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Abstract 

Motivation 

Normalizing diverse representations of sequence variants is critical to the 

elucidation of the genetic basis of disease and biological function. NCBI has long 

wrestled with integrating data from multiple submitters to build databases such as 

dbSNP and ClinVar.  Inconsistent representation of variants among variant callers, local 

databases, and tools results in discrepancies and duplications that complicate analysis. 

Current tools are not robust enough to manage variants in different formats and different 

reference sequence coordinates. 

Results 
The SPDI (pronounced “speedy”) data model defines variants as a sequence of 4 

operations: start at the boundary before the first position in the sequence ​S​, advance ​P 

positions, delete ​D​ positions, then insert the sequence in the string ​I, ​giving the data 
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model its name, SPDI. The SPDI model can thus be applied to both nucleotide and 

protein variants, but the services discussed here are limited to the nucleotide. Current 

services convert representations between HGVS, VCF, and SPDI and provide two 

forms of normalization.  The first, based on the NCBI Variant Overprecision Correction 

Algorithm, returns a unique, normalized representation termed the “Contextual Allele” 

for any input.  The SPDI name, with its four operations, defines exactly the reference 

subsequence potentially affected by the variant, even in low complexity regions such as 

homopolymer and dinucleotide sequence repeats. The second level of normalization 

depends on alignment dataset (ADS).  SPDI services perform remapping (AKA lift-over) 

of variants from the input reference sequence to return a list of all equivalent Contextual 

Alleles based on the transcript or genomic sequences that were aligned.  One of these 

contextual alleles is selected to represent all, usually, that based on the latest genomic 

assembly such as GRCh38 and is designated as the unique “Canonical Allele”.   ADS 

includes alignments between non-assembly RefSeq sequences (prefixed NM, NR, NG), 

as well inter- and intra-assembly-associated genomic sequences (NCs, NTs, and NWs) 

and this allows for robust remapping and normalization of variants across sequences 

and assembly versions.  

Availability and implementation 
 

The SPDI services are available for open access at: 

https://api.ncbi.nlm.nih.gov/variation/v0/ 
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Contact: ​holmesbr@ncbi.nlm.nih.gov 

 

Introduction 

Understanding genetic variants and the relationships between phenotype and 

genotype is critical for genetic research and for the application of precision medicine ​[1]​. 

Within the next decade, millions of genomes will be sequenced and billions of variants 

will be called from them to provide the data to determine the genetic contribution to 

diseases, cancers, and responses to drugs and treatments .  ​Crucial to variant analysis 1

is the normalizing of representations from disparate callers and formats to compare both 

to user data sets as well as annotations cataloged in public databases such as dbSNP 

[2]​ and ClinVar ​[3]​.  The normalization step can be challenging because any variant can 

be described using different formats (VCF, HGVS, and other identifiers) and different 

reference sequence types (mRNA, protein, and genomic) and assembly versions (hg18, 

hg19, NCBI36, GRCh37, or GRCh38).  Previously, NCBI’s dbSNP, a database of small 

genetic variations, addressed this problem by aggregating variant data from disparate 

submitters by mapping the variant to the genome using defined sequences flanking the 

variant site.  All novel and existing variant flanking sequences were mapped to the latest 

genomic assembly by BLAST ​[4]​.  Variants of the same type (SNV, deletion, ​etc. ​) and 

that mapped to the same genomic locations were assigned a unique dbSNP Reference 

1 "All of Us Research Program - NIH." ​https://allofus.nih.gov/​. Accessed 15 Aug. 2018. 
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SNP cluster ID (RSID) to create a non-redundant set of reference variants (RefSNP). 

The latest dbSNP build, 151 (April 2018 release), has over 650 million human RefSNPs 

that were created from over 2 billion submitted SNP (SubSNP).  However, the algorithm 

employed by dbSNP was overly precise for variants in low complexity regions where 

reported variant position can be ambiguous (Figure 3).  RefSNP clustering artifacts also 

resulted from imperfect alignments, errors in submitted flanking sequence, and 

ambiguous mapping in duplicated or repetitive genomic regions.  Another roadblock to 

variant normalization has been different reporting formats commonly used by the 

community.  The Human Genome Variation Society (HGVS) format is a recommended 

standard for describing variation in the literature ​[5]​.  The genomic community often 

reports variants in VCF format ​[6]​ with asserted locations anchored on a reference 

sequence.  Tan et al. ​[7]​ have developed a variant normalization method that is left 

aligned and parsimonious for VCF format and a variant tool that combine and compare 

variants from two VCF files is available ​[8]​.  However, these tools are specific to VCF 

and do not work across other variant nomenclature formats such as HGVS. 

Furthermore, they lack an integrated remapping (lift-over) function to normalize variants 

reported on different reference sequences (mRNA, genomic loci, and contigs) and 

assembly versions.  To address these issues, we developed the SPDI data model to 

improve variant representation along with algorithms and services to improve variant 

normalization.  These services are available via a web API 

( ​https://api.ncbi.nlm.nih.gov/variation/v0​) to aid users in variant analysis and 
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interpretation, and now underpin the dbSNP and ClinVar dataflows to aggregate 

submissions and reannotate variants for regular releases. 

 

Methods 

Variant Model 

For nucleotides, SPDI represents all variants as a sequence of 4 operations 

(Table 1): start at the boundary before the first nucleotide in the sequence S, advance P 

nucleotides, delete D nucleotides, then insert the nucleotides in the string I.  This model 

has four parameters: 

1) (S)equence: (a string): reference sequence identifier as accession and 

version, 

2) (P)osition: (a non-negative integer) the number of nucleotides to advance on 

the reference sequence from the boundary before the first nucleotide, which can be 

thought of as a 0-based interbase coordinate for the variant start, 

3) (D)eletion: (a non-negative integer) deletion length, ​i.e.​ the reference allele 

length 

4) (I)nsertion: (a string) the inserted variant sequence. 
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SPDI also supports an alternate representation in which the Deletion field is a string 

containing the literal sequence to delete.  This is redundant information but, for 

efficiency, it facilitates the transformation of contextual alleles to VCF and HGVS without 

having to refer back to the reference sequences.  It also enables some error detection 

by our services for strandedness and off-by-one errors. 

Table 1: SPDI representation for three simple variant types 

  Single Nucleotide 
Variant 

Deletion Insertion 

Experi
mental 
Data 

Reference 
Sequence 

NG_012345.1 NG_012345.1 NG_012345.1 

Position 
(1-based) 

123456789 123456789 1234-56789 

Reference ATAC ​G​ACTG ATAC ​G​ACTG ATAC- ​G​ACTG 

Alternate ATAC ​T​ACTG ATAC ​-​ACTG ATACT ​G​ACTG 

Data 
Model 

Sequence NG_012345.1 NG_012345.1 NG_012345.1 

Position 
(Interbase) 

4 4 4 

Deletion 1 or G 1 or G 0 or (empty) 

Insertion T 0 or (empty) T 

SPDI, with 
Deletion 
Size 

NG_012345.1:4:1:T  NG_012345.1:4:1: NG_012345.1:4:0:T  

Representing variants using SPDI 

SPDI can represent all variants with defined breakpoints that specify all altered 

nucleotides. The format is both human- and computer-friendly, namely 4 values 

6 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. . https://doi.org/10.1101/537449doi: bioRxiv preprint 

https://doi.org/10.1101/537449


separated by colons (Table 1).  Notably, the stop coordinate is not stored explicitly, it is 

implicit from the start location plus the length of the deletion sequence.  The explicit 

start plus the implied stop coordinate are equivalent to the zero-based, half-open 

interval coordinates used by UCSC genomic resources .  By modeling in boundary 2

coordinates, we are able to address precisely insertions as zero-deletion-length 

variants, which is not possible in a nucleotide coordinate system. 

Terminology: Contextual and Canonical 

Services based on the SPDI data model support two kinds of normalization with 

different properties: the Contextual Allele and the Canonical Allele. 

The Contextual Allele is the representation of the variant on a defined reference 

sequence after correcting for overprecision in low-complexity regions.  (Overprecision is 

defined below.) This reference sequence can be of any type: transcript, protein, or 

genomic.  Because it is based only on the variant and the reference sequence, the 

Contextual Allele is stable over time.  However, it is unique only within a sequence.  

The second identifier, the Canonical Allele, extends identification across related 

sequences.  For example, when the A allele of a T>A variant on an earlier sequence 

version (ie. Chr1 on GRCh37)  is later identified as the reference allele in a newer 

sequence version  (ie. Chr1 on GRCh38), that variant is written A= (for reference), and 

now T is the variant allele, on the new sequence and has a position that differs by 

2 "The UCSC Genome Browser Coordinate Counting Systems | UCSC ...." 12 Dec. 2016, 
http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/​. Accessed 9 Jan. 
2019. 

7 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. . https://doi.org/10.1101/537449doi: bioRxiv preprint 

http://genome.ucsc.edu/blog/the-ucsc-genome-browser-coordinate-counting-systems/
https://doi.org/10.1101/537449


thousands of nucleotides from the original sequence.  Despite this, they are the same 

variant because they result in the same local sequence in an equivalent region by 

alignment.  The Canonical Allele is a cluster of all such equivalent contextual alleles. 

One contextual representation is deterministically chosen as a Canonical Allele 

Representative and we use its Contextual SPDI as the identifier for the Canonical Allele. 

Since there is a one-to-one correspondence between the Canonical Allele 

Representative and the Canonical Allele, we frequently use the term Canonical Allele to 

refer to both.  Each Canonical Allele Representative is a Contextual Allele. The 

Canonical Allele depends strongly on which regions of which sequences are considered 

equivalent.  Since the sequence alignment can change over time with an improved 

algorithm and alignment tools, we encapsulate those equivalence interpretations in an 

Alignment Data Set (ADS) that is versioned  Though obvious equivalences are stable, 

difficult alignments such as those in low-complexity or paralogous regions may be 

improved.  Thus some Canonical Allele Representatives may differ as new ADS 

versions are released. 

Correcting Overprecision in Variant Assertions 
A common problem in variant normalization is that there are multiple ways to 

describe the same change on the same sequence in the same low complexity region, 

e.g. homopolymer stretches or tandem repeats. This is termed overprecision for position 

reporting.  Table 2 gives an example of overprecise reporting of variants.  Note that the 

two deletion alleles are the same observation of ​ATGACT​, but there are two equally 

concise ways to represent them against the reference sequence ATGGACT.  They are 
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each overly precise, as the variant sequence could have resulted from the loss of the G 

at either the third or fourth position for the tandem G’s.  Likewise, for the overprecision 

reporting in the insertion example of Table 2. 

To correct for overprecision, the SPDI services expand submitted variants by 

applying the NCBI Variant Overprecision Correction Algorithm.  Once overprecision is 

removed, a comparison of two variants asserted on the same sequence model is a 

straightforward computation using the SPDI format: compare the position, 

deleted-length, and inserted-sequence.  The NCBI Variant Overprecision Correction 

Algorithm maps observed, non-identity variants to their corresponding Contextual 

Alleles. It has two phases: shrinking and growing. 

Shrinking 

The shrinking phase acts on the deleted and inserted sequences. First, it trims the 3' 

ends, one nucleotide at a time, until the two sequences end differently. Next, it trims the 

5' ends (which changes the "from" coordinate in the SPDI model). This is equivalent to 

"left-shifting" the variation. The resulting sequences have no common nucleotide suffix 

or -prefix. At least one of the inserted or deleted sequences must be non-empty. Only 

an identity variant, same as the reference sequence, would produce two empty 

sequences after shrinking.  After the shrinking phase, if neither the deleted sequence 

nor the inserted sequence is empty, then the variation is not a pure deletion or insertion 

and so it cannot be overprecise.  In these cases, the sequence is now of minimal length, 

and the algorithm is complete. 
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Growing 

For pure insertions or deletions, the algorithm chooses the non-empty sequence (either 

the deletion or insertion sequence) as the bud sequence. Then, it creates a blossom 

sequence of the same length as the reference sequence by duplicating the bud 

sequence starting at the “from” position. So, the bud sequence "​GA​" at position 3-4 on a 

length 8 reference would blossom into "GAGAGAGA".  Next, the algorithm chooses the 

largest interval on the reference sequence matching the blossom sequence and 

containing the “from” position. This is now the new deleted sequence. Finally, it applies 

the shrunken variation to this new deleted sequence resulting in the newly inserted 

sequence. Note, that in the actual implementation we do not materialize the entire 

blossom sequence. We create it virtually, using a counter-rotating through the bud 

sequence. 
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Table 2: Summary examples of overprecision due to the ambiguity of deleted or 
inserted nucleotides. 

 Deletion Insertion 

Reported Deletion of 1st or 2nd GA Insertion of GA before or 
after GA at position 3 

Position(s) 12345678 12--3456 

1234--56 

Reference(s) ATGAGACT AT--GACT 

ATGA--CT 

Allele(s) AT--GACT 

ATGA--CT 

ATGAGACT 

Bud Sequence --GA---- --GA-- 

Blossom Sequence GAGAGAGA GAGAGA 

Matching Reference 
Sub-sequence 

--GAGA --GA 

SPDI* 2:GAGA:GA 2:GA:GAGA 

HGVS suffix* n.5_6del n.3_4dup 

*​The accession has been omitted for brevity and clarity.  

Remapping (AKA Lift-Over): 

Remapping (or lifting over) is a process for calculating equivalent coordinates 

across sequences using alignments, whether it is between different versions of the 

same sequence accession, or across sequence types (genomic ​vs​. mRNA). NCBI 

Variation Remapping Service 

( ​https://www.ncbi.nlm.nih.gov/variation/services/remapping/​) was originally based on the 

existing assembly-assembly NCBI Genome Remapping Service 

( ​https://www.ncbi.nlm.nih.gov/genome/tools/remap​) but now includes additional paired 

11 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted March 23, 2019. . https://doi.org/10.1101/537449doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/variation/services/remapping/
https://www.ncbi.nlm.nih.gov/genome/tools/remap
https://doi.org/10.1101/537449


alignment sets to provide support for robust remapping and annotation of variants on 

different sequences.  The alignment data set (ADS) includes multiple types of pairwise 

alignments generated by various NCBI processes including NCBI Splign ​[9]​ for 

cDNA-to-Genomic, NG aligner and NCBI’s assembly-assembly aligner: 

● Old assembly to current Genome Reference Consortium (GRC) ​[10]​ primary 

assemblies (e.g. GRCh36(hg17) or GRCh37(hg18) with GRCh38(hg19)) 

● Patches, alternative loci, or pseudoautosomal regions (PAR) to GRC primary 

assembly 

● RefSeq ​[11]​ and select GenBank ​[12]​ transcripts to selected RefSeq genomic 

regions, also known as RefSeqGene (NG), a member of the Locus Reference 

Genome (LRG) collaboration ​[13]​. 

● Current RefSeq transcripts (NM/NR/XM/XR) and RefSeq genomic regions (NG) 

to the latest Assembly 

● Previous versions of NG and RefSeq transcripts (NM/NR) to GRC primary 

assembly 

Alignment Datasets encode Sequence Relationships 

Calculating the Canonical Allele from Contextual alleles based on different 

reference sequences requires a set of invertible relationships between sequences in the 

ADS. The current ADS covers most scenarios for reporting variants, based on the 

billions of variants collected by NCBI dbSNP and ClinVar from thousands of different 
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submission sources.  However, additional alignment pairs can be created for new 

reference sequences and added to ADS should the need arise. 

The ADS currently consists of nearly 400 thousand pairwise alignments 

generated from over 300 thousand distinct input sequences.  It is stored as binary 

seq-align objects, consuming 187MB of disk space when compressed.  It is regularly 

updated with new alignments and improved alignment heuristics and software updates. 

Since the alignments in the ADS encode the sequence relationships, it follows that the 

Canonical Alleles that depend on those alignments are also regularly recomputed.  
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Figure 1: ​For rs756655831, a representation of the alignments between various sequences, 
and the resulting SPDIs.  Notably, this RefSNP maps to two RefSeqGenes (TBCE 
NG_009230.1 and B3GALNT2, NG_033219.2).  Each has its own set of transcripts, of which all 
current ones align to the GRCh38 chromosomal sequence NC_000001.11.  All previous 
versions are only aligned to the current versions of the sequence.  NW_014040927.1 is a novel 
patch to chromosome 1 and aligns to only one RefSeqGene, but all transcripts.  The location 
with the red outline is the canonical representation of this set of variants, which allow 
submissions on any of the SeqIds to be grouped together. 

 

Figure 1 shows the pairwise alignments used for remapping an SNV 

(dbSNP:rs756655831 (​www.ncbi.nlm.nih.gov/snp/rs756655831​)).  The ADS heuristic 

assumes that alignment is transitive between 1) the sequence and its different versions 

and 2) between the sequences, NG and NM, that are part of the annotation set for a 

particular assembly version.  Thus, the number of sequence pairs to map between 

sequences is minimized.  Alignment connects the positions on the older sequence 
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models and assembled chromosome sequences through other, more recent, sequences 

(NM_003193.4, for example). 

Alignment Mapping Special Cases 

Two special cases must be considered carefully when mapping through 

alignments: mapping with changed orientation and gaps in the alignment.  The forward 

orientation of mRNA is determined by the direction of transcription (5’ to 3’).  ​ As such, 

the alignments of those genes and their transcript products can be reverse to the 

chromosome. When mapping variants across such alignments, it is important to 

reverse-complement the inserted sequence, as the SPDI model uses only the positive 

strand.  In addition, extra care must be taken when mapping an insertion variant with 

zero-length deletion sequence.  Because alignments use base coordinates, not SPDI's 

interbase coordinates. It is usually convenient to convert to an insert-before semantic 

when doing the mapping. However, because directionality changes when strand 

orientation changes, insert-before becomes insert-after.  In order to return to the 

insert-before semantic, the position must be increased by 1 (Figure 2A). 

In the second case, a disagreement between sequence models may represent 

an indel variant that is absent in one sequence model and present in another (Figure 

2B).  Describing the variant represented by these two sequence models results in the 

variant being described as the ​reference​ on one sequence model, and an insertion or 

deletion, or indel, when ambiguities exist, on the other sequence.  In general, 
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remapping to other sequences can completely change the type of the variant, between 

any of the six variant types represented by dbSNP.  

Figure 2: ​Examples of (A) reverse orientation and (B) indels in alignments special cases. 
Coordinates are 0-based interbase coordinates.  A) For reverse orientation, boundary 85 of the 
chromosome corresponds to boundary 28 of the gene.  But, nucleotide 85 is aligned to 
nucleotide 27.  This must be incremented by one in order to adjust for the change in orientation. 
B) In some cases, indels exist in one sequence, but not another.  Remapping just the interval 
may not return any result, as it remaps into a gap. In this example, Chr1 and Chr2 refer to 
sequential versions of the same chromosome sequence, not two different chromosomes. 

 

NCBI Variation Services 

We implemented public-access API services for the solution presented in this 

document.  It is accessible at ​http://api.ncbi.nlm.nih.gov/variation/v0​.  
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Results 

SPDI was developed to meet the need of NCBI to represent variants consistently 

and accurately across resources including dbSNP and ClinVar and for broader use by 

the community as a web service.  dbSNP and ClinVar have tested the SPDI data model 

and associated algorithms thoroughly and incorporated it into their respective 

workflows.  In so doing, variant aggregation has improved normalization of identical 

observations submitted with different representations, and to report errors during 

submission. 

ClinVar 
A major function of ClinVar is the aggregation of data from diverse submitters so 

that each submitter, and the community at large, can determine whether or not there is 

a consensus in understanding the clinical significance of any allele. That function 

requires robust, immediate normalization of submissions that may define an allele by 

non-standard HGVS, by standard HGVS (​e.g. ​right-justified, with duplication having 

precedence over insert), by VCF, or by representation on current or previous versions of 

any of several reference sequences. From its beginning, ClinVar converted all 

submissions to HGVS and normalized by determining the corresponding HGVS 

expression on the reference assembly, currently GRCh38.  That HGVS conversion, 

however, did not standardize the HGVS first, so that if one submitter reported an allele 

as an insert left-justified and another reported as duplication and another reported as an 
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insert right-justified, identification as the same allele might be missed.  As SPDI was 

adopted into ClinVar’s data flow, these cases could be identified easily.  Retrospective 

correction of alleles by application of the NCBI Variant Overprecision Correction 

Algorithm has resulted in 1,400 alleles identified as duplicates and merged (Table 3). 

The majority (about 1,200) are assessed as pathogenic, such as the well-studied 5/7/9T 

alleles  ​[14]​  in intron 9 of CFTR that may affect pathogenicity.  ClinVar received diverse 

submitted variant descriptions (Table 4) all of which resolve to the same variant, 

NM_000492.3(CFTR):c.1210-12T[9] 

( ​https://www.ncbi.nlm.nih.gov/clinvar/variation/161188/​).  

Table 3: Summary of ClinVar allele merges after the adoption of the NCBI Variant 
Overprecision Correction Algorithm. 

Variant Type Number of merged ClinVar allele 

Total 1,400 

Deletion 761 (54.4%) 

Insertion/duplication 604 (43.1%) 

Indel 35 (2.5%) 
 

 

 

 

Table 4: ClinVar submissions for the same allele 

Description Submitted Variant 

Submissions NM_000492.3:c.1210-6_1210-5insTT 

NM_000492.3:c.1210-7_1210-6dupTT 
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NC_000007.13:g.117188689_117188690insTT 

NC_000007.14:g.117548635_117548636insTT 

Normalized, canonical SPDI NC_000007.14:117548628:TTTTTTT:TTTTTTTTT 

Corresponding HGVS NC_000007.14:g.117548629T[9] 

 

dbSNP 
Over the past few years, dbSNP has undergone a significant redesign of its data 

aggregation and product generation process.  For over 15 years, an RDBMS-based 

solution has served dbSNP well.  But with the desire to apply increasingly complex 

algorithms to identify identical variants and manage over 2 billion human variation 

submissions (ss IDs), a new system was designed and implemented.  The new 

aggregation and product build pipeline is based on the MapReduce framework with 

SPDI data model and the correction of over-precision at its core.  A set of submitted 

variants (ss) are aggregated together to form a reference SNP (RefSNP) cluster if they 

meet two conditions when remapped to a common genomic sequence: on the same 

deletion interval and same type.  dbSNP recognizes six types: identity (observed 

variants matches the reference sequence), single nucleotide variation (SNV), multiple 

nucleotide variant (MNV), deletion, insertion, and small insertion and deletion (indel).  

All variants in low-complexity regions are now modeled as indels, with the span 

of the deletion representing the maximum level of precision allowed. This has the 

particular effect of grouping alleles of varying deletion size in low-complexity regions 
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into a single RefSNP cluster (Figure 3).  When applied to dbSNP, 6,423,296 deletions 

and 2,341,877 insertion variants merged with already existing records (Table 5).  All 

told, 8,945,252 variants merged into 4,493,144 extant RefSNPs, nearly all receiving just 

one RefSNP.  In the most extreme case, one extant RefSNP received 42 merged 

RefSNPs, rs55883101 (Figure 3).  In this particular example, a few of the merged 

RefSNPs were the result of collapsing of identical alleles (see alleles marked as * and † 

in 8A).  For most of the alleles, it is a variable number of deletions of A were collapsed 

into a single RefSNP, that now has 43 unique alleles.  Notably, rs869211356 did not join 

this cluster, as its deletion allele begins with a “T”, firmly anchoring the subsequence 

that is removed.  This deletion is precise and uncorrected by the SPDI algorithm.  The 

same is true for all of the SNVs in the region (red boxes).  
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Figure 3: A) ​Example set of RefSNPs that were merged into one (​rs55883101 ​) from the previous 
RDBMS based on build and B) the new distributed dbSNP build that uses SPDI and NCBI Variant 
Overprecision Correction algorithm.  The SNP track coloring scheme has been updated between the two 
tracks, but in both cases, SNVs are red.  In A, deletions are blue with a downward triangle, in B, purple, 
with a downward triangle.  * and † marked variants in A are identical alleles.  
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Table 5: Summary of dbSNP Allele merges after the adoption of the NCBI Variant 
Overprecision Correction Algorithm. 

 Number of 
Merged RefSNPs 

Percent of 
all Merges 

Percent change of 
RefSNPs of this 

Type 

All Types 8,945,252 100% -1.35% 

Deletion 6,423,296 71.8% -36.80% 

Insertion/Duplication 2,341,877 26.2% -42.24% 

Indel 72,587 0.75% -0.18% 

 

Discussion 

In their archival function, dbSNP and Clinvar databases accept and store 

submissions that were ascertained by different projects using different sequencing 

technologies and variant calling pipelines.  Hence the submitted variants can be 

asserted on different assembly and sequence versions, including older sequence 

versions from the past 20 years in dbSNP, and represented in different formats 

including the common HGVS and VCF formats.  In addition, there are often redundant 

variants submitted across submitters and projects that need to be normalized.  The 

databases process the heterogeneous submitted variants and provide non-redundant 

variant (RefSNP) annotation and reporting on the latest sequence version.  This is 

critical to provide the most accurate view of the variant in sequence context and for 

efficient data exchange, integration, and reporting.  ​The processing requires mapping all 

submitted variants, whether defined on genomic or spliced sequences, to the latest 

assembly version (i.e. GRCh38). Then they can be compared to existing variants in 
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dbSNP and ClinVar to determine if they are novel or not. This can be computationally 

challenging, ​which was particularly true for dbSNP that was using a pipeline based on 

SQL databases and BLAST technologies that weren’t efficient or scalable for 

processing billions of records.  Therefore we developed the SPDI data model to provide 

a robust and consistent representation of sequence variants.  The model supports 

pipelines for accurate and consistent processing and annotating variants at NCBI, using 

modern NoSQL computing framework and process control such as Hadoop and Airflow, 

that is scalable and can be integrated with other NCBI resources.  The processes based 

on SPDI include: 

● Validate submitted variant allele and position and convert from HGVS and 

asserted location (VCF) format to standard Contextual Alleles 

● Map variants to NCBI standard top-level sequence on latest genomic assembly 

version using ADS 

● Retrieve all equivalent Contextual Alleles on mRNA, protein, and genomic 

sequences. 

● Obtain equivalent Canonical Alleles for normalizing variants across disparate 

submissions and to existing reference variant (​i.e​. dbSNP rs). 

● Convert variant representations to standard VCF format for export and data 

exchange 

We also made these functions open-access as API calls for users to analyze and 

normalize their variants that are consistent with NCBI. 
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SPDI compared to HGVS 

 SPDI does not require that the submitter specify a class of variant in its notation; 

for SPDI, all variants are defined by simple operations of deletion then insertion.  HGVS 

notation, however, requires that when an allele could be described in more than one 

way, a decision be made as to how a variant is named, according to the priority of “(1) 

deletion, (2) inversion, (3) duplication, (4) conversion, (5) insertion” 

( ​http://varnomen.hgvs.org/recommendations/general/​).  These priorities are not always 

followed, so NCBI often receives submissions for inversions as deletion/insertions or for 

duplications as insertions. Note this list of priorities does not include repeat regions, so 

there is even more variability within the community for describing alleles such as the 

polymorphism in intron 9 of the CFTR gene.  The standard is to report as a repeat 

( ​http://varnomen.hgvs.org/recommendations/DNA/variant/repeated/​), yet most 

submissions are received with HGVS for insertion or a duplication (Table 4).  In 

addition, HGVS requires variants are right-shifted, but again, submissions are received 

in a variety of shifted states.  With SPDI notation there is no interpretation of the type of 

allele and it is algorithmically unambiguous to generate a standard representation 

without maintaining complex parsing logic.  SPDI currently supports a subset of the 

variants that can be represented by HGVS nomenclature (see ​SPDI limitations​ below).  
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SPDI compared to VMC 

Concurrently during SPDI development, the Global Alliance for Genomics and 

Health (GA4GH) developed the Variation Modelling Collaboration (VMC) data model for 

describing variant (manuscript in preparation).  VMC and SPDI are similar in that: 1) 

Both provide specifications for a reference sequence, precise location, and alleles.  2) 

The VMC "Allele" entity is very similar to SPDI.  Both use interbase coordinates and an 

interval on a reference sequence replaced by a precise sequence specified in IUPAC 

notation.  3) The variant type is not tagged or labeled but inferred from the variant data 

in the models.  The differences are: 1) The VMC model is broader in scope than SPDI. 

In addition to representing individual precise variants, VMC also represents precise 

haplotypes and genotypes.  (2) Normalization is required in VMC but optional in SPDI. 

This allows SPDI to represent over-precise assertions, as they are submitted to dbSNP 

and ClinVar, that go beyond sequence identity.  (3) SPDI uses the NCBI Variant 

Overprecision Correction algorithm for normalization whereas VMC uses Variant Tool 

(right shifting) .  This means VMC saves space for long variants but the reference 3

interval does not cover all bases that may be affected by the variant.  (4) Most 

operations on VMC require access to the full reference sequence database because 

VMC alleles specify the interval to be replaced via an identifier.  SPDI can encode the 

actual reference allele sequence in the variant.  (5) Data transformation from SPDI to 

different formats (i. e. HGVS or VCF) is easier as a consequence of (2) and (3).  A 

3 "Vt - Genome Analysis Wiki." ​https://genome.sph.umich.edu/wiki/Vt​. Accessed 9 Jan. 2019. 
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normalized SPDI encodes the residues of the reference sequence, it is possible to 

generate normalized forms according to other algorithms: whether left-shifting or right 

shifting.  (6) Although limited in scope, SPDI variant representation is shorter and easier 

to digest as a single human-readable line containing the sequence, position, and the 

actual allele sequences and yet machine parseable for developing parallelize workflow 

without the need for retrieving the reference sequence.  VMC is intended for 

machine-machine communication, so has a heavily nested structure filled with long, 

random identifiers. 

Variation services compared to existing tools and services. 
SPDI and the associated NCBI Variation Services have some functions that are 

similar to existing tools and services including ClinGen Allele Registry ​[15]​, Variant 

Validator ​[16]​, Ensembl Variant Recoder, TransVar ​[17]​, Mutalyzer ​[18]​, VEP ​[19]​, and 

snpEff ​[20]  

 (Table 6).  Of all the existing tools, the NCBI Variation Services are most similar in 

functions to the ClinGen Allele Registry that provide functions such as variant ID search, 

remapping, and normalization.  Both services accept common input formats such as 

HGVS, VCF, and dbSNP RS and provide JSON output format that is amenable to 

computational processing.  A distinguishing feature of SPDI is it provides original 

annotations and supporting variant submission evidence along with frequency data and 

publications for over 670 Million variants that exist in dbSNP ​[2]​ and ClinVar ​[3]​).  The 

Allele Registry provide links to the annotations and dependent on users to register the 

variant or data releases from primary sources such as dbSNP or ClinVar.  SPDI 
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services integrate dbSNP, ClinVar, and other NCBI resources such as Assembly and 

RefSeq to provide timely and regular updated when new data are available.  Variants 

are mapped to the latest genomic and RefSeq mRNA and protein sequences and 

annotated with functional consequences, allele frequency, publications (PubMed), and 

ClinVar clinical significance.  Using alignment data sets that include more than 400,000 

paired alignments the service can provide remapping across more than 300,000 unique 

sequences.  
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Table 6: Comparison of NCBI Variation Services to other common variant 
analysis tools. 

Tools and 
Services Input Format Output 

Format 

Variant 
Normalizatio

n 

Included 
annotation 

source 

Reference 
sequence 

source 
Remapping 

NCBI 
Variation 
Services 

(SPDI) 

SPDI, HGVS, 
VCF, dbSNP RS JSON Yes dbSNP; 

ClinVar 
GenBank, 
RefSeq Yes 

ClinGen 
Allele 

Registry  4

HGVS, dbSNP 
RS, and many 
local identifiers 

JSON Yes 
Linkouts to 

various 
sources 

GenBank, 
RefSeq, 
Ensembl, 

and others 

Yes 

Variant 
Validator  5 HGVS, VCF 

Tab-deli
mited, 
JSON  6

Yes dbSNP; 
ClinVar 

RefSeq, 
LRG Yes 

Ensembl 
Variant 

Recoder  7

variant identifier, 
HGVS 

JSON, 
XML No dbSNP, EBI Ensembl No 

TransVar  8 HGVS Tab-deli
mited No None Ensembl, 

RefSeq No 

Mutalyzer  9 HGVS, dbSNP 
RS 

Tab-deli
mited No None RefSeq Yes 

VEP  10

HGVS, dbSNP, 
COSMIC, 

HGMD 
identifiers, VCF 

JSON, 
XML, 
VCF 

No 

dbSNP, 
ClinVar, 

EBI, 
COSMIC, 

and Others 

Ensembl, 
RefSeq Yes* 

snpEff  11 VCF VCF, 
HGVS No 

Various 
Public 

Databases 

Various 
Public 

Databases 
No 

*VEP supports remapping between transcripts, and transcripts to genomic, but not between 
different genomic sequences. 

4 ​http://reg.clinicalgenome.org/​.  Accessed 16 Aug. 2018. (PubMed: ​30311374 ​).  
5 ​https://variantvalidator.org/​. Accessed 16 Aug. 2018. (PubMed: ​28967166 ​).  
6 ​https://rest.variantvalidator.org/webservices/variantvalidator.html ​. 6 March. 2019. 
7 ​http://www.ensembl.org/info/docs/variation ​. Accessed 16 Aug. 2018. 
8 ​http://bioinformatics.mdanderson.org/transvarweb/​. Accessed 16 Aug. 2018. (PubMed: 

26513549 ​).  
9 ​https://www.mutalyzer.nl/​. Accessed 16 Aug. 2018. (PubMed: ​18000842 ​). 
 
10 ​https://useast.ensembl.org/info/docs/tools/vep/index.html ​. Accessed 16 Aug. 2018. (PubMed: 

27268795 ​). 
11 ​http://snpeff.sourceforge.net/​. Accessed 16 Aug. 2018. (PubMed: ​22728672 ​). 
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Limitations of SPDI and associated Variation Services 

While SPDI provides a powerful representation of precise sequence changes 

relative to a reference, there are some limitations. 

● SPDI does not support reporting a position offset from the reference such as 

used in HGVS expressions like ​c.-7A>C, c.88+2T>G, c.89-1G>T, or c.*23T>C 

Instead it is recommended to select as reference a sequence that includes the 

variant in order to reduce computation complexity and ambiguity by sequence 

features context such as CDS annotation that can change. 

● Variants without precise breakpoints (such as large structural variants detected 

by paired-end mapping) cannot be specified in our model. 

● NCBI Variation Services only partially supports variants with a protein reference. 

While the services do compute a contextual allele, they are not remapped as we 

have no support for codon degeneracy. 

● NCBI Variation Services only supports variants reported on reference sequence 

(RefSeq) which may not represent all common and alternate haplotypes.  

 

Using the Contextual and Canonical Allele 

 The Canonical Allele representations are essential for determining if two variants 

represented on different reference sequences) are the same – yet this determination is 
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an ​interpretation​ based on the preferred reference sequence and available alignments, 

and subject to change and refinement over time.  As we mentioned in the method 

section, the precision-corrected Contextual Allele on a particular sequence accession 

and version is stable over time in dbSNP and ClinVar.  It serves as the archival 

summary evidence for the variant observed.  In contrast, the Canonical Allele can 

change over time because it is computed using the Contextual Allele on the original 

asserted sequence and alignments that can change with any new sequence version or 

alignment improvements.  Therefore, we propose that whenever the Canonical Allele is 

used, the Contextual Allele should also be made available to allow users to see 

supporting observed variant as well as the derived interpretation. 

Conclusion 

The SPDI data model and associated variation services were developed to 

address the challenges of processing, annotating, and exchanging the growing volume 

of variation data in dbSNP and ClinVar databases. This work has resulted in improving 

the identification and validation of submissions and standardizing their representation. 

The APIs are provided as a public service to allow users to interrogate and process their 

variants based on the SPDI model that is consistent with the usage by dbSNP and 

ClinVar 
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