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ABSTRACT9

To understand the functioning and dynamics of microbial communities remains a fundamental challenge
at the forefront of current biology. To tackle this challenge, the construction of computational models
of interacting microbes is an indispensable tool. Currently, however, there is a large chasm between
ecologically-motivated descriptions of microbial growth used in ecosystems simulations, and detailed
metabolic pathway and genome-based descriptions developed within systems and synthetic biology.
Here, we seek to demonstrate how current biochemical resource allocation models of microbial growth
offer the potential to advance ecosystem simulations and their parameterization. In particular, recent
work on quantitative microbial growth and cellular resource allocation allow us to formulate mechanistic
models of microbial growth that are physiologically meaningful while remaining computationally tractable.
Biochemical resource allocation models go beyond Michaelis-Menten and Monod-type growth models,
and allow to account for emergent properties that underlie the remarkable plasticity of microbial growth.
We exemplify our approach using a coarse-grained model of cyanobacterial phototrophic growth, and
demonstrate how the model allows us to represent physiological acclimation to different environments,
co-limitation of growth by several nutrients, as well as emergent switches between alternative nutrient
sources. Our approach has implications for building models of microbial communities to understand their
interactions, dynamics and response to environmental changes.
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INTRODUCTION26

Microbial organisms and their metabolism are integral parts of the Earth’s biogeochemical cycles,27

and play key roles in almost all ecosystems and environments. Microbial organisms typically form28

complex, interacting and dynamically changing communities, with examples ranging from the gut29

microbiome to marine plankton communities. To understand the organizing principles and the functioning30

of such communities is of paramount importance for a vast number of basic and applied research31

questions, including questions pertinent to biotechnology, climate change, and human health [28, 61,32

21, 56]. Despite the significant advances in our ability to observe and characterize biological systems,33

however, understanding the interactions and the emergent dynamics of microbial communities remains a34

fundamental, and truly transdisciplinary, challenge [15, 1, 30, 65, 61].35

Traditionally, ecosystem dynamics and microbial communities are the realm of microbial ecology, with36

a long history and a wealth of results concerning the organization, stability, and functioning of (microbial)37

ecosystems [28, 58]. In the past century, a variety of modeling approaches have been developed to address38

fundamental ecological questions, ranging from understanding patterns of biodiversity to predicting39

the response of ecosystems to changing environmental conditions [16, 15, 30, 58]. Descriptions of40

microbial growth range from phenomenological ’black box’ models to more elaborate trait-based models41

of growth [15, 30]. It has been noted though, that current theoretical approaches to microbial growth are42

still dominated by the classic Monod or Michaelis-Menten functional form [1, 22]. While undoubtedly43

highly successful, Monod-type models of growth exhibit a number of limitations. For example, it has44

been argued that the constant parameters used in the Monod equation cannot account for the observed45

plasticity of microbial physiology [5]. Likewise, it has been noted that, despite the significant advances in46
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genome sequencing and quantitative high-throughout methods, the complexity of mechanistic ecosystem47

models, and in particular the description of microbial growth within these, have not changed substantially48

since they were developed in the 1970s [22].49

Parallel to progress in theoretical and experimental microbial ecology, the past two decades have50

seen an unprecedented advance in our understanding of microbial molecular physiology—mainly driven51

by advances in our ability to monitor, measure and modify the inner workings of cells. Theoretical52

and computational descriptions of microbial metabolism, facilitated by large-scale metabolic network53

reconstruction and constraint-based analysis, have become established tools in molecular systems bi-54

ology [45, 60, 8]. Curated genome-scale reconstructions of metabolic networks are available for an55

increasing number of microbial organisms [23, 2, 32], and are increasingly recognized as a resource in56

studies of microbial communities [64, 56, 21, 65, 61, 33],57

More recently, also the quantitative physiology of bacterial growth has gained renewed attention, with58

numerous studies providing insights into the principles of microbial growth and resource allocation [41,59

53, 52, 11, 63]. Key observations concern the ’laws’ and trade-offs of microbial growth. In continuation60

of the classic studies of bacterial growth physiology, a number of studies have recently addressed the61

covariation between the cellular composition and the growth rate of microorganisms [53, 52]. Theoretical62

descriptions of microbial resource allocation include coarse-grained models that describe the fundamental63

processes of cellular growth by partitioning the proteome into few essential classes [38, 35, 59, 50, 11], as64

well as large-scale constraint-based models that take into account the costs and benefits of each individual65

gene [18, 42, 19, 49]. In particular, the concept of resource balance analysis [18, 19] and related methods,66

such as such as metabolism and macromolecular expression models [42], show that quantitative models67

that predict protein expression and the cellular composition are feasible on the genome-scale—and can68

be extended to time-varying environments [49]. As yet, however, quantitative modeling of microbial69

resource allocation is mostly restricted to well characterized model organisms in typical laboratory or70

biotechnological environments.71

The purpose of this work is therefore to outline a bridge between these recent studies on microbial72

resource allocation and current models of microbial ecology. We argue that biochemical resource alloca-73

tion models offer significant potential to advance ecosystem simulations beyond current applications of74

constraint-based analysis of microbial metabolism. In particular, we seek to demonstrate that biochemical75

resource allocation models, as defined below, can be constructed and parameterized for large classes76

of microbial organisms based on available biochemical and physiological data; and are, unlike Monod-77

type models, capable to exhibit emergent properties of growth, such as switching between alternative78

sources of nutrients. Our study is motivated by recent calls for a new generation of plankton models79

to better capture the emergent properties of marine ecosystems [1, 22]. As will be demonstrated below,80

biochemical resource allocation models follow the rationale described by Allen and Polimene [1] to81

design a generic cell model that captures the essence of key physiological activities and that is based on a82

robust physiological formulation of competing physiological activities — and therefore should be able to83

reproduce biogeochemical and ecological dynamics as emergent properties.84

The paper is organized as follows: In the first section, we briefly recapitulate computational models of85

microbial growth. In the second section, we provide an overview of metabolic network reconstruction86

and recent biochemical models of cellular resource allocation. In the following section, we consider87

a coarse-grained model of phototrophic (cyanobacterial) growth and describe its parameterization. In88

the subsequent section, we then discuss emergent properties of the model, in particular cellular growth89

laws and co-limitation, as well as the representation of microbial diversity and the uptake of alternative90

nutrients. In the sixth and seventh sections, we present a brief case study: the co-existence of two91

phytoplankton species with a gleaner-opportunist trade-off. In the final section, we provide a discussion92

and outlook.93

MODELS OF MICROBIAL GROWTH94

Assuming a chemostat-like setting, the growth dynamics of a population of (genetically homogeneous
and well mixed) cells can be described by an ordinary differential equation,

dρ

dt
= µ ·ρ−D ·ρ , (1)
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where ρ denotes the concentration of cells (in units of cells per volume), µ denotes the specific growth
rate and D is the dilution or death rate. The specific growth rate µ is a function of the respective
environment, and depends on the concentrations of one or more nutrients. Typically, a limiting nutrient n
with concentration [n] is considered that is supplied with the inflow of fresh medium at a concentration
[nx]. The respective nutrient dynamics are described by

d[n]
dt

= D · ([nx]− [n])−Y−1 ·µ ·ρ , (2)

where Y denotes the yield coefficient, defined as the number of microbial cells (or units biomass) per unit95

of nutrient. The model can be readily extended to multiple microbial strains with concentrations ρi and96

several nutrients nk. The dynamics of a chemostat have been studied extensively [58] and equations of97

the form (1) and (2), as well as the respective extension to multiple strains and nutrients, are commonly98

utilized in ecosystem simulations [16, 15, 58, 57].99

To evaluate the dynamics of the system requires knowledge of the specific growth rate µ as a function
of the concentration of the limiting nutrient n. To this end, the most widely used approach is still to make
use of the hyperbolic dependency proposed by Jacques Monod in 1949 [39],

µ([n]) =
µmax · [n]
KA +[n]

, (3)

where µmax denotes the maximum specific growth rate of the microorganism in this environment and KA
denotes the half-saturation constant. The Monod equation is identical to the Michaelis-Menten equation
of enzyme kinetics and represents an empirical description of microbial growth. Its constant parameters
are typically estimated for specific environmental conditions and reflect a particular strain or species
and its functional traits related to nutrient uptake and growth [5, 30]. Over the past decades, there have
been several advances and alternative formulations of growth models, such as the Droop model [9] that
introduces internal nutrient quotas. For phototrophic microorganisms, modifications are typically required
to account for the effects of photoinhibition—the decrease of the specific growth rate for high light
intensities [11]. A widely equation for phototrophic growth in dependence of the light intensity I is the
Haldane equation,

µ(I) =
µmax · I

KA + I +(I/KI)
2 , (4)

where KI denotes the impact of photoinhibition. In the absence of photoinhibition (KI → ∞) the model is100

identical to the Monod equation with light as the limiting substrate. See, for example, Lee et al. [29] for a101

review on empirical growth models and their parameterization for different microalgae. The use of the102

Monod and related equations remain ubiquitous in current models of ecosystems [16, 5, 12, 30, 22, 57]. It103

has been emphasized recently [1, 22], however, that empirical growth models do not necessarily reflect our104

vast recent increase in knowledge about the quantitative physiology of microbial growth. The challenge105

before us is therefore to combine the conceptual simplicity of empirical growth models with molecular106

properties of microbial growth.107

METABOLIC RECONSTRUCTIONS AND CELLULAR RESOURCE ALLOCA-108

TION109

Models of microbial and phytoplankton growth that incorporate internal structure and aspects of physiol-110

ogy are not new. Examples include the (still empirical) model of Droop [9] as well as other ’internal-quota’111

models—each representing a cell with one or more internal variables, and typically allowing for ad-112

justments in the composition of cellular biomass [15]. Likewise, models that incorporate cost-benefit113

consideration have been proposed, most notably by JA Raven [48] and RJ Geider [17]. In the follow-114

ing, we build on these ideas and incorporate recent approaches to biochemical models of microbial115

growth [8, 60].116

In particular, over the past two decades, genome-scale reconstructions (GMRs) of microbial metabolism117

have reached maturity and are available for a rapidly increasing number of (sequenced) microbial organ-118

isms. GMRs provide a comprehensive account of biochemical interconversions between small molecules119
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(metabolites) within a cell or organism, and therefore allow to accurately estimate the stoichiometric120

and energetic synthesis costs of cellular constituents. GMRs have been highly successful to predict121

maximal growth yields of microbial organisms and other proerties of biotechnological relevance [45].122

More recently, large-scale constraint-based resource allocation models [18, 42, 19, 49] were introduced123

that allow to predict protein expression and cell compositions of microbes in specified (albeit, with the124

exception of [50, 49], constant) environments. These models are based on the insight that the (maximal)125

flux of an enzyme-catalyzed biochemical reaction is typically constraint by the amount of the respective126

enzyme. Since enzymes are itself the products of metabolism, incorporating enzyme-dependent flux127

constraints gives rise to a self-consistent description of microbial growth: for any given growth rate128

µ the set of cellular enzymes must be sufficient to sustain the synthesis of the required precursors to129

allow for the translation of the set of catalyzing enzymes itself, as well as for the synthesis of all other130

(non-enzymatic) compounds within a cell.131

More formally, the synthesis rate of a cellular protein Pk can be described by the equation

d[Pk]

dt
= γk−µ · [Pk] , (5)

where γk denotes the translation rate of the protein that is required to match the dilution term µ · [Pk] of132

cellular growth (protein degradation can be readily included but is neglected in the following). The sum133

of all translation rates is constrained by the available ribosomal capacity and hence by the number of134

ribosomes.135

To account for the synthesis of metabolic precursors and other cellular components, the interconversion
of internal metabolites m is described by a stoichiometric matrix N and a vector ν that denotes the rates
of (spontaneous or enzyme-catalyzed) interconversion rates,

d[m]

dt
= N ·ν−µ · [m] . (6)

Typically, intracellular metabolism is assumed to be at steady state and the dilution terms for intracellular136

metabolites are neglected due to the high turnover of metabolites compared to their dilution by growth. In137

this case, the mass-balance constraint on intracellular reaction fluxes simplifies to N ·ν = 0.138

To account for biochemical resource allocation, the rates of those reactions that are catalyzed by
proteins are constrained by the amount of the respective catalyzing proteins

νk ≤ kcat,k ·Pk , (7)

where kcat,k denotes the specific activity of the enzyme or protein. The maximal uptake rate νT of an
external nutrient nx can be further constrained by the concentration of the respective nutrient and the
amount of the respective transporter complex PT .

νT ≤
[nx]

KM +[nx]
· kcat,T ·PT . (8)

The uptake constraints can be modified to, for example, also account for diffusion limitations of nutrient139

uptake described by Bonachela et al. [5]. The constraints and equations summarized above, together with140

the assumption of a constant cell density, provide a quantitative description of microbial growth that is141

based on linear constraints. To obtain an estimate of the growth rate for a specific environment, the model142

is solved using the assumption that, during evolution, the fluxes are organized such that they give rise to143

a maximal growth rate in the respective environment (assumption of evolutionary optimality). Hence,144

similar to flux-balance analysis [45] and other constraint-based analysis, the assumption of optimality145

replaces unknown regulatory mechanisms.146

The required parameters for model construction are: (i) the metabolic network (as encoded in the147

stoichiometric matrix N and the associated enzyme-reaction relationships). These data are available as148

part of a metabolic network reconstruction; (ii) the composition of the catalyzing enzymes (in terms of149

amino acids and possible co-factors). For most enzymes this information is readily available and part of150

reaction databases; as well (iii) as the specific activity kcat of each catalyzing enzyme and, if required,151

the half-saturation constants for transporter reactions. While quantitative data is still scarce, in particular152

for non-model organisms, specific activities for a wide range of enzymes can be sourced from suitable153
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Figure 1. A coarse-grained biochemical resource allocation model of phototropic growth. The model
consists of 8 protein complexes that catalyze 5 metabolic and transport reactions, as well as light
harvesting and photosynthetic electron transport. Extracellular carbon (Cx) is takes up and converted in
amino acid (AA) precursors for translation of protein complexes by ribosomes (R). The abundances of
protein complexes constrain cellular reaction rates. Abbreviations of protein complexes: photosynthetic
unit (PSU), carbon uptake (TC), carbon assimilation (CB), nitrogen uptake and metabolism (TN), central
metabolism and amino acid synthesis (MC), synthesis of other cellular constituents (MQ), and ribosomes
(R). Abbreviations of metabolites: external inorganic carbon (Cx), internal inorganic carbon (Ci),
assimilated organic carbon and precursor for biosynthesis (C3), amino acids (AA), external nitrogen (Nx),
internal nitrogen (N), remaining cellular constituents (Q), cellular energy unit (e).

databases, such as BRENDA [26], and are therefore (at least approximately) available. As we have argued154

previously [50, 49], reasonable estimates for all required parameters exist.155

We note that the respective models can be constructed either on a genome-scale, involving all known156

individual enzymatic reaction steps of the respective organisms, see for example Goelzer et al. [19] or157

Reimers et al. [49]. Or, alternatively, by defining coarse-grained enzyme complexes that represent classes158

of reactions or pathways, see for example Rügen et al. [50]. Computationally, for any given growth rate,159

the resource allocation model gives rise to a linear program (LP) and hence can be solved efficiently. The160

maximal growth rate is then identified using bisection, see Materials and Methods for computational161

details. In the following, we refer to the type of models outlined above as biochemical resource allocation162

models (BRAMs).163

A MODEL OF PHOTOTROPHIC GROWTH164

To exemplify the utility of biochemical resource allocation models for microbial ecology, we consider165

the construction and analysis of a coarse-grained model of cyanobacterial growth, based on previous166

work [50, 49, 11]. The model is depicted in Figure 1 and consists of a light harvesting reaction, 5167

metabolic reactions involving 6 internal metabolites, as well as 8 catalyzing protein complexes and their168

respective translation reactions. In brief, inorganic carbon (Cx) is taken up using an energy-dependent169

transporter (TC). Intracellular inorganic carbon is assimilated into organic carbon (C3) using inorganic170

carbon concentrating mechanisms and the Calvin-Benson cycle (CB). The metabolic intermediate C3 is171

converted into amino acids (AA) by a coarse-grained metabolism (MC).172

The biosynthesis of amino acids requires a source of nitrogen (N) that is taken up from the environment173

using an energy-dependent transporter and associated nitrogen metabolism (TN). For amino acid synthesis,174

we assume a N:C ratio of ∼ 1/3 (the cellular N:C ratio is lower due to the remaining non-protein biomass175

component Q). Light harvesting and the photosynthetic electron transport chain are represented by a176

coarse-grained photosynthetic unit (PSU). The PSU protein complex regenerates cellular energy units177

e (combining ATP and reductant NADPH into a single energy unit). Amino acids are translated into178
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proteins by ribosomes (R), which are itself protein complexes. The fraction of non-enzymatic proteins179

is represented by a (quota) protein component PQ. The remaining biomass is lumped into a metabolic180

component Q that is synthesized from the cellular precursor C3 by the protein complex MQ. All proteins181

complexes represent aggregates of individual proteins. The model assumes a constant cellular density.182

The specific growth rate is not dependent on cell size, but cell size may constraints parameters, such as183

the surface to volume ratio. The full set of equations is provided in the Materials and Methods.184

All enzyme-catalyzed reactions are constrained by the amount of the respective enzymes. For example,
carbon uptake is constrained by the equation

νTC ≤
[Cx]

KC +[Cx]
· kcat,TC · [TC] (9)

where [TC] denotes the amount of uptake transporter (in molecules per cell), kcat,TC denotes the specific
catalytic activity of the transport, and KC denotes the half-saturation constant of the uptake complex. We
note that Equation (9) provides an upper limit only, the actual flux can be less (for example by inactivating
a fraction of the uptake transporter). Likewise, additional constraints can be included, such as an upper
limit on the uptake flux induced by diffusion limitations [5]. Other intracellular reactions are constrained
by the upper limits induced by the amount of the respective enzymes, e.g., for the carbon assimilation
reaction

νCB ≤ kcat,CB · [CB] . (10)

The model is parameterized using information about the individual enzymatic and biochemical185

processes. Using data from Faizi et al. [11], the effective size of the (coarse-grained) protein complexes186

can be approximated by the number of enzymes involved in amino acid synthesis multiplied with the187

average size (in units of amino acids) per enzyme. Catalytic turnover numbers kcat are assigned according188

to typical values for the respective reactions. For example, the rate of translation per ribosome is189

approximately 20 amino acids per second, the photosynthetic unit (with photosystems II as rate limiting190

complex) is assumed to give rise to approximately 250 interconversion per second, the kcat,TC of the191

carbon transporter is set to 20s−1, the catalytic activity of the central metabolism is set to kcat,MC is set to192

10s−1. Reasonable parameter ranges for many enzymatic processes (for a generic cell) can be obtained,193

for example, from Milo and Phillips [37]. The full set of parameters used in the following is provided in194

the Materials and Methods.195

Figure 2. The maximal specific growth rate µ as a function of extracellular nutrient concentrations (Nx
and Cx) and light intensities I. Nutrient concentrations are reported relative to the half-saturation constant
of the respective transporter complex. Panel A: The specific growth rate ν(Nx/Kn) with fixed
I = 200µEm−2s−1 and Cx/Kc = 0.02. Panel B: The specific growth rate ν(Cx/Kc) with fixed Nx/Kn =
0.05 and light intensity I = 200µEm−2s−1. Panel C: The specific growth rate ν(I) with fixed Cx/Kc =
0.02 and Nx/Kn = 0.05. Abbreviations: Nx, external nitrogen concentration; Kn, half-saturation constant
of nitrogen transporter; Cx, external inorganic carbon concentration; and Kc, half-saturation constant of
carbon transporter.
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Figure 3. Cellular protein allocation in dependence of environmental conditions. Shown are the relative
abundances of ribosomes and coarse-grained protein complexes under different growth conditions
(relative to total protein but excluding the constant protein fraction TQ). The superscripts (∗, † and ‡)
indicate the parameter values used to specify environmental conditions.

Given the stoichiometric constraints and the assigned parameters, the model gives rise to a global196

optimization problem, and solved as a series of LP problems to identify the maximal specific growth rate197

µ in dependence of the availability of extracellular nitrogen and carbon and light intensity I (assumption198

of evolutionary optimality). Figure 2 shows the resulting growth curves as a function of environmental199

parameters. Similar to previous models [11], the resulting growth curves with respect to external nitrogen200

(Nx) and carbon (Cx) concentrations are consistent with Monod kinetics, the dependence of the specific201

growth rate on the light intensity is consistent with the Haldane equation.202

We emphasize that the growth curves shown in Figure 2 are emergent properties of the underlying203

constraints and parameters—and that changes in these constraints and parameters entail (sometimes204

complex) changes in overall growth properties. For example, the apparent half-saturation constant of the205

organismal growth curve is markedly different from the half-saturation constant assigned to the respective206

transporter complex, due to the fact that the cells can acclimate to low nutrient conditions by changing the207

expression of the respective protein complex.208

ACCLIMATION, TRADE-OFFS AND CO-LIMITATION209

Biochemical resource allocation models go beyond describing nutrient uptake and the specific growth210

rate, and allow us to obtain insights into acclimation, co-limitation and cellular trade-offs. In particular,211

concomitant to the cellular growth curves, we obtain the distribution of protein resources within the cell212

as a function of environmental parameters and growth rate.213

Figure 3 and Table 1 show the relative protein fractions invested into the different biochemical214

processes dependent on environmental conditions. The resource allocation framework allows the model215

to acclimate to the respective environmental condition and invest cellular resources into processes that216

would otherwise limit growth. As a consequence, the maximal uptake rate of the nitrogen transporter217

complex (Vmax = kcat,TN · [TN ]) and hence the affinity A =Vmax/KN for the extracellular nitrogen source is218

not constant, but increases with decreasing external concentrations. Figure 4A shows the maximal uptake219

rate Vmax, as well as the actual uptake flux, as a function of extracellular nitrogen. Similar to the analysis220

by Bonachela et al. [5], and unlike descriptions using the Monod equation, the model accounts for the221

acclimation of the cell to low nutrient availability—with important consequences for, e.g., estimations222

of phytoplankton abundances in global ocean models. Likewise, protein investments in light harvesting223
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Table 1. Cellular protein allocation in dependence of environmental conditions. Values denote the
relative abundance (% relative to total proteome) of protein complexes under low and high nutrient
conditions. The symbols hold same meaning as Figure 1.

Low High

Protein Nitrogen Carbon Light Nitrogen Carbon Light
TC 26.5 25.4 9.0 34.2 1.8 34.8
TN 15.2 9.4 2.4 0.9 14.8 9.4
PSU 23.2 30.2 53.5 29.9 47.8 20.8
R 5.0 5.0 5.0 5.0 5.0 5.0
PQ 20.0 20.0 20.0 20.0 20.0 20.0
CB 8.3 7.8 9.4 7.8 7.1 7.8
MC + MQ 1.7 2.2 0.6 2.2 3.5 2.2

Figure 4. Panel A: The maximal uptake capacity Vmax of the nitrogen transport complex
(Vmax = kcat,TN · [TN ]) versus the actual uptake rate as a function of external nitrogen. For scarce nutrients
more cellular resources are invested into the uptake capacity. Panel B: A Lineweaver-Burk plot of the
(inverse of the) growth rate versus the (inverse of the) relative substrate concentration, KN/Nx, for
different values of external inorganic carbon. Parallel lines in a Lineweaver-Burk plot correspond to
uncompetitive inhibition, whereas a multiplicative dependence of the growth rate on its substrates would
result in lines with a identical x-intercept.

strongly depend on the light intensity, at the expense of investments in other metabolic processes (Table 1).224

Closely related to trade-offs in resource allocation, it is an important challenge for empirical growth
models to describe the dependence of growth on several potentially limiting nutrients, see Saito et al. [51]
for a discussion on the concept and types of co-limitation. The most common ways to implement multiple
limitation scenarios relies on either Liebig’s law of the minimum,

µ = min
(

µmax
1 [n1]

Km1 +[n1]
,

µmax
2 [n2]

Km2 +[n2]

)
, (11)

or the multiplicative form

µ = µ
max · [n1]

Km1 +[n1]
· [n2]

Km2 +[n2]
, (12)

where [n1] and [n2] denote the concentrations of two potentially limiting nutrients and Km1 Km2 the225

respective half-saturation constants, respectively. As discussed by Saito et al. [51] both forms are not226
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without problems and there is no clear empirical evidence to assess the merits of either representation.227

Given its simplicity, the multiplicative form is commonly employed in multi-nutrient models [16, 57].228

For biochemical resource allocation models, however, the description of growth limitations as a229

function of two or more nutrients emerges without further assumptions about the functional form of230

growth equations. In particular, the coarse-grained model described above is not consistent with Liebig’s231

law of the minimum, as growth on a single nutrient, as shown in Figure 2, does not exhibit any hard232

threshold. The absence of such a threshold is due to the fact that, for scarce nutrients, resources are233

increasingly invested into the respective uptake reactions.234

More relevant, however, the emergent growth curve is also not consistent with a multiplicative235

functional form. Figure 4B shows a Lineweaver-Burk plot of the growth rate as a function of nitrogen236

availability for different values of the external carbon concentration. Parallel lines in a Lineweaver-Burk237

plot correspond to uncompetitive inhibition, whereas a multiplicative functional form would result in lines238

with an identical x-intercepts. Hence, the absence of carbon acts analogous to uncompetitive inhibition,239

and affects both, the apparent organismal half-saturation constant of growth, as well as the maximal240

growth rate of the cell—again with important consequences for, e.g., growth limitations and nutrient241

dynamics in coupled ecosystem models.242

METABOLIC DIVERSITY AND THE COST OF REGULATION243

Recent studies have emphasized microbial community diversity as a fundamental property of model244

ecosystems [15]. Several principles and mechanisms allow to represent microbial diversity in biochemical245

resource allocation models. A shown above, cells may acclimate to different environmental conditions,246

resulting in an inhomogeneous population. If required, the possibility for physiological acclimation can247

also be restricted within simulations, for example by allowing only limited ranges for intracellular protein248

complexes (as would be expected, for example, for cyanobacterial Prochlorococcus strains).249

More importantly, however, cellular diversity also arises due to genetically-encoded differences250

between organisms. Firstly, diversity may arise due to differences in enzyme-kinetic parameters. The251

evolution of enzyme-kinetic parameters is constrained by physicochemical limits that result in trade-252

offs between parameters, with the protein complex ribulose-1,5-bisphosphate carboxylase/oxygenase253

(RuBisCO) as a prominent example [14]. As will be shown below, these differences result in different254

cellular growth curves. Secondly, microbial organisms exhibit metabolic diversity with respect to the255

encoded metabolic functionality within their genomes. As shown by recent studies of the cyanobacterial256

pan-genome and pan-metabolism [3, 55, 4], genome sizes differ significantly—reflecting the different257

adaptations and lifestyles of organisms. Differences in the set of encoded proteins give rise to different258

metabolic strategies that are accessible to the organism, for example with respect to the modes of energy259

generation [13], or accessibility of nutrient sources.260

To demonstrate the emergent switch based metabolic strategies, based on the possibilities encoded261

in the genome, we consider phototrophic growth with two alternative sources of extracellular nitrogen.262

We assume that, in addition to the nitrogen source Nx considered above, there is a second source of263

extracellular nitrogen Ny, whose uptake and conversion to the intracellular nitrogen precurser N is264

facilitated by a coarse-grained protein complex TY . Compared to the complex TN , however, the synthesis265

of TY requires more amino acids and its catalytic turnover number kcat is lower. Within their genome,266

strains may encode either of the two (coarse-grained) uptake protein complexes, TN or TY , or both. The267

respective strains are denoted as (TN)-strain, (TY )-strain and (TN+TY )-strain. The inclusion of both protein268

complexes within the genome, however, entails additional cellular costs: a larger genome corresponds269

to a (slightly) higher fraction of the non-protein biomass Q. Moreover, additional protein machinery is270

required to facilitate cellular decision to control the expression of both enzyme complexes, resulting in an271

increased fraction of non-catalyzing proteins PQ. The parameterization of the strains is provided in the272

Materials and Methods.273

In the following, we assume that the extracellular nitrogen source Ny is constantly available (analogous274

to, e.g., atmospheric dinitrogen), whereas the availability of the nitrogen source Nx varies. Figure 5275

shows the growth curves of all three strains as a function of Nx in the presence of a basal availability276

of Ny (Figure 5A), as well as the expression of the respective uptake complexes for the (TN+TY )-strain277

(Figure 5B). As expected, the (TY )-strain exhibits a constant growth rate, due to the constant basal278

availability of NY . The (TN)-strain exhibits a Monod-type dependence on the availability of Nx, as already279

shown in Figure 2. The combined (TN+TY )-strain, however, exhibits a switch between two growth regimes:280
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Figure 5. Panel A: The predicted specific growth rate of three different cyanobacterial strains at
different concentrations of the external nitrogen source Nx and a basal supply of the alternative nitrogen
source Ny. The strains are denoted as (TN)-strain, (TY )-strain and (TN+TY )-strain, and encode either a
single uptake mechanism (TN or TY ) or both within their genomes. The TN+TY )-strain has a higher
biosynthesis cost in terms of increased genome size and additional regulatory proteins and hence exhibits
a reduced specific growth rate compared to the streamlines strains. Panel B: Relative abundance (with
respect to total proteome) of the nitrogen uptake mechanisms TN and TY for the (TY )-strain. The
expression of the respective proteins depends on the environmental conditions.

for low availability of external Nx, the strain expresses the protein complex TY and utilizes the nitrogen281

source NY . In this regime, the (constant) specific growth rate is slightly below the rate observed for282

the (TY )-strain due to the increased burden of non-catalytic biomass. If the availability of Nx exceeds283

a certain threshold, the (TN+TY )-strain switches its preferred nitrogen source and expresses the protein284

complex TN . The growth rate then increases with increasing availability of Nx, though it always remains285

below the growth rate of the (TN)-strain (again due to the increased burden of non-catalytic biomass).286

Hence, we expect that the (TN+TY )-strain will be outcompeted in any constant environment, but will have287

a competitive advantage in (some) environments with variable nitrogen availability.288

For our purposes, the example serves to illustrate the following points: (i) biochemical resource289

allocation models build upon the genome of an organism and hence allow us to represent genetic diversity290

within strains, including genomes that encode several potential metabolic strategies and differences is291

genome size; (ii) the associated costs of larger genomes, including the the costs for additional expression292

of regulatory proteins can be incorporated into the parameterization of the model based on pan-genome-293

analysis and quantitative growth studies [31, 4, 63]; (iii) The optimal metabolic strategy for any given294

environment does not have to be specified in advance but is an emergent outcome of model simulation.295

Strains may switch between different strategies in different environments—with important consequences296

for ecosystem models; (iv) we observe that, within simulations, cells typically exhibit a hierarchy of297

preferred nutrients. That is, optimal solutions are not combinations of different uptake mechanisms.298

This behavior was previously proven for a different, but closely related, class of resource allocation299

models [62, 40], and is reminiscent of the phenomenon of catabolite repression. To what extent the300

hierarchy of preferred nutrients is a universal feature of microbial growth is insufficiently understood.301

A CASE STUDY: SEASONAL VARIATION AND CO-EXISTENCE302

To exemplify the feasibility to utilize biochemical resource allocation models within ecosystems simula-303

tions, we consider a model of phytoplankton diversity recently proposed by Tsakalakis et al. [57]. We304

do not aim to recapitulate the full study of Tsakalakis et al. [57], but focus on the competition outcomes305

between opportunists (r-strategists) and gleaners (K-strategists) in constant versus time-varying environ-306

ments. As shown above, the growth physiology of biochemical resource allocation models is an emergent307

property of the underlying biochemical parameters. We therefore assume that the biochemical parameters308
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of carbon uptake, as well as nitrogen metabolism and uptake, differs between strains—reflecting the309

diversity of strains. As noted above, our premise is that enzyme-kinetic parameters are subject to physico-310

chemical trade-offs, for example trade-offs between the half-saturation constant and the maximal catalytic311

rate of an enzyme. We emphasize that such trade-offs are not an outcome of our modelling approach but312

need to be specified independently, for example based on detailed biochemical surveys and analysis [14].313

We consider two strains of phytoplankton. The differences between both strains (detailed in Materials314

and Methods and Table 2) reflect trade-offs in the half-saturation constants and catalytic activities of the315

uptake mechanisms of nitrogen and carbon, and result in two functional groups of phytoplankton, gleaners316

and opportunists. The respective growth curves are shown in Figure 6. Gleaners are characterised by a317

higher affinity towards extracellular nitrogen, and an overall lower maximal growth rate. Opportunists are318

characterised by a high overall specific growth rate, but a lower affinity for extracellular nitrogen.319

Figure 6. The growth curves of two competing strains of phytoplankton, opportunists and gleaners, in
dependence of external nitrogen availability. The strains differ in the enzyme-kinetic parameters of their
constituent enzyme complexes. Gleaners (K-strategists) have a growth advantage during phases of low
external nitrogen availability, whereas opportunists (r-strategists) have a growth advantage at high
concentrations of external nitrogen.

Following Tsakalakis et al. [57], we simulate the growth of both strains in two different environments:
a constant light environment (control) and a light environment with seasonal variations in average light
intensity. Extracellular inorganic carbon is assumed to be constant, a (single) source of extracellular
nitrogen is is supplied via a constant influx. The dynamics of the abundances of gleaners (ρG) and
opportunists (ρO) are described by the following ODEs

dρG
dt = µG ·ρG−D ·ρG

dρO
dt = µO ·ρO−D ·ρO ,

(13)

the dynamics of external nitrogen is described by

d[Nx]

dt
=VN −D · [Nx]−νn,O ·ρO−νn,G ·ρG , (14)

where VN denotes a constant influx, and νn,O and νn,G denote the specific cellular uptake rates (as emerging320

from the respective models) of external nitrogen by the gleaners and opportunists, respectively. The321

population dynamics of both strains in constant and time-varying environments are shown in Figure 7.322

Simulations were performed using a Python ODE solver, the growth models are implemented a (series of)323

LP problems and solved at each time step. The procedure is computationally similar to dynamic FBA324

(dFBA), an established method for constraint-based analysis [34]. See Materials and Methods for details.325

As shown in Figure 7, gleaners outcompete opportunists in a constant light environment, consistent326

with the competitive exclusion principle. Seasonally changing light intensities, however, induce changes in327

strain abundances, and hence nitrogen availability. Temporal changes in nitrogen availability then result in328

the co-existence of both strains. During periods of low light availability, overall strain abundance decrease329
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Figure 7. Population dynamics of opportunists and gleaners under different nutrient and light conditions.
Panel A: shows competitive exclusions for constant light (I = 200µEm−2s−1), with the gleaner strain
outcompeting the opportunist. Panel B: shows the co-existence of both strains. Whereas, the lower right
panel shows the changes in the nitrogen concentration under the changing conditions of light intensities.
All simulations are performed using the parameters given in Table 2.

and the availability of extracellular nitrogen increases. With increasing light intensities, opportunists330

have a competitive advantage and quickly increase in abundance, thereby decreasing the availability of331

extracellular nitrogen and shifting the competitive advantage to gleaners until a decreasing light intensity332

restart the cycle. The simulation results are consistent the the corresponding simulations of Tsakalakis333

et al. [57] and demonstrate the feasibility to utilize biochemical resource allocation models in ecosystem334

simulations.335

DISCUSSION AND OUTLOOK336

As emphasized by Follows and Dutkiewicz [15], there is currently a vast chasm between the ecologically337

and biogeochemically oriented parameterizations of growth utilized in ecological modelling and the338

metabolic-pathway perspective of microbial growth enabled by systems biology and modern genomics.339

The purpose of this study was to outline a connection between both fields and to show how recent biochem-340

ical models of microbial growth might contribute to close this chasm. In this respect, of particular interest341

are resource allocation models of microbial growth [18, 59, 49, 8, 11]. Biochemical resource allocation342

models allow us to provide a quantitative account of protein expression and biochemical processes based343

on knowledge about biochemical parameters. Our aim was to heed the call of Allen and Polimene [1]344

to provide growth models based on a robust physiological formulation that allow for trade-offs between345

resource allocation of competing physiological activities. We propose that biochemical resource allocation346

models, such as the ones described here, fulfill this paradigm towards a new generation of plankton models.347

While mechanistic growth models [54], resource-allocation and cost-benefit analysis [48, 17, 15, 30], as348

well as models based on optimality [46, 47], are well established in ecological modelling, the resource349

allocation models described here directly build upon the framework of metabolic network reconstruction350

and constraint-based analysis—and therefore reflect the advances in quantitative growth physiology351

enabled by systems biology and modern genomics. The predictions from biochemical resource allocation352

models are often in excellent agreement with detailed physiological studies of model strains [19, 63]353

making them a good starting point for the description of microbial growth.354

Biochemical resource allocation models can be formulated for almost all microbial strains for which a355

reference genome is available. Supported by recent analysis of the cyanobacterial pan-genome [3, 55, 4],356
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and the diversity of energy metabolism in microbes [13], we hypothesize that such models will follow a357

modular paradigm: there is only a limited number of fundamentally different metabolic strategies available358

and microbial organisms are a mix-and-match conglomerate of these strategies (with many combinations359

excluded for biophysical or energetic reasons). The enormous diversity of microbial metabolism then360

arises from further variations and adaptations of biochemical parameters (with possible trade-offs), as well361

as from differences in cellular resource allocation. For example, recent studies show that the observed362

significant differences in the maximal specific growth rates between genetically similar cyanobacterial363

strains are related linked to differences in resource allocation strategies (such as the amount of storage364

compounds or differences in the PSII/PSI ratio) [63]. We note, however, that variability and possible365

trade-offs in enzyme-kinetic parameters are not an intrinsic part of biochemical resource allocation366

models but have to be provided as externallt—based on detailed biochemical studies [14]. The analysis367

of biochemical resource allocation models therefore distinguishes between trade-offs that arise from368

physicochemical constraints in enzyme evolution and trade-offs that arise from differences in protein369

expression and resource allocation.370

The merits of biochemical resource allocation models are as follows: (I) the models can be formulated371

using different levels of complexity, from genome-scale representations taking into account all individual372

enzymes [19, 49], to intermediate representations [50], to coarse-grained models that consider protein373

complexes corresponding to (agglomerated) cellular processes, such as the model outlined above; (II)374

model parameterization is be based on available knowledge provided in biochemical databases [26]375

and our increasing knowledge about quantitative cell physiology [37]. The models therefore provide a376

link between physicochemical constraints of enzyme-kinetic parameters and observed growth kinetics.377

Key parameters for model parameterization are enzyme costs (in terms of amino-acids and co-factor378

requirements) and enzymatic catalytic activities. Information about regulatory mechanisms is not required;379

(III) the models allow to represent metabolic diversity by taking distributions of parameters (and possible380

trade-offs) into account. Biochemical resource allocation models therefore allow to implement selection-381

based approaches [15]—following the Baas-Becking paradigm ”everything is everywhere but environment382

selects” (cited after Follows and Dutkiewicz [15]); (IV) biochemical resource allocation models allow383

for complex metabolic behavior, such as switches between different metabolic strategies. Most microbes384

are capable of more than one metabolic mode and conventional Monod-type models face difficulties to385

describe transitions between metabolic modes. For biochemical resource allocation models the modes of386

energy generation or nutrient uptake strategies (and hierarchies) emerge without further specification as387

part of the optimization procedure. (V) the latter also allows model to be embedded within evolutionary388

simulation to explain how different metabolic strategies and strains with different genome sizes may389

emerge and co-exist. (VI) biochemical resource allocation models of the form discussed here only390

require linear optimization and hence are computationally tractable. While it is (currently) not possible to391

formulate kinetic models at the genome-scale, the implementation of bioechemical resource allocation392

models is computationally feasible even for large models [19, 49]. Coarse-grained models, such as the393

one discussed above, can be solved fast and efficiently and hence are suitable for ecosystems simulations.394

In case computational capacity is limiting, it is possible to devise approximate schemes (such as lookup395

tables).396

Notwithstanding their merits, current biochemical resource allocation models are not (yet) the panacea397

for ecological simulations. We expect that different approaches are needed, as well as further improve-398

ments of biochemical resource allocation models and other whole-cell systems biology models. In399

particular, current biochemical resource allocation models can be extended along the following lines: (I)400

current simulations typically focus on steady state analysis. While it has been shown, that biochemical401

resource allocation models can be solved for time-varying environments [50, 49], the computational402

burden is significant. Nonetheless, it is paramount importance to be able to represent phenomena such403

as storage, bet-hedging or luxury uptake of scarce nutrients (i.e, the uptake of nutrient beyond what404

is currently required in anticipation of possible future limitations). These phenomena are also aspects405

of resource allocation strategies and hence can be represented by appropriate models. (II) currently406

models are based on a metabolic perspective of growth. In principle, also trade-offs between growth407

and other cellular properties can be considered, such as the resilience against stress or predation. (III)408

a better understanding of physicochemical trade-offs in enzyme-kinetic parameters is required. Further409

quantitative growth studies, along the lines of Zavřel et al. [63] are required to quantify the cost of410

regulation for strains with different genome sizes.411
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Overall, we envision a unified framework to construct biochemical resource allocation models based412

on reference genomes and suitable biochemical parameterizations. Such models will allow us to represent413

the microbial diversity observed in almost all environments and will open up new avenues to interface414

biogeochemical and ecological questions with recent knowledge obtained from quantitative microbial415

growth physiology.416

MATERIALS AND METHODS417

Biochemical resource allocation models418

The implementation of the resource allocation models follows the algorithms described in [18, 50, 49]. A419

model consists of two types of components: steady-state metabolites and cellular macromolecules (which420

include catalytic protein complexes and quota components). We assume that the internal metabolites are at421

a quasi-steady state, i.e., metabolism readjustments are faster than changes in the external environmental.422

Thus, the concentrations of internal metabolites are not explicitly evaluated in the model, and the metabolic423

network is assumed to be balanced at all times. We neglect dilution by growth of internal metabolites. The424

quota components (protein PQ and remaining biomass Q) fulfill no explicit function within our model and425

their synthesis is enforced using fixed quotas (except otherwise noted, the quota protein component PQ is426

assumed to be 20% of total protein, the non-protein biomass Q is assumed to be 50% of total biomass).427

The biochemical resource allocation model of phototrophic growth428

The biochemical resource allocation model shown in Figure 1 is assembled following the stoichiometry
and data described by Faizi et al. [11]. We note that the model of Faizi et al. [11] is a nonlinear kinetic
ODE model, hence computationally different from the model described here. Growth is facilitated by 8
protein complexes: 6 enzyme and transport complexes, ribosomes R and a non-catalyzing quota protein
compenent PQ. The enzyme and transporter catalyze the following reactions:

PSU : 8 ·photons−−→ 8 · e
TC : Cx + e−−→ Ci

CB : 3 ·Ci +10 · e−−→ C3

MC : 2 ·C3 +2 ·N+35 · e−−→ AA
TN : Nx + e−−→ N

MQ : C3 −−→ Q.

(15)

Protein translation is described by the equation

R : np ·AA+3np · e−−→ protein , (16)

where np denotes the size of the respective protein in amino acids.429

Capacity constraints of catalytic enzymes430

All enzyme-catalyzed reactions are constrained by the amount of the respective enzyme, according to
equation (7). The constraints for uptake and light harvesting reactions also depend on the availability of
the respective substrates. In particular, for (i) the uptake of inorganic carbon,

vTC ≤
Cx

KC +Cx
· kcat,TC ·TC, (17)

(ii) for uptake of extracellular nitrogen,

vn ≤
Nx

KN +Nx
· kcat,T N ·TN , (18)

and (iii) and for light harvesting and photosynthesis

vPSU ≤
kcat,PSU ·σ I

σ I + kcat,PSU + kd ·σ I
·PSU

vd =
kd(σ I)2

σ I + kcat,PSU + kd ·σ I
·PSU .

(19)

14/19

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/537779doi: bioRxiv preprint 

https://doi.org/10.1101/537779
http://creativecommons.org/licenses/by-nd/4.0/


The equation for light harvesting and photosynthesis is derived from a two-state model of photosynthesis431

that accounts for photodamage, see [11] for a derivation.432

The constraints on the ribosomal capacity are

∑
p

γp ·np ≤ γ
max ·R (20)

where np denotes the protein size (in amino acids per molecule), γp its translation rate, and γmax denotes433

the maximal translation rate of ribosomes. We note that all capacity constraints can be implemented as434

linear constraints.435

Table 2. Parameters of the model. The parameter values follow the data used in Faizi et al. [11]. If no
data were available in the literature, the remaining parameters are estimated� based on generic values.

Symbol Definition Gleaner/Control Opportunist Source
Vcell Cell volume (µm3) 1.8 1.8 [7]
D Rate of dilution (d−1) 0.25 0.25 [10]
d Average cell density (aa cell−1) 1.4 ×1010 1.4 ×1010 [11]
kd Rate of photo damage 0.56 0.56 �
σ Effective absorption (m2 µmol PSU−1) 0.2 0.2 �
nPSU Size of photosynthetic unit PSU (aa

molec−1)
95451 95451 [11]

nTC Size of carbon transporter Tc (aa molec−1) 1681 1681 [11]
nCB Size of Calvin-Benson (CB) proteins (aa

molec−1)
2000 2000 �

nc Size of carbon metabolism (Mc) proteins
(aa molec−1))

20000 20000 �

nT N Size of nitrogen transporter Tn (aa
molec−1)

10000 10000 �

nP Size of protein P (aa molec−1) 1000 1000 �
nq Size of metabolism protein Mq (aa

molec−1)
20000 20000 �

nR Size of ribosome R (aa molec−1) 7358 7358 [11]
γmax Maximal translation rate (aa s−1 molec−1) 22 22 [6]
KC Half-saturation constant of Tc (µM) 15 15 [44]
KN Half-saturation constant of Tn (µM) 10 50 �
kcat,PSU Turnover rate of PSU (s−1) 250 250 [37]
kcat,TC Turnover rate of Tc (s−1) 20 200 �
kcat,CB Turnover rate of CB (s−1) 1 1 �
kcat,MC Turnover rate of Mc (s−1) 10 10 [37]
kcat,T N Turnover rate of Tn (s−1) 50 200 �
kcat,P Turnover rate of Pq (s−1) 100 100 �
kcat,Q Turnover rate of Mq (s−1) 100 100 �
Q Relative abundance of Q w.r.t. biomass 0.5 0.5 �
PQ Relative abundance of PQ w.r.t. total pro-

teome
0.2 0.2 �

Solving the resource allocation model as a LP436

For any given set of external parameters Cx, Nx, I and specific growth rate µ , the model implemented as a
linear program LP(µ). The problem is described by three matrices NNN, BBB, and CCC, the vector of reaction
rates vvv = (vi,γk)

T (including metabolic and translation rates), and the vector PPP of macromolecules. The
constraints are

NNN · vvv = BBB ·

[
000
PPP

]
, (21)
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vvv≥ 000 (22)

CCC · vvv≤ PPP with PPP = (R,TN ,TC,PSU,MC,MQ,CB,PQ,Q)T (23)

PPP≥ PPPlb with PPPlb =
(

Rlb,T lb
N ,T lb

C ,PSU lb,Mlb
C ,Mlb

Q ,CBlb,Plb
Q ,Qlb

)T
(24)

ωωω ·PPP = d. (25)

Constraint (21) enforces mass-balance at steady-state, including terms for dilution (with dilution of437

metabolites neglected). The matrix BBB is a diagonal matrix with elements µ on the diagonal. Constraint438

(23) described the (linear) enzymatic capacity constraints, the matrix CCC is largely diagonal, except for439

the constraints on the translation rate. Constraint (24) provides a lower bound for the abundance of each440

macromolecules (which is zero except for the quota components). Constraint (22) ensures positive fluxes441

in the LP problem. Constraint (25) enforces a constant cell density. The vector ωωω described the sizes of442

the macromolecules (in units of amino acids per molecule) and d denotes the cell density (in units of443

amino acids per cell).444

The above described LP is solved as a feasibility problem for a given µ . To obtain a solution for the445

maximal specific growth rate in a given environment, the global optimum of µ is found using bisection,446

analogous to the method used in [50, 49].447

Model parameterization448

A complete list of model parameters is provided in Table 2. Parameterization follow the data used in Faizi449

et al. [11]. The size of macromolecules is estimated using the size of an average enzyme times the450

approximate number of steps used in the pathway. The size of the protein complex PQ and the biomass451

component Q is arbitrary. Turnover rates are chosen according to average values described in [37]. The452

description of the photosystem is adopted from Faizi et al. [11], with σ denoting the effective absorption453

cross-section per photosystems, and kd the rate of photodamage.454

To simulate the growth on two alternative sources of external nitrogen, we used the set of additional455

parameters given in Table 3.456

Table 3. Specific parameters used to model growth on two alternative sources of external nitrogen. The
remaining parameters are same as described in Table 2

.

Symbol Definition (TN)-strain (TY )-strain (TN +TY )-strain
eN Energy units per uptake reaction TN 1 – 1
eY Energy units per uptake reaction TY – 2 2
kcat,TY Turnover number of TN (s−1) – 30 30
kcat,T N Turnover number of TN (s−1) 50 – 50
nT N Size of TN (aa molec−1) 10000 – 10000
nTY Size of TY (aa molec−1) – 20000 20000
Q Relative abundance of Q w.r.t.

biomass
0.5 0.5 0.6

PQ Relative abundance of PQ w.r.t. total
proteome

0.2 0.2 0.22

The computational modelling framework457

A computational model is developed using Python as a programming language. The framework uses458

functionality from the following packages: numpy [43], scipy [27], matplotlib [25], pandas [36], sundials459

[24] and Gurobi [20]. In particular, we use Gurobi for solving the LP-based optimisation and CVODE460

integrator from the sundials package to solve the system of ODEs. The version of the modelling framework461

used to produce the results presented in this manuscript is publicly available with instructions to install462

and run simulations at (https://github.com/surajsept/cyanoRBA). The development version is hosted on463

GitLab (https://gitlab.com/surajsept/RBmodels) and people interested in contributing can request access464

by contacting the author (S.S.).465
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[50] Rügen, M., Bockmayr, A., and Steuer, R. (2015). Elucidating temporal resource allocation and584

diurnal dynamics in phototrophic metabolism using conditional FBA. Sci Rep, 5:15247.585

[51] Saito, M. A., Goepfert, T. J., and Ritt, J. T. (2008). Some thoughts on the concept of colimitation:586

Three definitions and the importance of bioavailability. Limnol. Oceanogr., 53(1):276–290.587

[52] Schaechter, M. (2015). A brief history of bacterial growth physiology. Front. Microbiol., 6:289.588

[53] Scott, M. and Hwa, T. (2011). Bacterial growth laws and their applications. Curr. Opin. Biotechnol.,589

22:559–565.590

[54] Shuler, M. L., Leung, S., and Dick, C. C. (1979). A mathematical model for the growth of a single591

bacterial cell*. Annals of the New York Academy of Sciences, 326(1):35–52.592

[55] Simm, S., Keller, M., Selymesi, M., and Schleiff, E. (2015). The composition of the global and593

feature specific cyanobacterial core-genomes. Front Microbiol, 6:219.594

[56] Succurro, A. and Ebenhoh, O. (2018). Review and perspective on mathematical modeling of microbial595

ecosystems. Biochem. Soc. Trans., 46(2):403–412.596

[57] Tsakalakis, I., Pahlow, M., Oschlies, A., Blasius, B., and Ryabov, A. B. (2018). Diel light cycle597

as a key factor for modelling phytoplankton biogeography and diversity. Ecological Modelling,598

384:241–248.599

[58] Wade, M., Harmand, J., Benyahia, B., Bouchez, T., Chaillou, S., Cloez, B., Godon, J.-J., Boudjemaa,600

B. M., Rapaport, A., Sari, T., Arditi, R., and Lobry, C. (2016). Perspectives in mathematical modelling601

for microbial ecology. Ecological Modelling, 321:64 – 74.602

[59] Weiße, A. Y., Oyarzún, D. A., Danos, V., and Swain, P. S. (2015). Mechanistic links between cellular603

trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. U.S.A., 112(9):E1038–47.604

[60] Westermark, S. and Steuer, R. (2016). Toward Multiscale Models of Cyanobacterial Growth: A605

Modular Approach. Frontiers in bioengineering and biotechnology, 4:95.606

[61] Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., Cordero, O. X., Brown,607

S. P., Momeni, B., Shou, W., Kettle, H., Flint, H. J., Haas, A. F., Laroche, B., Kreft, J. U., Rainey,608

P. B., Freilich, S., Schuster, S., Milferstedt, K., van der Meer, J. R., Groß kopf, T., Huisman, J., Free,609

A., Picioreanu, C., Quince, C., Klapper, I., Labarthe, S., Smets, B. F., Wang, H., and Soyer, O. S.610

(2016). Challenges in microbial ecology: building predictive understanding of community function611

and dynamics. ISME J, 10(11):2557–2568.612

[62] Wortel, M. T., Peters, H., Hulshof, J., Teusink, B., and Bruggeman, F. J. (2014). Metabolic states613

with maximal specific rate carry flux through an elementary flux mode. FEBS J., 281(6):1547–1555.614
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