Abstract
Speciation is facilitated by the evolution of reproductive barriers that prevent or reduce hybridization among diverging lineages. However, the genetic mechanisms that control the evolution of reproductive barriers remain elusive, particularly in natural populations. We identify a gene associated with divergence in chemical courtship signaling in a pair of nascent orchid bee lineages. Male orchid bees collect perfume compounds from flowers and other sources to subsequently expose during courtship display, thereby conveying information on species identity. We show that these two lineages exhibit differentiated perfume blends and that this change is associated with the rapid evolution of a single odorant receptor gene. Our study suggests that reproductive isolation evolved through divergence of a major barrier gene involved in chemically mediated pre-mating isolation via genetic coupling.