
disease to human phenotype annotations obtained on February 21, 2018
from the Human Phenotype Ontology (HPO) database (Robinson et al.,
2008). We limited our analysis to the OMIM diseases only which resulted
in a total of 78,208 unique disease-phenotype associations. To validate
our prediction, we used the MGI_DO. rpt file from the MGI database to
obtain 9,506 mouse gene-OMIM disease associations and 13,854 human
gene-OMIM disease associations. To map mouse genes to human genes
we used the HMD_HumanPhenotype . rpt file from the MGI database.

Analysis algorithms

Our analysis is based on prediction results obtained using embeddings
of biological entities (proteins, genes, diseases) obtained from ontologies
using two tools: Onto2Vec (Smaili et al., 2018a) and OPA2Vec (Smaili
et al., 2018b). The obtained embeddings are then trained using a neural
network to make predictions.

Onto2Vec

Onto2Vec (Smaili et al., 2018a) is a method that uses ontologies to obtain
embeddings of ontology classes and the entities they annotate. Onto2Vec
uses two main information sources: First, it used all logical axioms
describing the structure of an ontology including both asserted axioms of
an ontology as well as inferred axioms using a semantic reasoner. Second,
it uses the known ontology-based associations of biological entities (e.g.
protein-GO associations). These two pieces of information form a corpus
of text used to train word2vec (Mikolov et al., 2013b,a) and obtain the
embeddings.

OPA2Vec

OPA2Vec (Smaili et al., 2018b) is also a tool used to obtain embeddings
of biological entities from ontologies. In addition to using logical axioms,
OPA2Vec also uses annotation property axioms from the ontology meta-
data. These annotation axioms use natural language to describe different
properties of the ontology classes (labels, descriptions, synonyms, etc.)
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and they, therefore, form a rich corpus of text for word2vec. To provide
the word2vec model with some background knowledge on the ontology
concepts described by the annotation properties, OPA2Vec pre-trains the
model on a corpus of biomedical text (PubMed by default). Entity-class
annotations are also used an additional source of information to produce
the ontology-based embeddings of biological entities.

Cosine similarity

One way to perform prediction tasks using ontology-based embeddings is
by calculating the similarity between each pair of vectors and using the
obtained similarity as a confidence score to predict whether two entities are
associated or not. To do so, we use cosine similarity as a similarity measure
between the obtained vectors. The cosine similarity cosg;.,, between two
vectors A and B is calculated as

A-B

=, 9]
Al 1Bl

coSsim (A, B)

where A - B is the dot product of A and B.

Neural Network

To optimize our prediction models (PPI and gene—disease associations
predictions), we train a neural network using the obtained embeddings
from both Onto2Vec and OPA2Vec. Limited grid search has been
performed to select a suitable neural network for our predictions based
on suggested guidelines (Hunter et al., 2012). The chosen neural network
is a feed-forward network with two hidden layers of 800 and 200 neurons
respectively. The neural network is optimized using binary cross entropy
as the loss function.

Evaluation metrics

We used the ROC (receiver operating characteristic) curve (Yin and Vogel,
2017) along with the AUC (area under ROC curve) as a quantitative
measure to assess the performance of each predictive method. For both
PPI prediction and gene—disease prediction, the true positive pairs are
considered to be the ones available from the STRING network and the
MGI_DO. rpt file from the MGI database respectively. The negative
pairs on the other hand are down-sampled from the set of all unknown
associations to form a set of negatives equal in size to the set of positive
pairs for both PPI prediction and gene—disease association prediction.
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