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Abstract8

Motivation: Biologists commonly store data in tabular form with observations as rows, attributes9

as columns, and measurements as values. Due to advances in high-throughput technologies, the10

sizes of tabular datasets are increasing. Some datasets contain millions of rows or columns. To11

work effectively with such data, researchers must be able to efficiently extract subsets of the data12

(using filters to select specific rows and retrieving specific columns). However, existing13

methodologies for querying tabular data do not scale adequately to large datasets or require14

specialized tools for processing. We sought a methodology that would overcome these challenges15

and that could be applied to an existing, text-based format.16

Results: In a systematic benchmark, we tested 10 techniques for querying simulated, tabular17

datasets. These techniques included a delimiter-splitting method, the Python pandas module,18

regular expressions, object serialization, the awk utility, and string-based indexing. We found that19

storing the data in fixed-width formats provided excellent performance for extracting data subsets.20

Because columns have the same width on every row, we could pre-calculate column and row21

coordinates and quickly extract relevant data from the files. Memory mapping led to additional22

performance gains. A limitation of fixed-width files is the increased storage requirement of buffer23

characters. Compression algorithms help to mitigate this limitation at a cost of reduced query24

speeds. Lastly, we used this methodology to transpose tabular files that were hundreds of gigabytes25

in size, without creating temporary files. We propose coordinate-based, fixed-width storage as a26

fast, scalable methodology for querying tabular biological data.27
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Introduction29

Biologists often generate data suitable for representation in an attribute-value system1, also known30

as an information system2, simple frame3, object-predicate table4, or flat file. In this representation,31

an object might be a biological organism, an attribute might be a characteristic of that organism,32

and a value might be a datum for that object and attribute. For example, a researcher might observe33

200 cancer patients (objects) and collect transcriptomic measurements for 20,000 genes (attributes);34

each value would indicate the relative number of transcripts present in tumor cells for each35

patient/gene combination5. In this example, the data values would have been summarized36

previously using preprocessing tools, such as a reference aligner and a transcript-quantification37

algorithm6–9. For convenience and compactness, researchers typically store attribute-value data in38

2-dimensional, tabular formats. Commonly, in such tables, each row contains data for a given39

object, and each column contains data for a given attribute10; but in some cases, the table is40

transposed (objects as columns, attributes as rows). Researchers use tabular data to perform41

analytical tasks, such as executing statistical analyses, producing graphics, and further summarizing42

the data.43

Across the subfields of biology, researchers store a considerable proportion of tabular data in44

plain-text formats. This approach coincides with the Unix and “Pragmatic Programming”45

philosophies11–13, which advocate for storing data and sharing data among computer programs as46

plain text. Keeping data as text has many advantages. Plain text is readable to humans.47

Sophisticated text editors are freely available for all major operating systems. A wide range of tools48

exist for generating, manipulating, parsing, and compressing text files; these include49

long-established command-line tools developed by the Unix community. In addition, scripting50

languages like Python14 and R15 provide libraries for analyzing text-based tabular data; these51

libraries are used broadly within the biology community and elsewhere16. Storing data as plain text52

does have drawbacks relative to binary formats. Text files may be larger than binary files, and it53

may be more computationally intensive to parse a text file than a binary file. Consequently, a54

multitude of techniques for storing tabular data in binary (non-text) formats has been developed.55

For example, researchers use Microsoft Excel for data exploration and analysis17,18; relational56

databases provide a formalized methodology to query tabular data19; so-called NoSQL databases57

provide alternative methodologies for structuring and querying data, including attribute-value58

systems20; the Hierarchical Data Format (HDF5) is often used for tabular data, including in biology59

research21,22. Additionally, in recent years, distributed architectures for large-scale data storage and60

processing have seen wide use; these technologies include Apache Hadoop and Apache Spark23,24.61

Despite these advances, the humble plain-text file continues to play a critical role in biology62

research due to its simplicity, flexibility, familiarity, and portability.63

In our own research studying molecular profiles of tumors—and via collaborations with other64

scientists—we have frequently encountered a need to select and project tabular data. In65

relational-algebra terms19, selection refers to the process of identifying rows that match some66

criteria; projection refers to the process of retrieving specific columns. For example, in a study of67

genomic and transcriptomic profiles of human breast tumors, a researcher might wish to select only68

patients diagnosed before the age of 40 and who harbor a mutation in BRCA1, a gene known to69

effect double-stranded DNA repair by homologous recombination25. Having identified this patient70

subset, the researcher might wish to retrieve (project) transcriptomic data for genes that interact71

with BRCA1. In repositories like The Cancer Genome Atlas (TCGA), The International Genome72

Consortium (ICGC), and Gene Expression Omnibus (GEO)26–28, genomic and transcriptomic73
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data—and their corresponding annotations—are stored in tabular text files. The ways that objects,74

attributes, and values are oriented within these files differ across these and other repositories29–31,75

but values are commonly oriented in rows and columns and are separated by tab characters, comma76

characters, or some other delimiter.77

Typically, to parse such data, researchers write custom scripts or use software packages that78

facilitate parsing32–34. To perform selection, the code must extract all values from the column(s) to79

be used as filtering criteria. If data values are delimited by tab characters, for example, the code80

must identify the positions of tab characters and extract data at the relevant positions for each row.81

However, because data values may vary in length, the positions of tab characters may differ for each82

row, and these positions must be reidentified for each row, thus slowing execution. After identifying83

rows that match the selection criteria, the researcher may then wish to project the data. When84

parsing a tab-delimited file, the code must again identify positions of tab characters for each row85

and extract values at the relevant positions. In this methodology, the code parses the data row by86

row, thus minimizing memory consumption. Alternatively, the entire file could be parsed into an87

in-memory data structure; this methodology may increase the efficiency of selection and projection,88

but many datasets are too large to fit in memory. Additionally, if a researcher wishes to use only a89

few columns for selection or projection, it is inefficient to read the entire file into memory. Hybrid90

solutions exist, such as the pandas module for Python35. However, in our experience, it has been91

difficult to find a solution that strikes a satisfactory balance between speed and memory usage. This92

challenge has become more acute as data sizes have increased. For example, a re-quantification of93

RNA expression data from TCGA contains data for 11,373 tumors across 199,169 transcripts36.94

Phase I of the Library of Integrated Network-based Cellular Signatures (LINCS) yielded data for95

more than 1.3 million experiments, including transcriptomic data for 12,300 genes (after96

imputation) and annotations for each experiment37. Recently, the UK Biobank posted genotypic,97

phenotypic, and health-related measurements for approximately 500,000 individuals38. Some of98

these files are multiple terabytes in size. These trends are true in other fields as well, including99

proteomics, remote sensing, and imaging39–42.100

In evaluating methodologies that could handle such data, we envisioned scenarios in which data101

files are created once and then queried many times. Public repositories like TCGA, LINCS, and UK102

Biobank cater to these scenarios; after the data have been prepared, they are stored on web servers,103

enabling researchers to download and query the data. Because the files are written only once, it is104

less important to optimize speeds for writing the files, and it is unnecessary to support concurrent105

writing by multiple agents. In contrast, it is highly preferable that researchers can query the data106

quickly and flexibly. With this context in mind, we sought a solution that would meet the following107

criteria:108

• Handle datasets larger than what can fit into memory on modern personal computers.109

• Handle attributes of different types (categorical, ordinal, numeric, etc.).110

• Support selection based on data in any column.111

• Store the data in a portable format that can be transported across systems without custom112

tools or specialized expertise.113

• Store the data in a space-efficient manner (while preferring fast speeds over reduced storage).114

• Not be specific to any particular type of biological data (e.g., genomic, transcriptomic,115

ecological).116

• Can be created, indexed, and queried in a non-proprietary43, programming-language agnostic,117

and platform-independent manner.118
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• Can transpose rows and columns without reading all the data into memory and without119

creating temporary files.120

• Can represent missing values explicitly.121

In our quest to identify a solution that would address these criteria, we considered a variety of122

binary-based solutions. These included relational databases, NoSQL databases, HDF5, and the123

Apache Parquet format44. With each solution, we faced limitations. For example, the SQLite124

relational database has a limit of 32,767 columns45. NoSQL databases provide many options for125

structuring the data, but we failed to identify an approach that would provide adequate query speeds126

and storage sizes. The HDF5 format is designed primarily for numerical data, whereas we sought127

the ability to handle other data types as well. As a columnar storage solution, Parquet was efficient128

at projection; however, it was ill-suited to selection. Ultimately, we focused on text-based solutions,129

performing a benchmark analysis of 10 different techniques for parsing tabular data. As described130

below, we chose one of these techniques and refined it further. We found that this technique131

addresses each of the above criteria yet is human readable, fast, and scalable.132

Methods133

In an initial round of benchmarks, we used Python scripts to generate tabular text files in which134

10% of the columns contained categorical values (randomly generated, 2-digit alphabetical135

sequences) and 90% of the columns contained numerical values (ranging between 0.0 and 1.0).136

First, we used these scripts to generate relatively small files, containing 100 columns and 1000137

rows. After verifying functionality, we generated two types of large file that represent dimensions138

that will be increasingly seen in biological research: 1) “tall” files containing 1 million rows and139

1,000 columns, and 2) “wide” files containing 1,000 rows and 1 million columns. Each of these140

files contained a total of 1 billion data points (approximately 10 GB in size). For each set of141

dimensions, we saved the data in four different formats:142

• tsv. We separated each value on each row with tabs (tab-separated-value format).143

• msgpack. We used the MessagePack format46 to serialize each row of data as a list object.144

• flags. In an attempt to make it faster to access elements at a given column index, we specified145

the index of each element within each row of data and embedded these indices within the file,146

prior to each datum.147

• fwf. The width of each column corresponded to the data value with the largest number of148

characters in that column (fixed-width format). We also added a buffer character between149

columns.150

In this phase, we evaluated 10 techniques for projecting the data. Different techniques used151

different versions of the input data (see below). We coded each technique to select the first column152

and every hundredth column thereafter. Each script saved the selected columns to a tab-delimited153

text file. We then used a script to verify that the output was correct.154

• delimiter-split. We used TSV files as input, split each line on tabs, and extracted values at the155

specified indices.156

• pandas. We applied the read_csv function from the Python pandas module to the TSV files.157

• reg-ex-quant. We used regular expressions to quantify tab characters that preceeded each158

specified index and then extracted those values using capturing groups.159
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• reg-ex-tab. We used regular expressions to map non-capturing groups to indices that should160

be ignored and capturing groups to indices that should be extracted.161

• msgpack. We deserialized each row from the MessagePack serialized files and extracted162

values at the specified indices.163

• flags. For the flag files, we identified the position of each specified flag and then extracted164

characters after it until another flag was reached.165

• awk. We applied the awk command-line utility to the TSV files47. This Unix-based tool166

provides extensive support for parsing text files.167

• gawk. This is another variation on awk.168

• nawk. This is yet another variation on awk.169

• fixed-width. We used the header line in the file to identify the starting and ending positions of170

each column and then used string indexing to extract values at the specified indices.171

Aside from the awk-based solutions, we used Python code. In addition, for each Python solution,172

we implemented a memory-mapping version of the code. Memory mapping supports the ability to173

randomly access locations within a file; accordingly, in some cases, we could extract specific174

portions of the file without needing to iterate sequentially through the file or read every character175

into memory.176

During the second phase of this study, we developed a modified version of the fixed-width format177

(fwf2). First, we calculated the position and width of each column and stored these values in an178

index file that we could also memory map. Second, we calculated the full length of the first179

line—all lines should have the same length—and stored this length in a second index file. These180

changes enabled us to quickly calculate row and column coordinates when querying the data. Lastly,181

we removed the extraneous buffer characters between the columns. This reduced file sizes; however,182

we retained a nonessential newline character at the end of each line to make the files more readable.183

All of our code, along with a bash script to execute the benchmarks, can be found at184

https://github.com/srp33/Tabular_File_Benchmark. The same repository contains an R Markdown185

file that includes the code we used to create figures for this paper. We used R version 3.5.1 and the186

ggplot2, readr, dplyr, and cowplot packages for the figures48–51. For the benchmarks, we used187

Python (version 3.6.7) and the following external Python modules: msgpack (0.5.6), numpy188

(1.15.2), pandas (0.23.4), and snappy (0.5.3). All benchmark tests were executed on a 64-bit189

processor running Ubuntu Linux (18.04) with the following hardware specifications:190

• 4.5 GHz Xeon®W-2155 (3.3 up to 4.5 GHz – 10 Cores - 20 Threads - 2666 MHz)191

• 256 GB Quad Channel DDR4 random access memory at 2666 MHz (8× 32GB)192

• 250 GB NVMe PCIe M.2 solid-state drive (SSD) for the operating system193

• 3.8 TB NVMe 3.84TB U.2 Mixed Use SSD for data storage194

Results195

First, we evaluated methods for projecting tabular text files that contained 1 billion data points.196

These files had either a “tall” or “wide” orientation. The tall files simulate scenarios in which197

researchers collect 1,000 data points for 1 million patients (or other object type). The wide files198

simulate scenarios in which researchers collect 1 million data points for 1,000 patients. As199

high-throughput data-generation technologies advance and as researchers combine individual200

datasets into aggregate ones, such scenarios will be increasingly common.201
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Commonly, biology researchers store data in tab- or comma-delimited files and parse such files202

using the delimiter-split method. Thus, we considered the performance of this approach to be a203

baseline. For the tall files, our scripts extracted every hundredth column in 21.72 and 17.76 seconds204

with and without memory mapping, respectively. All but two of the competing methods205

outperformed this approach (Figure 1). In contrast, on wide files, the performance slowed206

considerably for all methods. The baseline method extracted every hundredth column in 31.38 and207

27.44 seconds. The pandas method and both regular-expression methods performed worse than the208

baseline, and their performance was dramatically worse than it was on the tall files. The poor209

performance of pandas is perhaps surprising, given the package’s popularity among data210

scientists52.211

The fixed-width method performed best overall on the tall file, projecting the data in only 5.34212

seconds with memory mapping; however, its performance was mediocre on the wide file. We213

hypothesized that a few adjustments to the file format and our algorithmic approach might improve214

the performance substantially (see Methods). In addition, we implemented a chunking scheme in215

which we parsed 1000 rows of input data at a time before writing to the output file. After these216

adjustments, we projected every hundredth row from the tall file in 3.70 seconds. For the wide file,217

we projected the data in 3.43 seconds, only 10% the duration of the original approach. Given these218

results, we focused on this method and evaluated its performance further.219

We wanted a method that would excel at projection and selection. Therefore, we performed220

selection on data from one column with categorical data and one column with numerical data. The221

categorical values were 2-character sequences of letters; arbitrarily, we searched for values that222

started with “A” or ended with “Z”. The numerical filter searched the specified column in the223

remaining rows for values greater than or equal to 0.1. These criteria yielded approximately 6.9%224

of the rows. Lastly, we projected every hundredth column. This process took 1.04 seconds for the225

tall file and 0.28 seconds for the wide file.226

When performing the initial benchmarks, we stored the data in four tabular formats (see Methods).227

The flags and fixed-width files were larger than the other formats, especially for the wide files (see228

Figure 2). To enable indexing, these formats require extra text within the files. We considered ways229

to reduce this extra storage requirement while still supporting fast query times. We tested four230

compression algorithms: gzip, bzip2, lzma, and snappy. We compressed the text files line by line.231

After compression, the lengths of the lines varied, so we saved the starting position of each row to a232

serialized dictionary. Compression times differed considerably across the methods (Figure 3); as its233

name implies, snappy was extremely fast. In constrast, snappy-compressed files were234

approximately twice as large as files compressed using the other algorithms. Most importantly for235

this study, select-and-project speeds were dramatically faster for snappy-compressed files than for236

any of the other algorithms (Figure 3). However, these speeds are 20-50 times slower than we237

attained using non-compressed data. We needed to decompress each full line before we could238

evaluate the selection criteria or perform projection. Accordingly, individuals who consider using239

this methodology must consider the substantial tradeoff between speed and space requirements.240

Next we tested the scalability of the (non-compressed) fixed-width approach. We simulated a241

scenario in which a researcher might wish to store genotypes for a large number of individuals. We242

generated text files that contained simulated genotypes with 10, 50, 100, 500, 1000, 5000, 10000,243

50000, 100000 or 500000 rows and columns, respectively. In these files, we represented genetic244

loci as rows and organisms as columns and used a pair of nucleotide characters (A, C, G, T) to245

represent each genotype. We tested our ability to select and project the data by extracting genotypes246

for the intersection of 10 random rows and 10 random columns. Query speeds were identical (0.03247
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seconds) for all file sizes except the largest (0.06 seconds). The largest file (500000 rows by 500000248

columns) had a total of 250 billion data points and was 465 GB in size (Figure 4A). Although249

extracting 10 rows and 10 columns does not reflect a real-world scenario, it illustrates the promise250

of performing these operations quickly on extremely large files.251

As a final test, we transposed the simulated genotype files. To our knowledge, no tool exists for252

transposing tabular files without reading the full dataset into memory or writing temporary files.253

Our fixed-width approach successfully transposed each of the simulated genotype files, including254

the largest, without writing temporary files. Time and memory usage did increase as file sizes255

increased, but in a nonlinear fashion (Figure 4B).256

Discussion257

Our goal was to evaluate techniques for storing and querying tabular data. Such data are used258

widely in biology research. We sought to identify a methodology that would reduce query times259

and overcome limitations of existing approaches. In addition, we sought a solution that would260

provide the flexibility and readability of plain text plus some benefits of binary formats. Our results261

suggest that fixed-width formatting, memory mapping, and coordinate-based indices can meet these262

needs for many research scenarios, especially those that prioritize fast reading over fast writing and263

that can accept larger file sizes as a compromise for faster querying. In this study, we simulated264

data for which all values in a given column are the same width; but in practice, data values in a265

given column often vary in length. In these scenarios, extra buffer characters are needed. More266

research is necessary to evaluate how much these buffer characters would increase file sizes in267

practice, but we predict that query speeds will be impacted only minimally. One possibility for268

mitigating the effects of larger file sizes is to compress the whole file using a standard compression269

scheme (e.g., gzip) before it is placed on a web server; accordingly, distributing the file would270

require less disk space on the server and less network bandwidth during file transfer; the researcher271

could then decompress the file locally before querying it.272

The results of time-based benchmarks must be interpreted with caution because execution times273

vary from one computer system to another. Additionally, we performed these benchmarks on274

hardware whose performance exceeds that of many computer systems used currently for biology275

research. However, we are confident in our conclusions about the relative performances of the276

methods we evaluated.277

This study describes a proof of concept rather than a production-ready tool. One limitation of our278

current approach is that data types are not stored explicitly for each attribute; these must be inferred279

from the data. However, we believe our methodology’s performance in these benchmarks merits280

further development.281

The simplicity of our methodology is one of its strong points. It should be possible to implement282

this approach in any programming language and operating system that support reading and writing283

text files as well as memory mapping. We do not intend this to be “yet another file format” for284

bioinformaticians to deal with; rather, we describe it as a methodology for extending an existing285

format. In addition, our approach could facilitate translation among formats and data orientations.286

Further methodological refinements are possible, potentially including more sophisticated287

algorithms for identifying column widths and compressing the data. We invite collaborations with288

others in the research community.289
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Figure 1: Execution speed for 10 methods of parsing tabular text files. We evaluated techniques for292

projecting every hundredth column from tabular text files. The techniques varied in the ways that text files293

were structured and how they were parsed (see Methods). awk, gawk, and nawk did not support memory294

mapping. Tall files consisted of 1 million rows and 1,000 columns; “Wide” files had 1,000 rows and 1 million295

columns. Each file included a mixture of categorical (10%) and numerical (90%) attributes. Note that the296

x-axis scales differ for the two panels.297
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Figure 2: Sizes of simulated data files used in the initial benchmarks. tsv = Tab-separated values. flags299

= A “flag” before each value indicates the column index of each value. msgpack = Each row was serialized300

as a Python list into MessagePack format. fwf = Fixed-width format. fwf2 = Modified fixed-width format.301
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Figure 3: Results of compression benchmarks. In an attempt to reduce file sizes, we compressed the303

fixed-width (fwf2) files line by line and stored the starting position of each line to enable faster file traversal.304

The first panel shows how long it took to compress the files. The second panel indicates file sizes after305

compression (the original files were approximately 10 GB in size). The third panel illustrates how long it306

took to select and project data from the compressed files. The gzip and bzip2 algorithms support a parameter307

to alter the level of compression; we used levels 1 and 9, which are indicated in parentheses. Although the308

snappy compression algorithm was much faster than the other algorithms, these speeds were 20-50X slower309

than without compression.310
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Figure 4: Results of simulated genotype benchmarks. We simulated genotypes for cohorts and genomes312

of increasing size. The x-axes indicate the total number of simulated genotypes. In A, the y-axes indicate313

absolute performance for each metric. In B, the y-axes indicate performance relative to what was observed314

for the minimum number of genotypes. File size increased linearly, whereas the other metrics, especially315

query time, increased at a slower rate.316
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