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Abstract 

It is becoming widely appreciated that human perceptual decision making is suboptimal but the 

nature and origins of this suboptimality remain poorly understood. Most past research has 

employed tasks with two stimulus categories, but such designs cannot fully capture the 

limitations inherent in naturalistic perceptual decisions where choices are rarely between only 

two alternatives. We conducted four experiments with tasks involving multiple alternatives and 

used computational modeling to determine the decision-level representation on which the 

perceptual decisions were based. The results from all four experiments pointed to the existence 

of robust suboptimality such that most of the information in the sensory representation was 

lost during the transformation to a decision-level representation. These results reveal severe 

limits in the quality of decision-level representations for multiple alternatives and have strong 

implications about perceptual decision making in naturalistic settings. 
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Introduction 

Perception has been conceptualized as a process of inference for over a century and a half1. 

According to this view, the outside world is encoded in a pattern of neural firing and the brain 

needs to decide what these patterns signify. Hundreds of papers have revealed that this 

inference process is suboptimal in a number of different ways2. However, these papers have 

almost exclusively employed tasks with only two stimulus categories (though notable 

exceptions exist3,4). Experimental designs where decisions are always between two alternatives 

cannot fully capture the processes inherent in naturalistic perceptual decisions where stimuli 

can belong to many different categories (e.g., which of all possible local species does a 

particular tree belong to). Therefore, fully understanding the mechanisms and limitations of 

perceptual decision making requires that we characterize the process of making decisions with 

multiple alternatives.  

 

One critical difference between perceptual decisions with two versus multiple alternatives is 

the richness of the sensory information that the decisions are based on. Decisions with two 

alternatives can be based on the evidence for each of the two categories, or even just the 

difference between these two pieces of evidence5. For example, traditional theories such as 

signal detection theory6 and the drift diffusion model7 postulate that 2-choice tasks are 

performed by first summarizing the evidence down to a single number – the location on the 

evidence axis in signal detection theory and the identity of the boundary that is crossed in drift 

diffusion – that is subsequently used for decision making. Thus, the sensory information 

relevant for the decision in such tasks is relatively simple and could potentially be represented 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

in decision-making circuits without substantial loss of information. However, the relevant 

sensory information in multi-alternative decisions is more complex because it contains the 

evidence for each of the multiple alternatives available. Further, this richer sensory information 

can no longer be summarized in a simple form in decision-making circuits without a substantial 

loss of information (Figure 1). However, it is currently unknown whether decision-making 

circuits can represent the rich information from sensory circuits in the context of multi-

alternative decisions or whether the decision-making circuits only represent a crude summary 

of the sensory representation.  

 

 

Figure 1. Sensory and decision-level representations in perceptual decision making with 

multiple alternatives. (a) Decision making with multiple discrete alternatives. In cases where a 
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subject has to choose between multiple discrete alternatives (e.g., options A, B, and C), a 

stimulus can be assumed to give rise to a sensory representation that consists of different 

amount of sensory activity for each alternative (left panel). A decision-level representation 

without information loss would consist of a copy for the sensory representation (middle panel). 

We refer to this possibility as a ‘population’ model of decision-level representation. On the other 

hand, a decision-level representation may consist of only a summary of the sensory 

representation thus incurring information loss. One possible summary representation consists of 

passing only the highest activity onto decision-making circuits (right panel). We refer to this type 

of representation as a ‘summary’ model of decision-level representation. This summary 

representation involves information loss that will become apparent if subjects have to choose 

between the other alternatives (e.g., alternatives A and C). (b) Decision making with continuous 

but multimodal sensory representation. Similar to having multiple discrete alternatives, 

decisions can involve judging a continuous feature (e.g., orientation) but in the context of a 

multimodal (e.g., a trimodal) underlying sensory representation (left panel). The decision-level 

representation can again consist of either a copy for the sensory representation (middle panel) 

or a summary of this sensory representation (right panel). 

 

To uncover the decision-level representation of decisions with multiple alternatives, we used 

discrete stimulus categories in three experiments and stimuli that give rise to a trimodal 

sensory distribution in a fourth experiment. All experiments featured a condition where 

subjects picked the dominant stimulus among all of the possible stimulus categories (four 

different colors in Experiment 1, six different symbols in Experiments 2 and 3, and three 
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different stimulus direction in Experiment 4). Based on these responses, we estimated the 

parameters of a model describing subjects’ internal distribution of sensory responses (that is, 

the activity levels for each stimulus category). We then included conditions where subjects 

were told to pick between only two alternatives after the offset of the stimulus (Experiments 1, 

2, and 4) or to make a second choice if the first one was incorrect (Experiment 3). These 

conditions allowed us to compare different models of how the sensory representation was 

transformed into a decision-level representation. To anticipate, we found robust evidence for 

suboptimality in that decisions in our experiments were based on a summary of the sensory 

representation thus incurring substantial information loss. These results indicate that 

perceptual decision-making circuits may not have access to the full sensory representation in 

the context of multiple alternatives and that significant amount of simplification is likely to 

occur before sensory information is used for deliberate decisions.  
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Results 

We investigated whether the decision-level representation in perceptual decision making with 

multiple alternatives consists of the whole sensory representation or only a summary of it. To 

address this question, we performed four experiments in which subjects made choices about 

discrete stimulus categories or continuous variables giving rise to multimodal sensory 

distributions.  

 

Experiment 1 

Experiment 1 required subjects to pick which of four possible colors – blue, red, green, and 

white – was most frequently presented (Figure 2). The stimulus consisted of 49 colored circles 

arranged in a 7x7 square presented for 500 ms. On each trial, one color was randomly chosen 

to be “dominant” and 16 circles were painted in that color, whereas the remaining three colors 

were “non-dominant” and 11 circles were painted in each of those colors. The experiment 

featured two different conditions. In the 4-alternative condition, subjects picked the dominant 

color among the four possible colors. In the 2-alternative condition, after the offset of the 

stimulus, subjects were asked to choose between the dominant and one randomly chosen non-

dominant color. In both conditions, the response screen was displayed with 0-ms delay thus 

minimizing short-term memory demands. Note that subjects’ task was always to correctly 

identify the dominant color. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 

Figure 2. Task for Experiment 1. Each trial consisted of a fixation period (500 ms), stimulus 

presentation (500 ms), and untimed response period. The stimulus comprised of four different 

colored circles (red, green, blue, and white). One of the colors (white in this example) was 

presented more frequently (16 circles; dominant color) than the other colors (11 circles each; 

non-dominant colors). Subjects’ task was to indicate the dominant color. Two conditions were 

presented in different blocks. In the 4-alternative condition, subjects chose between all four 

colors. In a separate 2-alternative condition, on each trial subjects were given a choice between 

the dominant and one randomly chosen non-dominant color. 

 

 

Using subjects’ responses in the 4-alternative condition, we estimated the parameters of the 

sensory distribution representing the activity level for each color. We then considered the 

predictions for the 2-alternative condition of two different models: (1) a ‘population’ model, 

according to which perceptual decisions are based on the whole distribution of activities over 

.Fixation
(500 ms)

Stimulus
(500 ms)

Response
(Untimed)

)Red   Green   Blue   White

4-alternative

)Red Green   Blue White

2-alternativeTime
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the four colors, and (2) a ‘summary’ model, according to which perceptual decisions are based 

on a summary of the whole distribution. There are a number of ways to create a summary of 

the whole distribution. However, in the context of this task, the only relevant information is the 

order of activation levels from highest to lowest (this order determines how a subject would 

pick different colors as the dominant color in the 2-alternative condition). Other information, 

such as average activity level, is irrelevant to the task here. We first considered an extreme 

summary model that consists of the activity level for the one color with highest level of activity. 

Other summary models, in which decision-making circuits have access to the activity levels of 

the n>1 colors with highest activity levels, are examined later. 

 

The population and summary models could be easily compared because they make different 

predictions about a subject’s performance in the 2-alternative task (for a mathematical 

derivation, see Supplementary Methods). Indeed, the models make the same prediction when 

the dominant color gives rise to the highest activity level (Figure 3a) and when the alternative 

option given to the subject happens to have the highest activity (Figure 3b), but diverge when 

the highest activity is associated with a color that is not among the two options with the 

population model predicting a higher performance level (Figure 3c). 
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Figure 3. Predictions of the population and summary models for subjects’ choices in the 2-

alternative condition. The population model (left panels) assumes that decision-making circuits 

have access to the activity levels associated with each of the four colors (four gray bars), 

whereas the summary model (right panels) assumes that decision-making circuits only have 

access to the highest activity level (single gray bar). In all examples, the dominant circle is white, 
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and subjects are given a choice between white and green. (a) When the highest activity happens 

to be at the dominant color, both models predict that the subject would correctly choose the 

dominant color. (b) When the highest activity happens to be at the alternative color, both 

models predict that the subject would incorrectly choose the alternative color. (c) The two 

models’ prediction diverge when the highest activity is associated with a color other than the 

two presented alternatives. In such cases, the activation for the dominant color is likely to be 

higher than for the alternative color, so according to the population model, subjects would 

ignore the color with the highest activity (red color in the example here) and correctly pick the 

dominant color in the majority of the trials. However, according to the summary model, subjects 

have no information about the activation levels for the dominant and the alternative colors and 

would thus correctly pick the dominant color on only 50% of such trials. 

 

 

The difference between the two models could be seen in the actual model predictions. Indeed, 

based on the performance in the 4-alternative condition (average accuracy = 69.2%, chance 

level = 25%), the population and summary models predicted an average accuracy of 84.2% and 

79.7% in the 2-alternative condition, respectively. Compared to the actual subject performance 

(average accuracy = 78%), the population model overestimated the accuracy in the 2-

alternative conditions for 29 of the 32 subjects (average difference = 6.21%, t(31) = 8.19, p = 

3.02 x 10-9). Surprisingly, the summary model also overestimated the accuracy in the 2-

alternative condition but the misprediction was much smaller (average difference = 1.72%, 

t(31) = 2.35, p = .025) (Figure 4a). Indeed, the absolute error of the predictions of the 
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population model (average = 6.54%) was significantly larger than for the summary model 

(average = 3.61%; t(31) = 5.65, p = 3.34x 10-6). Overall, the summary model predicted the 

accuracy in the 2-alternative condition better than the population model for 26 of the 32 

subjects (Figure 4b).  

 

  

Figure 4. Comparisons between the population and summary models in Experiment 1. (a) Task 

accuracy in the 2-alternative condition observed in the actual data (white bar), and predicted by 

the population (light gray bar) and summary (dark gray bar) models. The predictions for both 

models were derived based on the data in the 4-alternative condition. (b) Individual subjects’ 

differences in the accuracy in the 2-alternative condition between the two models and the 

observed data. (c) Difference in Akaike Information Criterion (AIC) between the population and 

the summary models. Positive AIC values indicate that the summary model provides a better fit 

to the data. Each dot represents one subject. The gray horizontal lines at ±3 and ±10 indicate 

common thresholds for suggestive and strong evidence for one model over another. The red 

triangle indicates the average AIC difference. The summary model provided a better fit than the 

population model for 30 of the 32 subjects. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 

 

We further compared the models’ fits to the whole distribution of responses. We found that 

the Akaike Information Criterion (AIC) favored the summary model by on average 24.30 points 

(Figure 4c), which corresponds to the summary model being 1.89 x 105 times more likely than 

the population model for the average subject. Across the whole group of 32 subjects, the total 

AIC difference was thus 777.63 points, corresponding to the summary model being 7.26 x 10168 

times more likely in the group. Note that since the population and summary models had the 

same number of parameters, the same results would be obtained regardless of the exact metric 

employed (e.g., the BIC differences would be exactly the same).  

 

Finally, we constructed and tested four additional models. The first two models postulated that 

decision-making circuits have access to the two or three highest activations of the sensory 

distribution (“2-highest” and “3-highest” models, respectively). These models could thus be 

seen as intermediate options between the summary and population models. Two other models 

postulated that subjects choose either two or three stimulus categories to attend to and then 

make their decisions based on a full probability distribution over the activity levels of the 

attended categories (“2-attention” and “3-attention” models; see Supplementary Methods for 

details). We found that all of these models produced poor fits to the 2-alternative condition and 

were outperformed by the summary model (Supplementary Results and Supplementary 

Figures 1, 6a-d). 
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Experiment 2 

The results from Experiment 1 strongly suggest that within the context of our experiment, 

decision-making circuits do not represent the whole sensory distribution but only a summary of 

it. We sought to confirm and generalize these findings in two additional, pre-registered 

experiments. For Experiment 2, we made several modifications: (1) we changed the stimulus 

from color to symbols, (2) we raised the number of stimulus categories from four to six, and (3) 

we significantly increased the number of trials per subject in order to obtain stronger results on 

the individual-subject level. Specifically, we presented the six symbols ‘?’, ‘#’, ‘$’, ‘%’, ‘+’, and ‘>’ 

such that the dominant symbol was presented 14 times and each non-dominant symbol was 

presented 7 times (Figure 5a). The 49 total symbols were again arranged in a 7x7 grid. Each 

subject completed a total of 3,000 trials that included equal number of trials of a 6-alternative 

condition and a 2-alternative condition that were equivalent to the 4- and 2-alternative 

conditions in Experiment 1.  
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Figure 5. Task and results for Experiment 2. (a) The task in Experiment 2 was similar to 

Experiment 1 except for using six different symbols (‘?’, ‘#’, ‘$’, ‘%’, ‘+’, and ‘>’) instead of four 

different colors. One of the symbols was presented more frequently (14 times, dominant 

symbol) than the others (7 times each, non-dominant symbols) and subjects’ task was to 

indicate the dominant symbol. Two conditions were presented in different blocks: a 6-

alternative condition where subject chose between all six symbols and a 2-alternative condition 

where subjects were given a choice between the dominant and one randomly chosen non-

dominant symbol. (b) Task accuracy in the 2-alternative condition observed in the actual data 

(white bar) and predicted by the population (light gray bar) and summary (dark gray bar) 

models. The predictions for both models were derived based on the data in the 6-alternative 
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condition. (c) Individual subjects’ differences in the accuracy of the 2-alternative condition 

between the two models and the observed data. (d) Difference in Akaike Information Criterion 

(AIC) between the population and the summary models. Positive AIC values indicate that the 

summary model provides a better fit to the data. Each dot represents one subject. The red 

triangle indicates the average AIC difference. The summary model provided a better fit than the 

population model for nine out of 10 subjects.  

 

 

Just as in Experiment 1, we computed the parameters of the sensory representation using the 

trials from the 6-alternative condition (average accuracy = 50.5%, chance level = 16.7%) and 

used these parameters to compare the population and summary models’ predictions for the 2-

alternative condition. We found that the average accuracy in the 2-alternative condition 

(71.6%) was slightly underestimated by the summary model (predicted accuracy = 70.1%, t(9) = 

2.76, p = .022) but was again significantly overestimated by the population model (predicted 

accuracy = 77.5%, t(9) = 9.41, p = 5.92 x 10-6) (Figure 5b). Individually, the summary model 

provided better prediction of the accuracy in the 2-alternative condition for nine out of the 10 

subjects (Figure 5c).  

 

Further, we compared the population and summary models’ fits to the whole distribution of 

responses. We found that the summary model was preferred nine of our 10 subjects and the 

difference in AIC values in all these nine subjects were larger than 25 points (Figure 5d). The AIC 

values of the one subject for whom the population model was favored over the summary 
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model differed only by 7.9 points. On average, the summary model had an AIC value that was 

57.79 points lower than the population model corresponding to the summary model being 3.55 

x 1012 times more likely for the average subject. Across the whole group of 10 subjects, the 

total AIC difference was thus 577.94 points, corresponding to the summary model being 3.14 x 

10125 times more likely in the group. Finally, we found that the additional four models again 

mispredicted the performance in the 2-alternative condition and were outperformed by the 

summary model (Supplementary Results and Supplementary Figures 2, 6e-h). 

 

Experiment 3 

Taken together, Experiments 1 and 2 suggest that in the context of multi-alternative decisions, 

the system for deliberate decision making may not have access to the whole sensory 

representation. This conclusion is based on experiments that differed in the nature of the 

stimulus, the number of stimulus categories, and the amount of trials that subjects performed. 

Nevertheless, both Experiments 1 and 2 relied on the same design of comparing 4- (or 6-) and 

2-alternative conditions. Therefore, to further establish the generality of our results, in 

Experiment 3 we employed a different experimental design. We used the same stimulus as in 

Experiment 2 and presented all 6 alternatives on every trial, but additionally gave subjects the 

opportunity to provide a second answer on about 40% of error trials (Figure 6a). Using the 

performance on the first answer, we compared the predictions of the population and summary 

models for the second answers. 
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Figure 6. Task and results for Experiment 3. (a) The same stimuli as in Experiment 2 were used 

in Experiment 3 but the task was slightly different. Subjects always reported the dominant 

symbol among all six alternatives. However, on 40% of the trials in which they gave a wrong 

answer, subjects were given the opportunity to make a second guess. (b) Task accuracy for the 

second answer observed in the actual data (white bar), predicted by the population model (light 

gray bar), predicted by the Summary & Random Choice model (dark gray bar), and predicted by 
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the Summary & Strategic Choice model (black bar). The predictions of the three models were 

derived based on subjects’ first answers. (c) Individual subjects’ differences in the accuracy of 

the second answer between each model’s prediction and the observed data. (d) Difference in 

Akaike Information Criterion (AIC) between the population and the two summary models. 

Positive AIC values indicate that the summary model provides a better fit to the data. Each dot 

represents one subject. The red triangle indicates the average AIC difference.  

 

 

The population model makes a clear prediction about the second answer – subjects should 

choose the stimulus category with the highest activation from among the remaining five 

options. The second answer will thus have relatively high accuracy because the presented 

stimulus category is likely to produce one of the highest activity levels (Supplementary Figure 

3a). Note that in the context of this experiment, the 2-Highest and 3-Highest models are 

functionally equivalent to the population model since they both represent the category with 

the second highest activity, and both allow that this stimulus category be chosen with the 

second answer. 

 

On the other hand, the summary model only features information about the stimulus category 

with the highest activity. Once that stimulus category is chosen as the first answer, the model 

postulates that the subject does not have access to the activations associated with the other 

stimulus categories. Given this representation, subjects could adopt at least two different 

response strategies. One possible strategy is for the subject to make their second answer at 
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random, which would result in chance level (20%) performance. We call this the “Summary & 

Random Choice” model (Supplementary Figure 3b). However, another possibility is for the 

subject to make the second answer strategically. One available strategy is for the subject to pick 

the stimulus category of a randomly recalled symbol from the 7x7 grid. Given that subjects 

inspected the stimuli for 500 ms, they could easily remember one location with a symbol other 

than the one they picked for their first answer. We call this the “Summary & Strategic Choice” 

model (Supplementary Figure 3c). According to this model, the second answer will be correct 

on !"	(#	&'()*+',-	'.	*/0	1'2+,),*	-324'&)
"6	(*'*)&	#	'.	702)+,+,8	&'()*+',-)

= !
9
 or 33.3% of the time. Conversely, each of the four 

remaining incorrect categories will be chosen on :	(#	&'()*+',-	'.	0)(/	,',-1'2+,),*	-324'&)
"6	(*'*)&	#	'.	702)+,+,8	&'()*+',-)

= !
<
 or 

16.7% of the time (Supplementary Figure 4). 

 

To adjudicate between these three models, we first examined subjects’ accuracy on the first 

answer. Subjects responded correctly in their first answer on 50.7% of the trials (chance level = 

16.7%). Using this performance, we computed the parameters of the sensory representation as 

in Experiments 1 and 2 in order to generate the models’ predictions for the second answer. We 

found that subjects’ accuracy for the second answers was 29.6%. This value was greatly 

overestimated by the population model, which predicted accuracy of 40.9% (t(9) = 7.04, p = 

6.09 x 10-5; Figure 6b). On the other hand, the Summary & Random Choice model greatly 

underestimated the observed accuracy (predicted accuracy = 20%, t(9) = 5.55, p = 3.55 x 10-4). 

Finally, the Summary & Strategic Choice model produced the most accurate prediction 

(predicted accuracy = 33.3%, t(9) = 2.18, p = .057). On an individual subject level, the population 

model overestimated the accuracy of the second answer for all 10 subjects, the Summary & 
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Random Choice model underestimated the accuracy of the second answer for all of the 10 

subjects, whereas the Summary & Strategic Choice model was best calibrated overestimating 

the accuracy of the second answer for 7 subjects and underestimating it for the remaining 3 

subjects (Figure 6C). 

 

Formal comparisons of the models’ ability to fit the full distribution of responses for the second 

answers demonstrated that the population model provided the worst overall fit (Figure 6d). 

Indeed, the population model resulted in AIC values that were higher than the Summary & 

Random Choice model by an average of 18.05 points (corresponding to 8.29 x 103-fold 

difference in likelihood in the average subject) and a total of 180.46 points (corresponding to 

1.53 x 1039-fold difference in likelihood in the group). The population model underperformed 

the Summary & Strategic Choice model even more severely (average AIC difference = 37.29 

points, corresponding to 1.25 x 108-fold difference in likelihood in the average subject; total AIC 

difference = 372.93 points, corresponding to 9.57 x 1080-fold difference in likelihood in the 

group). Lastly, the Summary & Strategic Choice model also outperformed all of the additional 

models (Supplementary Results and Supplementary Figure 6i-l). Thus, just as Experiments 1 

and 2, Experiment 3 provides strong evidence that in the context of multi-alternative decisions, 

decision-making circuits only contain a summary of the sensory representation. 

 

Experiment 4 

To adjudicate between the population and summary models, Experiments 1-3 employed 

discrete stimulus categories (Figure 1a). However, it remains possible that the results do not 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

generalize to stimuli represented on a continuous scale. To address this issue, we performed a 

fourth experiment that employed a feature (dot motion) represented on a continuous scale 

(degree orientation). We adapted the design of Treue, Hol and Rauber8 in which groups of dots 

slid transparently across one another. Specifically, we presented moving dot stimuli where 

three sets of dots moved in three different directions. As Treue et al. noted, these stimuli 

produce the subjective experience of seeing three distinct surfaces sliding across each other 

and therefore give rise to a trimodal internal sensory distribution of motion direction. In each 

trial, one of the motion directions was represented by more dots (“dominant” direction) than 

the other two (“non-dominant” directions). Subjects had to indicate the dominant direction of 

motion, which corresponds to the location of the tallest peak in the trimodal sensory 

distribution (Figure 1b). 
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Figure 7. Task and results for Experiment 4 which uses stimuli (moving dots) represented on a 

continuous scale. (a) Three sets of dots moved in three different direction separated by 120°. 

Similar to Experiments 1-3, one of the three sets of dots had more dots (“dominant” direction) 

compared to the other two sets (“non-dominant” directions). Each trial began with a fixation 

cross followed by the moving dot stimulus presented for 500 ms. The response screen was 

presented immediately after the offset of the moving dots and randomly assigned a stimulus-

response mapping on each trial. Similar to Experiments 1 and 2, subjects picked the dominant 

direction of motion between all three directions (3-alternative condition) or between the 

dominant direction and one randomly chosen non-dominant direction (2-alternative condition). 

(b) Task accuracy in the 2-alternatvie condition observed in the actual data (white bar) and 

predicted by the population (light gray bar) and summary (dark gray bar) models. The 

predictions for both models were derived based on the data in the 3-alternative condition. (c) 

Individual subjects’ differences in the accuracy of the 2-alternative condition between the 

predictions of each of the two models and the observed data. (d) Difference in Akaike 

Information Criterion (AIC) between the population and summary models. Positive AIC values 

indicate that the summary model predicts the observed data better. The red triangle indicates 

the average AIC difference. The summary model fits better than the population model for nine 

out of the 11 subjects.  

 

 

We used a similar modeling approach as in the previous three experiments (see Methods) 

where we fitted a model of the sensory representation to the 3-alternative condition (average 
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accuracy = 77.4%, chance level = 33.3%), and compared the predicted accuracy of the 2-

alternative condition between the population and summary models. As in the previous 

experiments, we observed that the population model consistently overestimated the accuracy 

of the 2-alternative condition (observed accuracy = 83.7%; predicted accuracy = 85.9%, t(10) = 

4.31, p = .002), whereas the summary model predicted the observed accuracy well (predicted 

accuracy = 83.1%, t(10) = 1.37, p = .2) (Figure 7b). In a direct comparison between the two 

models, the summary model predicted the observed task accuracy better for nine out of 11 

subjects (Figure 7c). 

 

Finally, we compared the population and summary models’ fits to the whole distribution of 

responses. On average, the AIC value of the summary model was lower by 5.47 points than the 

population model corresponding to the summary model being 15.40 times more likely for the 

average subject (Figure 7d). The total AIC difference across all subjects was 60.15 points lower 

for the summary model, corresponding to the summary model being 1.15 x 1013 times more 

likely than the population model. 
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Discussion 

We investigated whether the decision-level representation in decisions with multiple 

alternatives consists of a copy of the sensory representation or only a summary of it. We 

performed four experiments with either discrete stimulus categories or continuous stimuli 

producing multimodal distributions. The results across all experiments showed that the 

population model that assumes no loss of information from sensory to decision-making circuits 

did not provide a good fit to the data. Instead, the summary model, which assumes that 

decision-making circuits represent a reduced form of the sensory distribution, consistently 

provided a substantially better fit. These results strongly suggest that deliberate decision 

making for multiple alternatives only has access to a summary form of the sensory 

representation. 

 

Prior studies have convincingly demonstrated that humans can form complex, non-Gaussian9 

and even bimodal10 priors over repeated exposures to a given stimulus. However, it should be 

emphasized that this previous research has focused on the ability to learn a prior over many 

trials and did not examine the ability to use the sensory representation produced by a single 

stimulus on a single trial. To the best of our knowledge, the current experiments are the first to 

address the question of whether complex sensory codes for a single stimulus can be accurately 

represented in decision-making circuits.  

 

Why is it that decision-making circuits do not maintain a copy of the full sensory 

representation? While our study does not directly address the origins of this suboptimality, it is 
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likely that the reason for it lies in decision-making circuits having markedly smaller bandwidth 

than sensory circuits. One potential reason for this is that decision-making circuits have to be 

able to represent many different features (e.g., orientation, color, shape, object identity, etc.) 

each of which is processed in dedicated sensory regions. According to this line of reasoning, the 

generality inherent in decision-level representations necessitates that detail present in sensory 

cortex is lost. A related reason for the information loss in decision-making circuits is that the 

representations in such circuits often need to be maintained over a few seconds and therefore 

are subject to the well-known short-term memory decay11–14. For example, even though all 

conditions in our task were shown with a 0-ms delay, information may need to be passed 

serially from sensory to decision-making circuits thus inherently inducing short-term memory 

demands. According to this line of reasoning, even if decision-making circuits can represent a 

full copy of the information in sensory cortex, that copy will decay as soon as it begins to be 

assembled and thus information loss with necessarily accrue before the representation can be 

used for subsequent computations. Therefore, both the necessary generality of decision-level 

representations and the inherent limitations of short-term memory likely contribute to the 

sparse representations in decision-making circuits. 

 

If decision-making circuits indeed only have access to a summary form of the sensory 

representation, does that mean that absolutely no computations can be based on the complete 

sensory representations? There is evidence that decisions can take into account the full sensory 

representation both in simple situations where only two alternatives are present and in cases of 

automatic multisensory integration3,15–19. In general, automated computations performed 
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directly on the sensory representations may use the whole sensory representation19. Therefore, 

certain types of decision making can be performed via mechanisms that do indeed take 

advantage of the entire sensory representation with either no or minimal loss of information. 

However, it is likely that such computations are restricted to either very simple decisions or 

processes that are already automated. On the other hand, the last stage of decision-making 

supporting non-automatic, flexible, and deliberate decisions (which require short-term memory 

maintenance) only has access to a summary of the sensory representation. 

 

Our findings can be misinterpreted as suggesting that complex visual displays are represented 

as a point estimate: that is, the decision-level representation features only the best guess of the 

system (e.g., “60°” orientation, “red” color, or “+” symbol). The possibility of a decision-level 

representation consisting of a single point estimate has been thoroughly debunked20–24. For 

example, a point estimate does not allow us to rate how confident we are in our decision 

because we lack a sense of how uncertain our point estimate is. Given that humans and animals 

can use confidence ratings to judge the likely accuracy of their decisions25–27, decision-making 

circuits must have access to more than a point estimate of the stimulus. 

 

It should therefore be clarified that our summary model does not imply that decision making 

operates on point estimates. Indeed, as conceptualized in Figure 1, the summary model 

assumes that subjects have access to both the identity of the most likely stimulus category 

(e.g., the color “white”) and the level of activity associated with that stimulus category. The 

level of activity can then be used as a measure of uncertainty, and confidence levels can be 
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based on this level. Such confidence ratings will be less informative than the perceptual 

decision, which is exactly what has been observed in a number of studies2,28,29. In addition, this 

type of confidence generation may explain findings that confidence tends to be biased towards 

the level of the evidence for the chosen stimulus category and tends to ignore the level of 

evidence against the chosen category30–35. Thus, a summary model, consisting of the identity of 

the most likely stimulus and the level of activity associated with this stimulus, appears to be 

broadly consistent with findings related to how people compute uncertainty and is qualitatively 

different than a decision-level representation consisting of a point estimate. 

 

Another important question concerns whether any additional information is extracted from the 

sensory representation beyond what is assumed by the summary model. It is well known that 

humans can quickly and accurately extract a high-order “gist” of a scene36–38, as well as the 

statistical structure of an image39. Therefore, it appears that rich information is extracted 

during the time when the stimulus is being viewed. In fact, this information often goes beyond 

the extraction of just the identity of the most likely stimulus and the level of activity associated 

with this stimulus assumed by our summary model. For example, our moving dots stimulus in 

Experiment 4 resulted in the perception of three surfaces sliding on top of each other. This 

means that what was extracted in that experiment was the approximate location of each of the 

three peaks of the trimodal sensory distribution. Similarly, the subjects in our Experiment 1 

were certainly aware that four different colors were presented in each display and would have 

noticed if we ever presented additional colors. Subjects, therefore, had access to the identity of 

the different colors presented even though they did not have information about the activity 
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level associated with each color. Thus, our summary model is likely to be an oversimplification 

of the actual representation used for decision-making. This point is further underscored by the 

fact that when predicting the accuracy in the 2-alternative condition, the summary model 

showed a slight but systematic overprediction in Experiment 1 but underprediction in 

Experiment 2 (though it was better calibrated in Experiment 4). 

 

Thus, we do not claim that rich information about the visual scene cannot be quickly and 

efficiently extracted (it can). What our results do suggest, however, is that decision-making 

circuits do not create a copy of the detailed sensory representation that can be used after the 

disappearance of the stimulus. This conclusion is reminiscent of the way deep convolutional 

neural networks (CNNs) operate: the decisions of these networks are based on compressed 

representations in the later layers rather than the detailed representations in the early 

layers40,41. In other words, even though CNNs extract complex representations in their later 

layers, the networks do not perform decision making based directly on the more “sensory-like” 

representations present in their early layers. 

 

In conclusion, we found evidence from one exploratory (Experiment 1) and two preregistered 

(Experiments 2 and 3) studies that deliberate decision making for discrete stimulus categories is 

performed based on a summary of, rather than the whole, sensory representation. A final study 

(Experiment 4) extended these results to stimuli that give rise to continuous multimodal 

distributions. Our findings demonstrate that flexible computations may not be performed using 

the sensory activity itself but only a summary form of that activity.  
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Methods 

Subjects 

A total of 63 subjects participated in the four experiments (32 in Experiment 1, 10 in 

Experiment 2, 10 in Experiment 3, and 11 in Experiment 4). Each subject participated in only 

one experiment. All subjects provided informed consent and had normal or corrected-to-

normal vision. The study was approved by the Georgia Tech Institutional Review Board.  

 

Apparatus and experiment environment 

The experiments stimuli were presented on a 21.5-inch iMac monitor in a dark room. The 

distance between the monitor and the subjects was 60 cm. The stimuli were created in 

MATLAB, using Psychtoolbox 342. 

 

Experiment 1 

The stimulus consisted of 49 circles colored in four different colors – red, blue, green, and white 

– presented in a 7x7 grid on black background. The diameter of each colored circle was .24 

degrees and the distance between the centers of two adjacent circles was .6 degrees. The grid 

was located at the center of the screen. On each trial, one of the four colors was “dominant” – 

it was featured in 16 different locations – whereas the other three colors were non-dominant 

and were featured in 11 locations each. The exact locations of each color were pseudo-

randomly chosen so that each color was presented the desired number of times. 
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A trial began with a 500-ms fixation followed by 500-ms stimulus presentation. Subjects then 

indicated the dominant color in the display and provided a confidence rating without time 

pressure.  

 

There were three different conditions in the experiment. In the first condition, subjects could 

choose any of the four colors (4-alternative condition). In the second condition, after the 

stimulus offset subjects were asked to choose between only two options that were not 

announced in advance – one was always the correct dominant color and the other was a 

randomly selected non-dominant color (2-alternative condition). Finally, in the third condition, 

subjects were told in advance which two colors will be queried at the end of the trial (advance 

warning condition). For the purposes of the current analyses, we only analyzed the 4- and 2-

alternative conditions. The advanced warning condition and the confidence ratings were not 

analyzed. 

 

Subjects completed six runs, each consisting of three 35-trial blocks (for a total of 630 trials). 

The three conditions used in the experiment were blocked such that one block in each run 

consisted entirely of trials from one condition and each run included one block from each 

condition. Subjects were given 15-second breaks between blocks and untimed breaks between 

runs. Before the start of the main experiment, subjects completed a training session where they 

completed 15 trials per condition with trial-to-trial feedback, and another 15 trials per 

condition without trial-to-trial feedback. No explicit feedback was provided during the main 

experiment in any of Experiments 1-4 though the presence of second answers in Experiment 3 
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served as a form of feedback that those specific trials were wrong. We did not hypothesize that 

the presence or absence of feedback would alter the results in a systematic way and therefore 

chose to withhold feedback as in our previous experiments43,44. 

 

Experiment 2 

Following our exploratory analyses on the data from Experiment 1, we preregistered two 

additional experiments (Experiment 2 and 3) (osf.io/dr89k/). These experiments were designed 

to generalize the results from Experiment 1 and to obtain stronger evidence for our model 

comparison results on the individual subject level. Consequently, we had fewer number of 

subjects in Experiments 2 and 3 but each subject completed many more trials. We ended up 

making 3 deviations from the preregistration: (1) we included a different number of locations 

for non-dominant items (the preregistration wrongly indicated a number that is impossible 

given the number of categories and total number of characters), (2) we used a dot for the 

fixation even though the preregistration indicated that we would use a cross-hairline, and (3) 

we tested additional models (the preregistration only included the population and summary 

models from Experiment 1). 

 

The stimulus in Experiments 2 and 3 consisted of 49 characters from among 6 possible symbols 

– ‘?’, ‘#’, ‘$’, ‘%’, ‘+’, and ‘>’ – presented in a 7x7 grid. The symbols were chosen to be maximally 

different from each other. The symbols’ width was .382 degrees on average and height was .66 

degrees on average. The distance between two centers of adjacent symbols was 1.1 degrees. 

The symbols were presented in white on black background. On each trial, one of the six 
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symbols was “dominant” – it was featured in 14 different locations – whereas the other five 

were non-dominant and were featured in 7 locations each. The exact locations in the 7x7 grid 

where each symbol was displayed were pseudo-randomly chosen so that each symbol was 

presented the desired number of times.  

 

Each trial began with a 500-ms fixation, followed by a 500-ms stimulus presentation. The stimuli 

were then masked for 100 ms with a 7x7 grid of ellipsoid-shaped images consisting of uniformly 

distributed noise pixels. Each ellipsoid had width of .54 degrees and height of .95 degrees, 

ensuring that it entirely covered each symbol. After the offset of the mask, subjects indicated 

the dominant symbol in the display without time pressure. No confidence ratings were 

obtained. The experiment had two conditions equivalent to the first two conditions in 

Experiment 1. In the first condition, subjects had to choose the dominant symbol among all six 

alternatives (6-alternative condition). In the second condition, subjects had to choose between 

two alternatives that were not announced in advance: the correct dominant symbol and a 

randomly selected non-dominant symbol (2-alternative condition). 

 

To obtain clear individual-level results, we collected data from each subject over the course of 

three different days. On each day, subjects completed 5 runs, each consisting of 4 blocks of 50 

trials (for a total of 3,000 trials per subject). The 6- and 2-alternative condition blocks were 

presented alternately, so that there were two blocks of each condition in a run. Subjects were 

given 15-second breaks between blocks and untimed breaks between runs. Before the start of 

the main experiment, subjects were given a short training on each day of the experiment.  
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Experiment 3 

Experiment 3 used the same stimuli as in Experiment 2. Similar to Experiment 2, we presented a 

500-ms fixation, a 500-ms stimulus, a 100-ms mask, and finally a response screen. Experiment 3 

consisted of a single condition – subjects always chose the dominant symbol among all six 

alternatives. However, on 40% of trials in which subjects gave a wrong answer, they were asked 

to provide a second answer by choosing among the remaining five symbols. Subjects could take 

as much time as they wanted for both responses. Subjects again completed 3,000 trials over 

the course of three different days in a manner equivalent to Experiment 2. 

 

Experiment 4 

Experiment 4 employed a modified version of moving dots stimulus adapted from Treue et al.8. 

Three groups of dots moved in three different directions separated by 120°. Unlike many other 

experiments with moving dots, here all dots moved coherently in one of the three directions. 

The dots (density: 7.74/degree2; speed: 4°/sec) were white and were presented inside a black 

circle (3° radius) positioned at the center of the screen on gray background. Each dot moved in 

one of the three directions and was redrawn to a random position if it went outside the black 

circle. In each trial, a “dominant” direction was randomly selected, and the two “non-

dominant” directions were fixed to ±120° from it. The proportion of dots moving in the 

dominant direction was individually thresholded for each subject before running the main 

experiment and was always greater than the proportions of dots moving in each non-dominant 

direction (which were equal to each other). 
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Each trial began with a white fixation cross presented for one second. The moving dots stimulus 

was then presented for 500 ms, followed immediately by the response screen which randomly 

assigned the numbers 1-3 to the three directions of motion (see Figure 7a). Subjects’ task was 

to press the keyboard number corresponding to the dominant motion direction. Similar to 

Experiments 1 and 2, there were two conditions: subjects chose the dominant direction of 

motion among all three directions (3-alternative condition) or between the dominant and one 

randomly chosen non-dominant direction (2-alternative condition). In the 2-alternative 

condition, the two available options were colored in white and the unavailable option was 

colored in black. 

 

Each subject completed three sessions of the experiment on different days. Each session 

started with a short training session. On the first day, subjects completed six blocks of 40 trials 

with the 3-alternative condition. The proportion of dots moving in the dominant direction was 

initially set to 60%. After each block, we updated the proportion of dots moving in the 

dominant direction such that the proportion of dots for the dominant direction increased by 

10% if accuracy was lower than 60% or decreased by 10% if accuracy was greater than 80%. 

Once the task accuracy fell in the 60-80% range, the proportion of dots moving in the dominant 

direction was adjusted by half of a previous proportion change. After the six blocks, subjects’ 

performance was reviewed by an experimenter who could further adjust the proportion of dots 

moving in the dominant direction. Once selected, the proportion of dots moving in the 

dominant direction was fixed for all sessions. Each session had 5 runs, each consisting of 4 
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blocks of 50 trials (for a total of 3,000 trials per subject). The 3- and 2-alternative conditions 

were presented in alternate blocks with the condition presented first counterbalanced between 

subjects.  

 

Model development for studies with discrete categories (Experiments 1-3) 

We developed and compared two main models of the decision-level representation. According 

to the “population” model, decision-making circuits have access to the whole sensory 

representation. On the other hand, according to the “summary” model, decision-making 

circuits only have the access to a summary of the sensory representation but not to the whole 

sensory distribution. 

 

In order to compare the population and summary models, we first had to develop a model of 

the sensory representation. We created this model using the 4- and 6-alternative conditions in 

Experiments 1 and 2, and the first answer in Experiment 3. The population and summary 

models were then used to make predictions about the 2-alternative condition in Experiments 1 

and 2, and the second answer in Experiment 3. These predictions were made without the use of 

any extra parameters. 

 

We created a model of the sensory representation for Experiment 1 as follows. We assumed 

that each of the four types of stimuli (red, blue, green, or white being the dominant color) 

produced variable across-trial activity corresponding to each of the four colors. We modeled 

this activity as Gaussian distributions whose mean (𝜇) is a free parameter and variance is set to 
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one. However, in our experiments, the perceptual decisions only depended on the relative 

values of the activity levels and not on their absolute values. In other words, adding a constant 

to all four 𝜇’s for a given dominant stimulus would result in equivalent decisions. Therefore, 

without loss of generality, we set the mean for the activity corresponding to each dominant 

color as 0. This procedure resulted in 12 different free parameters such that for each of the 4 

possible dominant colors there were 3 𝜇’s corresponding to each of the non-dominant colors. 

Finally, we included an additional parameter that models subjects’ lapse rate. Note that the 

inclusion of lapse rate has a greater influence on percent correct in the 2-alternative compared 

to the 4-alternative condition because overall performance is higher in the 2-alternative 

condition. Therefore, introducing a lapse rate favors the population model by leading to 

predictions of lower performance in the 2-alternative condition (which helps the population 

model since it consistently predicts higher performance that what was empirically observed). 

 

The sensory representation was modeled in a similar fashion in Experiments 2 and 3. In both 

cases, the model was created based on subjects choosing between all available options (i.e., the 

6-alternative condition in Experiment 2 and the first answer in Experiment 3). The model of the 

sensory representation in Experiments 2 and 3 thus had 30 free parameters related to the 

sensory activations (such that for each of the 6 possible dominant symbols there were 5 𝜇’s 

corresponding to each of the non-dominant symbols) and an additional free parameter for the 

lapse rate. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

We modeled the activations produced by each stimulus type separately to capture potential 

relationships between different colors or symbols (e.g., some color pairs may be perceptually 

more similar than others). However, we re-did all analyses using the simplifying assumption 

that when a color is non-dominant, that color has the same 𝜇 regardless of which the dominant 

color is. This assumption allowed us to significantly reduce the number of parameters in our 

model of the sensory representation. In this alternative model of the sensory representation, 

the mean activity for each color/symbol was determined only based on whether that 

color/symbol was dominant or not. Therefore, we included two free parameters for each 

color/symbol. However, because of the issue described above (adding a constant to all 𝜇’s in a 

given experiment would result in identical decisions), we fixed one of the 𝜇’s to 0. This 

modeling approach reduced the total number of free parameters to eight in Experiment 1 

(seven 𝜇’s and a lapse rate) and 12 free parameters in Experiments 2 and 3 (11 𝜇’s and a lapse 

rate). This modeling approach produced virtually the same results (Supplementary Figure 5).  

 

Lastly, we considered two different instantiations of the summary model for Experiment 3. In 

the first instantiation, which we refer to as the Summary & Random Choice model, it is assumed 

that when the first answer is wrong, then the subject would randomly pick a second answer 

among the remaining options. In the second instantiation, which we refer to as the Summary & 

Strategic Choice model, it is assumed that when the first answer is wrong, then the subject 

would pick the stimulus category of a randomly recalled symbol from the original 7x7 grid that 

is different from the stimulus category chosen with the first answer. According to this model, 
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the subject would pick the second answer correctly 33.3% of the time and each incorrect 

symbol will be chosen 16.7% of the time (Supplementary Figure 4). 

 

Model development for Experiment 4 

Experiment 4 employed moving dots and required subjects to indicate the dominant direction 

of motion. Therefore, unlike the tasks in Experiments 1-3 that were based on discrete 

categories of stimuli, the task in Experiment 4 featured a continuous variable (direction of 

motion, varying from 0° to 360°). However, despite the continuous nature of the stimulus, the 

three directions of motion could be easily identified implying that the stimulus resulted in a 

trimodal sensory distribution8. This allowed us to use the same modeling approach from 

Experiments 1-3 by essentially treating the three motion directions as discrete stimuli. We 

again developed a model of the sensory representation that was fit to the 3-alternative 

condition. Unlike Experiments 1-3 where the categories of stimuli were fixed, here the 

dominant direction of motion was chosen randomly (from 0° to 360°) on every trial. Therefore, 

the model only had parameters for the heights of the non-dominant and dominant directions of 

motion. Because, just as in the previous experiments, adding a constant to all both parameters 

would result in identical decisions, the parameters for the non-dominant direction was fixed 

thus leaving us with a single free parameter. Once the model was fit to the data from the 3-

alternative condition, the population and summary models had no free parameters when 

applied to the data from the 2-alternative condition. 

 

Model fitting and model comparison 
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For all four experiments, we fit the models to the data as previously45–48 using a maximum 

likelihood estimation approach. The models were fit to the full distribution of probabilities of 

each response type contingent on each stimulus type:  

 

𝐿𝑜𝑔	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = 	.log	(𝑝=>) ∗ 𝑛=>
=,>

 

 

where 𝑝=>  is the model’s predicted probability of giving a response 𝑖 when stimulus 𝑗 is 

presented, whereas 𝑛=>  is the observed number of trials where a response 𝑖 was given when 

stimulus 𝑗 was presented. We give formulas for computing 𝑝=>  in a simplified model without a 

lapse rate in the Supplementary Methods. Because the analytical expressions to obtain 𝑝=>  are 

difficult to compute, we derived the model behavior for every set of parameters by numerically 

simulating 100,000 individual trials with that parameter set. Model fitting was done by finding 

the maximum-likelihood parameter values using simulated annealing49.  Fitting was conducted 

separately for each subject.  

 

Based on the parameters of the model describing the sensory representation, we generated 

predictions for the 2-alternative condition (Experiments 1, 2, and 4) and the second answer 

(Experiment 3) for both the population and summary models. These predictions contained no 

free parameters. To compare the models, we calculated the log-likelihood ratio (log	(ℒ)) of 

each model. We additionally computed Akaike Information Criterion (AIC):   
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𝐴𝐼𝐶 = −2 × log	(ℒ) + 2 × 𝑘, 

 

where 𝑘 is the number of parameters of a model. When applied to the 2-alternative condition 

(Experiments 1, 2, and 4) and the second answer (Experiment 3), the population and summary 

models had no free parameters. Therefore, AIC was equal to −2 × log	(ℒ). We chose to report 

AIC values instead of the raw log	(ℒ) values because of their wider usage and larger familiarity 

but all conclusions would remain the same if the raw log	(ℒ) values are considered. Further, 

because all of our models had no free parameters, other measures, such as the AIC corrected 

for small sample sizes (AICc) or the Bayesian Information Criterion (BIC), would result in the 

exact same pattern of results. Note that lower AIC values correspond to better model fits.  

 

Data and code 

The data from the four experiments, together with all of the analysis codes are freely available 

online at https://osf.io/d2b9v/files/. 
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Supplementary material  

Supplementary Methods 

Mathematically deriving the difference in accuracy between the population and summary 

models in the 2-alternative condition 

In the Results section on Experiment 1, we described the intuition regarding why the 

population model predicts higher accuracy than the summary model in the 2-alternative 

condition (Figure 3). Here we provide a precise mathematical formulation. Note that the 

derivations below assume the absence of a lapse rate, which would act to attenuate but not 

remove the differences between the accuracy levels predicted by the two models. 

 

Let 𝑝@ABC=  be the probability that, for a particular set of parameters describing the sensory 

response, the dominant stimulus produces the 𝑖DE highest activation. Then, the accuracy in the 

4-alternative condition would simply equal 𝑝@ABC! as correct trials require that the dominant 

color produces the highest activation. We can then derive the accuracy in the 2-alternative 

condition for the population and summary models. 

 

To compute the accuracy in the 2-alternative condition for the population model, we can derive 

the expected accuracy when the dominant stimulus produces the 𝑖DE highest activation for 𝑖 =

1,2,3,4. When 𝑖 = 1, the dominant stimulus produces the highest activation and the subject is 

always correct. When 𝑖 = 2, the subject is correct when the alternative option happened to be 

the stimulus with 3rd or 4th highest activation but is wrong when the alternative option 

happened to be the stimulus with the highest activation. Because the alternative option was 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 25, 2020. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

chosen randomly, the probability of being correct in this case is 6
9
. For similar reasons, when 𝑖 =

3, the probability of being correct is !
9
. Finally, when 𝑖 = 4, the subject would be wrong 

regardless which non-dominant stimulus is chosen as the alternative option. Therefore, 

𝐴𝑐𝑐FAFGBA@HI,6GJID, the overall accuracy of the population model in the 2-alternative condition, 

is:  

 

𝐴𝑐𝑐FAFGBA@HI,6GJID = 𝑝@ABC! +
2
3 ∗ 𝑝@ABC6 +

1
3 ∗ 𝑝@ABC9 

 

To compute the accuracy in the 2-alternative condition for the summary model, we can again 

derive the expected accuracy when the dominant stimulus produces the 𝑖DE highest activation 

for 𝑖 = 1,2,3,4. As with the population model, when 𝑖 = 1, the dominant stimulus produces the 

highest activation and the subject is always correct. However, unlike the population model, 𝑖 =

2,3,4 produce the same probability of being correct. Indeed, in all of these cases, the dominant 

stimulus does not produce the highest activation and the summary model does not have access 

to the activations other than the highest activation. From the remaining three stimuli, there is a 

!
9
 chance that the stimulus with the highest activation was chosen as one of the two options, in 

which case the subject is always wrong. On the other hand, with 6
9
 chance another stimulus that 

did not produce the highest activation is chosen as the alternative option. Because the subject 

chooses randomly in this case, the probability of being correct is !
6
. Therefore, the probability of 

being correct for 𝑖 = 2,3,4 is always 6
9
∗ !
6
= !

9
 and 𝐴𝑐𝑐KLBBJMNGBA@HI,6GJID, the overall accuracy 

of the summary model in the 2-alternative condition, is: 
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𝐴𝑐𝑐KLBBJMNGBA@HI,6GJID = 𝑝@ABC! +
1
3𝑝@ABC6 +

1
3 ∗ 𝑝@ABC9 +

1
3 ∗ 𝑝@ABC" 

 

From here we obtain that the difference between the accuracy of the population and summary 

models in the 2-alternative condition is !
9
(𝑝@ABC6 − 𝑝@ABC"). Because the dominant stimulus is 

at least as likely to produce the second highest than the 4th highest activation, 𝑝@ABC6 −

𝑝@ABC" ≥ 0, which means that the population model predicts higher accuracy in the 2-

alternative condition compared to the summary model. Similar derivations can be made for 

Experiments 2-4 as well. 

 

Analytical expression for model behavior 

For completeness, we provide formulas for 𝑝=>, the predicted probability of giving a response 𝑖 

when stimulus 𝑗 is presented. Note that as in the section above, these expressions assume the 

absence of a lapse rate. When initially fitting the model to the 4-alternative condition in 

Experiment 1, 𝑝!>  equals: 

 

𝑝!> = 𝑃I𝑥!> > maxI𝑥6> , 𝑥9> , 𝑥">OO

= 	 P P P P 𝑓I𝑥!>R	𝜇!> , 1)𝑓I𝑥6>R	𝜇6> , 1)𝑓I𝑥9>R	𝜇9> , 1)𝑓I𝑥">R	𝜇"> , 1)	𝑑𝑥"> 	𝑑𝑥9> 	𝑑𝑥6> 	𝑑𝑥!>

O!"

GP

O!"

GP

O!"

GP

P

GP
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where 𝜇=>  is the mean activity for option 𝑖 when stimulus 𝑗 is presented, 𝑥=>  is the activity on a 

specific trial for option 𝑖 when stimulus 𝑗 is presented, and 𝑓(𝑥	|	𝜇, 1) = 	 !
√6R

	𝑒G
($%&)(

(  is the 

Gaussian probability distribution of sensory evidence. The probability 𝑝=>  can be computed in 

an equivalent fashion when 𝑖 ≠ 1 and when the total number of stimulus categories is different 

than four (as in Experiments 2-4). Similar formulas can be obtained when fitting the summary 

and population models to the 2-alternative condition. 

 

Model development for all additional models 

In addition to the population and summary models, we considered four other models. These 

models were developed in order to test additional hypotheses about the nature of the 

representation at the decision stage and the strategies that our subjects could have used. We 

have not extended this set of four more models even further because any additional models 

were judged to be too ad hoc and generally provided even worse fits to the data. 

 

The first two of the additional models postulated that decision-making circuits contain 

information about the sensory representation that is more detailed than the summary model 

but less detailed than the population model. Specifically, we created models according to which 

decision-making circuits have access to the highest two or three levels of activation (“2-

Highest” and “3-Highest” models, respectively). Just as the summary and population models, 

these two models were used to predict subjects’ performance in the 2-alternative condition of 

Experiments 1-2 without any free parameters (the predictions were derived from the same 

model of the sensory representation used for the summary and population models). Note that 
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the 3-Highest model is functionally equivalent to the population model in the context of 

Experiment 1 and both the 2- and 3-Highest models are functionally equivalent to the 

population model in the context of Experiments 3 and 4. 

 

The last two models postulated that subjects attended to just two or three stimulus categories 

(i.e., colors or symbols) on each trial and made their decisions based on a full probability 

distribution over the activity levels of the attended categories. We called these the “2-

Attention” and “3-Attention” models, respectively. The intuition behind these models is that 

subjects may not be able to process well the whole set of categories and may therefore choose 

to focus only on a subset of the categories. The subset was chosen randomly on each trial 

(otherwise, if subjects always ignored a given stimulus category, that category will never be 

selected; however, we never observed such behavior in any of our subjects). We first fit these 

models to the 4-alternative condition (Experiment 1), 6-alternative condition (Experiment 2), 

and the first answer (Experiment 3) in order to create a model of the sensory representation. 

The models were then used to predict the 2-alternative condition (Experiments 1 and 2) or the 

second answer (Experiment 3) without any free parameters. This procedure was equivalent to 

the procedure used for the summary and population models. 
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Supplementary Results 

Besides the population and summary models, we constructed and tested four additional 

models. The “2-Highest” and “3-Highest” models postulated that decision-making circuits have 

access to the two or three highest activations of the sensory distribution, respectively. These 

models thus assumed a less severe loss of information compared to the summary model while 

still postulating that the whole sensory code is not represented in decision-making circuits. On 

the other hand, the “2-Attention” and “3-Attention” models postulated that subjects choose 

either two or three stimulus categories to attend to and then make their decisions based on a 

full probability distribution over the activity levels of the attended categories. We found that 

neither of these models outperformed the summary model in any of our experiments.  

 

Experiment 1 

The 2-Highest model (average predicted accuracy = 83.5%) significantly overestimated the 

observed accuracy level for the 2-alternative condition (average difference = 5.46%, t(31) = 

7.49, p = 1.94 x 10-8) (Supplementary Figure 1a). Moreover, the absolute errors in the 

prediction of the 2-Highest model for the 2-alternative condition (average = 5.86%) is larger 

compared to the summary model (t(31) = 4.78, p = 4.07 x 10-5). Model comparison favored the 

summary model over the 2-Highest model by an average 11.86 AIC points (corresponding to the 

summary model being 375.41 times more likely for the average subject) and by 379.39 AIC 

points in the group as a whole (corresponding to the summary model being 2.42 x 1082 times 

more likely in the group) (Supplementary Figure 1b and c). Note that within the context of 

Experiment 1, the 3-Highest model is functionally equivalent to the population model. Indeed, 
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according to the 3-Highest model, the activity level that is not represented is always the lowest; 

therefore, the 3-Highest model allows one to still order all four activity levels in descending 

order making it equivalent to the population model.  

 

The 2- and 3-Attention performed even worse. These models could not even be fit to the data 

in the 4-alternative condition with both models predicting much lower performance (2-

Attention model: average difference = -23.8%, t(31) = 22.5, p = 9.08 x 10-21; 3-Attention model: 

average difference = -6.73%, t(31) = 10.68, p = 6.47 x 10-12; Supplementary Figure 6a). 

Nevertheless, we still generated the predictions of these models for the 2-alternative condition 

and again found that they strongly underpredicted the observed accuracy (2-Attention model: 

average difference = -21.2%, t(31) = 24.84, p = 5 x 10-22; 3-Attention model: average difference 

= -8.36%, t(31) = 11.18, p = 2.08 x 10-12; Supplementary Figure 6b,c). Finally, when compared to 

the summary model, both models showed much worse fit (2-Attention model: average AIC 

difference = 1.19 x 1014; 3-Attention model: average AIC difference = 8.12 x 103; Supplementary 

Figure 6d). 

 

Experiment 2 

The 2-Highest model overestimated the observed accuracy in the 2-alternative condition 

(74.9%; t(9) = 5.65, p = 3.12 x 10-4) and provided worse fit to the data compared to the 

summary model (average AIC difference = 18.81 points, total AIC difference = 188.07 points; 

Supplementary Figure 2). The 3-Highest model fared even worse. It overestimated the accuracy 

in the 2-alternative condition even more severely (76.7%; t(9) = 8.27, p = 1.69 x 10-5) and 
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provided much worse fit to the data compared to the summary model (average AIC difference = 

39.87 points, total AIC difference = 398.65 points; Supplementary Figure 2). 

 

Similar to the result in Experiment 1, the 2- and 3-Attention models could not even be fit to the 

6-alternative condition with both models predicting much lower performance (2-Attention 

model: average difference = -21.6%, t(9) = 8.07, p = 2.07 x 10-5; 3-Attention model: average 

difference = -11.3%, t(9) = 5.50, p = 3.80 x 10-4; Supplementary Figure 6e). We still generated 

the predictions of these models for the 2-alternative condition and again found that they 

strongly underpredicted the observed accuracy (2-Attention model: average difference = -

19.2%, t(9) = 10.25, p = 2.91 x 10-6; 3-Attention model: average difference = -14.2%, t(9) = 8.35, 

p = 1.57 x 10-5; Supplementary Figure 6f,g). Finally, when compared to the summary model, 

both models showed much worse fit (2-Attention model: average AIC difference = 2.71 x 1061; 

3-Attention model: average AIC difference = 1.30 x 1037; Supplementary Figure 6h). 

 

Experiment 3 

The design of Experiment 3 made the 2- and 3-Highest models functionally equivalent to the 

population model (and thus their predictions were equivalent to that model). Similar to 

Experiments 1 and 2, the 2- and 3-Attention models did not fit well to the first answer (2-

Attention model: average difference = -22%, t(9) = 8.41, p = 1.48 x 10-5; 3-Attention model: 

average difference = -11.2%, t(9) = 5.10, p = 6.47 x 10-4; Supplementary Figure 6i). We still 

generated the predictions of these models for the second answer and again found that they 

strongly underpredicted the observed accuracy (2-Attention model: average difference = -
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23.1%, t(9) = 12.87, p = 4.23 x 10-7 ; 3-Attention model: average difference = -15.9%, t(9) = 7.46, 

p = 3.84 x 10-5; Supplementary Figure 6j,k). Finally, when compared to the summary model, 

both models showed much worse fit (2-Attention model: average AIC difference = 3 x 1048; 3-

Attention model: average AIC difference = 3.09 x 1014; Supplementary Figure 6l). 
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Supplemenary Figures 

 

Supplementary Figure 1. Results for the 2-Highest model in Experiment 1. The results 
regarding the population and summary models are the same as in Figure 4. (a) Task accuracies 
of the actual data (white bar; 78% accuracy), the population and summary model (light gray 
bars) and the 2-Highest model (dark gray bar). The 2-Highest model’s predicted accuracy 
(83.5%) is in between the accuracy predicted by the population (84.2%) and summary (79.7%) 
models. (b) Difference in the accuracy for the 2-alterantive condition between the models’ 
predictions and the observed data. The 2-Highest model’s deviations in predicted accuracy are 
generally higher than for the summary model. (c) Difference in Akaike Information Criterion 
(AIC) between the three models. Positive AIC values indicate that the model subtracted (i.e., 
Model B) provides a better fit to the data. The 2-Highest model provides better fits than the 
population model, but worse than the summary model in the majority of the subjects.   
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Supplementary Figure 2. Results for the 2- and the 3-Highest models in Experiment 2. The 
results regarding the population and summary models are the same as in Figure 5. (a) Task 
accuracies of the actual data (white; 71.6% accuracy) and the four models. Similar to the result 
in the Experiment 1, the 2- and the 3-Highest models’ predicted accuracies (74.9% and 76.7% 
respectively) fell in between the predicted accuracies of the population (77.5%) and the 
summary (70.1%) models. (b) Difference in task accuracy between the models and the observed 
data. (c) Model fit comparison between the three models. The summary model has the lowest 
AIC values, followed by the 2-Highest, the 3-Highest, and the population model. 
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Supplementary Figure 3. Predictions of the population, the Summary & Random Choice, and 
Summary & Strategic Choice models for the second answer in Experiment 3. In all examples, 
the most frequently presented symbol is ‘%’ but the symbol ‘$’ produced the highest activity. 
The first answer is always the same across all models (left panels) – each model postulates that 
the highest activity will be chosen first. The predictions diverge for the second answer (right 
panels; the activity for ‘$’ symbol is represented in a light gray bar to indicate that it cannot be 
chosen again). (a) According to the population model, decision-making circuits have access to 
the activity levels associated with all symbols (dark gray bars). Therefore, the population model 
would imply that the second answer will have a relatively high accuracy since the dominant 
symbol is likely to have higher activity than the other symbols. (b) According to the summary 
models, decision-making circuits do not have information about anything but the most highly 
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activated symbol. After an incorrect response, according the Summary & Random Choice 
model, subjects pick an answer randomly, resulting in 20% accuracy level. (c) According to the 
Summary & Strategic Choice model, subjects choose the second answer strategically. 
Specifically, the model postulates that subjects choose the stimulus category of a randomly 
recalled symbol from the 7x7 grid (see Supplementary Figure 4 for details). Therefore, 
according to the Summary & Strategic Choice model, the accuracy for the second answer will be 
33.3%. 
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Supplementary Figure 4. Strategy assumed for the Summary & Strategic Choice model. In the 
example above, a subject incorrectly chooses the ‘$’ symbol with their first answer (top panel; 
the correct answer is ‘%’). The model assumes that for their second answer, subjects recollect a 
single symbol from the original display that was not their first choice and respond with it. 
Indeed, given that subjects inspected the stimuli for 500 ms, they could easily remember one 
location with a symbol other than the one they picked for their first answer. With this strategy, 
the probability that the second answer would be correct is 33.3%, since there were 14 instances 
of the dominant symbol and 42 locations in the grid (discounting the locations occupied by the 
symbol chosen with the first answer). Similarly, the probability of picking any specific wrong 
symbol as the second choice would be 16.7%, since there were 7 instances of that non-
dominant symbol and 42 total remaining location in the grid. 
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Supplementary Figure 5. Results of an alternative way of modeling the sensory response. In 
the analyses reported in the main paper, we modeled the activation levels of each stimulus 
category (i.e., colors in Experiment 1 and symbols in Experiments 2 and 3) differently depending 
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on the identity of the dominant stimulus. The number of free parameters was thus 13 in 
Experiment 1 (4 possibilities for the dominant color × 3 free parameters to model the 
activation for each stimulus category + 1 lapse rate) and 31 in Experiments 2 and 3 (6 
possibilities for the dominant symbol × 5 free parameters to model the activation for each 
stimulus category + 1 lapse rate). We re-analyzed our data using the simplifying assumption of 
independence between the activations produced by a given stimulus category and the identity 
of the dominant color. In other words, for example, the color green when non-dominant was 
assumed to produce the same average activation regardless of whether the dominant color was 
red, blue, or white. This simplifying assumption decreased the number of free parameters 
significantly: There were eight free parameters in Experiment 1. The free parameters were used 
to model the activations of 4 stimulus categories × 2 possible states (dominant/non-dominant) 
and an additional parameter was used for the lapse rate. However, because adding a constant 
to all activation parameters retains the relationship between them, one of these parameters 
was set as zero, bring the total number of free parameters to eight. Similarly, the six symbols in 
Experiments 2 and 3 resulted in 12 total free parameters. The figure shows model comparison 
results for this simplified modeling architecture for (a) Experiment 1, (b) Experiment 2 and (c) 
Experiment 3. In all cases, the summary model is preferred over the population model, typically 
to the same extent as in the main analyses. Thus, despite the differences between the 
simplified modeling architecture and the analyses reported in the main experiment, both led to 
essentially the same results. 
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Supplementary Figure 6. Results of the 2- and 3-Attention models. Both models provided very 
poor fits to Experiment 1 (panels a-d), Experiment 2 (panels e-h), and Experiment 3 (panels j-l). 
Specifically, the models could not even fit well the 4-alternative, 6-alternative, and first choice 
conditions in Experiments 1, 2, and 3, respectively (panels a, e, and i). Not surprisingly, the 
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models also performed poorly for estimating task performance in the 2-alternative (Experiment 
1 and 2) and second choice (Experiment 3) conditions (panels b, f, and j). Specifically, the 
models underestimated task performance in the 2-alternative and second choice conditions 
(panels c, g, and k). Finally, the both models had substantially higher AIC values compared to 
the summary model (panels d, h, and l).  
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