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Abstract 

Background: 

Within young individuals, mood disorder onset may be related to changes in trajectory of brain 

structure development. To date, however, longitudinal prospective studies remain scarce, showing 

partly contradictory findings, with a lack of emphasis on changes at the level global brain patterns. 

Cross-sectional adult studies have applied such methods and show that mood disorders are 

associated with differential aging trajectories, or accelerated brain ageing. Currently, it remains unclear 

therefore whether young individuals show differential brain structure ageing trajectories associated 

with onset of mood disorder and/or presence of familial risk.  

Methods: 

Participants included young individuals (15-30 years, 53% F) from the prospective longitudinal Scottish 

Bipolar Family Study (SBFS) with and without a close family history of mood disorder. All were well at 

time of recruitment. Implementing a structural MRI-based brain age prediction model we globally 

assessed individual trajectories of age-related structural change with use of the difference between 

predicted brain age and chronological age (brain-predicted age difference; brain-PAD) at baseline and 

at two-year follow-up. Based on follow-up clinical assessment, individuals were categorised into three 

groups: (i) controls who remained well (C-well, n = 93), (ii) high familial risk who remained well (HR-

well, n = 74) and (iii) high familial risk who developed a mood disorder (HR-MD, n = 35).  

Results: 

At baseline, brain-PAD was comparable between groups. Results showed statistically significant 

negative trajectories of brain-PAD between baseline and follow-up for HR-MD versus C-well (β = -

0.60, pcorrected < .001) and HR-well (β = -0.36, pcorrected = .02), with a potential intermediate trajectory for 

HR-well (β = -0.24 years, pcorrected = .06).   

Conclusions:  

These findings suggest that within young individuals, onset of mood disorder and familial risk may be 

associated with a deceleration in brain structure ageing trajectories. Extended longitudinal research 

will need to corroborate findings of emerging maturational lags in relation to mood disorder risk and 

onset. 

 

Keywords depression, bipolar disorder, high risk, brain maturation, brain age, structural MRI, pattern 

recognition  
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1. Introduction 

  Mood disorders are amongst the most common psychiatric disorders, with a life-time 

prevalence of around 15% (Kessler and Bromet, 2013). Globally, they are the greatest contributor to 

non-fatal ill-health (World Health Organization, 2017). However, underlying biological mechanisms 

remain unclear. It is known that mood disorders are highly heritable and share complex genetic 

architecture; individuals with a family history of Bipolar Disorder (BD) have >10-fold increased risk of 

developing BD or Major Depressive Disorder (MDD) (Smoller and Finn, 2003). Mood disorders often 

manifest during adolescence and young adulthood (De Girolamo et al., 2012). During these life 

stages, age-related changes in brain structure contribute to cognitive development but also increase 

vulnerability to mental illness, including mood disorders (Andersen, 2003; Dahl, 2004).  

  From adolescence onward, decreases in brain grey matter and fine-tuning/stabilisation of 

synapses parallel changes in cognition and affect regulation (Giorgio et al., 2010; Spear, 2000). For 

higher-order cortical areas these structural trajectories extend into young adulthood (Gogtay et al., 

2004; Wierenga et al., 2016, 2014). Previous prospective longitudinal studies including young 

individuals have shown inconsistent findings with regard to brain structure changes and mood disorder 

onset (Bos et al., 2018; Ducharme et al., 2014; Papmeyer et al., 2016, 2015; Whittle et al., 2014). The 

most consistent results suggest that the frontal cortex (Ducharme et al., 2014; Papmeyer et al., 2015) 

and subcortical volumes (Whittle et al., 2014) show decelerated brain structure ageing trajectories. 

Theoretically, decelerated trajectories may contribute to vulnerability to mood disorders, particularly 

when frontal-limbic brain systems of cognitive control and emotional stability are affected. Previous 

studies in this field mostly focused on specific regions of interest, so that spatially unbiased 

comprehensive approaches investigating global patterns are currently lacking. We were therefore 

interested in determining from longitudinal prospective data of young individuals, whether a 

comprehensive and spatially unconstrained measure of brain structure ageing trajectory across the 

brain  was related to concurrent mood disorder onset and/or to familial risk. 

  A new framework that allows for global assessment of age-related patterns of structural 

change in the brain involves the estimation of an individual’s “biological brain age” from an MRI scan. 

Subsequent comparison with chronological age provides the brain-predicted age difference (brain-

PAD) as a cross-sectional measure of brain ageing. Conceptually, when brain ageing trajectories that 

shape cognition and behaviour show individually different temporal dynamics, brain-PAD is expected 
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to relate to relevant outcomes. Indeed, previous cross-sectional research within early-old aged adults 

showed that older appearing brains were associated with age-related diseases and mental illness (for 

overview see Cole et al., 2019), including mood disorders (Han et al., 2019; Koutsouleri et al., 2014; 

but no effect in Nenadić et al., 2017), and were furthermore predictive of mortality (Cole et al., 2018). 

Interestingly, accelerated brain ageing in mood disorders is in accordance with accelerated biological 

ageing (Rizzo et al., 2014; Sibille, 2013; Wolkowitz et al., 2011) as well as increased risk of age-

related disease and mortality (e.g., Mezuk et al., 2008; Ösby et al., 2001; Pan et al., 2011).  

  Within longitudinal designs including younger individuals, brain-PAD has potential to show the 

temporal origin of accelerated brain ageing trajectories that have been observed in adult samples. 

Importantly, the brain-PAD approach has previously been applied and validated within samples of 

children and adolescents (Franke et al., 2012). Furthermore, a previous cross-sectional study did not 

find differences in brain-PAD between young adults at high familial risk with mood disorder diagnosis, 

those at high familial risk who were well, and control subjects (Hajek et al., 2017). To our knowledge, 

however, the current study is the first longitudinal study to apply brain-PAD methods within a sample 

of young individuals to investigate associations between mood disorder risk and onset, and age-

related changes in brain structure. 

Specifically, the current study investigated divergence of normative brain structure ageing 

trajectories in young individuals by applying the brain-PAD framework within a prospective longitudinal 

design, starting before mood disorder onset. We used data from the Scottish Bipolar Family Study 

(SBFS), which included young individuals who were all initially well and some of whom had a close 

family history of BD. Within this cohort our group previously identified differences in cortical thickness 

trajectories associated with high risk and mood disorder onset, including increased thickness of the left 

inferior frontal gyrus and left precentral gyrus in those at high risk who subsequently developed mood 

disorder versus cortical thickness reductions in those who remained well (Papmeyer et al. 2015a). By 

contrast, no subcortical volume markers of risk and illness were found (Papmeyer et al. 2016). 

Investigation of white matter structure at baseline furthermore revealed reduced white matter integrity 

associated with familial risk (Sprooten et al. 2011), and follow-up data suggested that this finding was 

related to sub-clinical symptoms rather than predictive of clinical outcome (Ganzola et al. 2018). The 

current study builds on previous research within the BFS cohort, which identified differences in specific 
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grey matter regions and white matter abnormalities, by investigating global trajectories of grey matter 

structure associated with familial risk and onset of mood disorder. 

Recognising similarities between BD and MDD in symptomatology and genetic architecture, 

as well as the difficulty of defining a definitive stable diagnosis at young age, early-onset mood 

disorder was defined as having an onset of MDD or BD during adolescence or young adulthood. The 

longitudinal character of the study enabled the investigation of brain-PAD over two years, to assess 

differential brain structure ageing trajectories for those who were at high risk for mood disorder and/or 

subsequently developed illness.  

   Based on previous research, we predicted that mood disorder onset in youth would be 

associated with differential trajectories of brain structural change, without a specific hypothesis relating 

to the direction of this effect. Previous results from longitudinal developmental studies are 

inconclusive, but show weak evidence of decelerated trajectories, which also corresponds to 

theoretical developmental perspectives. Conversely, early adulthood may represent the temporal 

origin of the accelerated brain ageing observed in older adults, in which case we would expect an 

effect of mood disorder in this direction instead. We also hypothesised that the presence of familial risk 

would be associated with differences in brain-PAD trajectory. 

 

2. Materials and Methods 

2.1 Participants 

  Participants were adolescents and young adults (N = 283, age 15-30 years) recruited as part 

of the Scottish Bipolar Family Study (SBFS) (Chan et al., 2016; Ganzola et al., 2018; Sprooten et al., 

2011; Whalley et al., 2015). Participants at high familial risk of mood disorder (HR-participants) had at 

least one first-degree relative or two second-degree relatives with BD type-I, and were thus at 

increased risk of developing a mood disorder (i.e., over 10-fold increased risk for both BD and MDD) 

(Smoller and Finn, 2003). Unrelated control participants without family history of BD or other mood 

disorder were recruited from the social networks of HR-participants, and were matched to the HR-

group by age and sex. Details of familial structure within the groups are described in Appendix A1. 

Exclusion criteria ensured that, at the time of recruitment, all participants had no personal history of 

MDD, mania or hypomania, psychosis, or any other major neurological or psychiatric disorder, 

substance dependence, learning disability, or head injury that included loss of consciousness, and that 
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they were without contraindications to MRI. Therefore, all individuals (HR and control) were 

considered well at the baseline imaging assessment.  

   The following additional exclusion criteria were applied in the context of the current study: (i) 

missing MRI or age data (n = 40), (ii) scans of insufficient image or segmentation quality (n = 15) (iii) 

unclear or other psychiatric diagnosis without mood disorder (n = 5) (see Appendix A.2), and (iv) high 

familial risk for mood disorder without follow-up measurement (n = 9). These criteria excluded 69 

participants, reducing the sample size to a total of 214 participants at timepoint 1 (108 HR-

participants), with follow-up timepoint 2 data available for 133 of these participants (78 HR-

participants).  

 

2.2 Procedure 

  Participants of the SBFS were invited every two years for a total of four assessments over six 

years (Whalley et al., 2015). Participants were interviewed and screened with the Structured Clinical 

Interview for DSM-IV Axis-I Disorders (SCID) (First et al., 2002) by two trained psychiatrists at 

timepoint 1 to ensure that they were all initially well, and at timepoint 2 to determine the presence of 

any mood disorder meeting diagnostic criteria since the previous assessment. Timepoint 2 clinical 

information was available for 93% of the included control participants, and for all included HR-

participants. Of note, control participants with missing clinical information at timepoint 2 (7%) also had 

missing timepoint 2 MRI data, but their baseline data was retained to increase the training sample size 

and contributed to statistical modelling of the mean brain-PAD at baseline. Using the same procedure 

as previous studies on this cohort (Whalley et al. 2015; Chan et al. 2016), participants were 

categorised as well or diagnosed with mood disorder according to available clinical information. 

Individuals with well outcomes at the earlier two assessments were assumed to have remained well in 

the absence of further clinical information to the contrary at timepoint 3 (see Appendix A.3, Table S1). 

Additionally however, if individuals were subsequently found to have been diagnosed with mood 

disorder at further assessments (n = 13), they were then categorised in the mood disorder group. 

Including these participants in the mood disorder group enables the investigation of early disease 

mechanisms, while keeping the well-groups as pure as possible. Group categorisation resulted in the 

following groups: control participants who remained well (C-well, n = 93), HR-participants who 

remained well (HR-well, n = 74), and HR-participants who developed a mood disorder (HR-MD, n = 
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35, including 6 BD). As only a small number of control participants developed a mood disorder (n = 12, 

including 2 BD), these participants were not included in the main analysis. Thus, the sample for our 

main analysis consisted of 202 participants at baseline and 124 participants at follow-up. 

  The National Adult Reading Test (NART) (Nelson and Willison, 1991) and Hamilton Rating 

Scale for Depression (HRSD) (Hamilton, 1960) were administered at the time of scanning. The 

participant’s age at the time of each assessment was registered in years with a precision of two 

decimals. Assessments at timepoint 1, timepoint 2 and timepoint 4 included an MRI session, although 

only MRI measurements at timepoint 1 and timepoint 2 were considered within this study to restrict to 

a single scanner. The SBFS was approved by the Research Ethics Committee for Scotland, and 

written informed consent including consent for data linkage via medical health records was acquired 

from all participants.  

 

2.3 MRI acquisition and pre-processing 

  Timepoint 1 and timepoint 2 MRI sessions were carried out on a 1.5 T Signa scanner (GE 

Medical, Milwaukee, USA) at the Brain Research Imaging Centre in Edinburgh and included a 

structural T1 weighted sequence (180 contiguous 1.2 mm coronal slices; matrix = 192 x 192; fov = 24 

cm; flip angle 8°).  

   Pre-processing of T1 weighted scans was done in Statistical Parametric Mapping (SPM) 

version 12. The Computational Anatomy Toolbox (CAT) toolbox (version CAT12.3 (r1318); Gaser and 

Dahnke, 2018), which runs on SPM12 software, was used to segment T1-weighted MRI scans into 

different tissue types (for details see Appendix A.4). A cross-sectional segmentation approach was 

utilised in order to maximise the size of our training sample, and the longitudinal aspect of our data 

was handled with repeated measures linear mixed modelling (see section 2.5). This approach avoided 

the exclusion of participants with incomplete MRI data. CAT12 Quality Assurance metrics were used in 

combination with manual checks to achieve an objective and comprehensive procedure to exclude 

scans with artefacts or of otherwise insufficient quality (see Appendix A.4). Subsequently, modulated 

grey matter maps (GMM) were smoothed with a Gaussian kernel (FWHM = 8 mm). After loading the 

smoothed GMM (sGMM) into Python version 3.5.4, voxels were resampled into voxels of double the 

original voxel size, i.e. 3 x 3 x 3 mm3. This reduced the number of voxels without further loss of spatial 

information. The sGMM were then masked with a threshold of 0.01 to ensure that voxels outside the 
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brain were represented by value zero. The resulting sGMM were used as input for the brain-PAD 

model. 

 

2.4 Brain-PAD model 

  To initially train the brain age prediction model, the training sample included all control and 

HR-participants that remained well (n = 167) in order to maximise the healthy sample size (a model 

including control participants only was considered underpowered, see Appendix A.5). The current 

model was equally balanced across timepoint 1 and timepoint 2 measurements in order to maximise 

the age range. Specifically, each well-group participant provided one scan for the training sample: 48 

timepoint 1 scans and 46 timepoint 2 scans (i.e. all available scans) for C-well, together with 37 scans 

per timepoint for HR-well. HR-well timepoint 2 scans were selected based on the highest chronological 

ages at follow-up so that the age range covered by the training sample was maximal (Mage = 22.37, 

SDage = 2.94, age range = 15.2-28.1 years; for age distributions see Figure S1 in Appendix A.6). 

Specifically, each well-group participant provided one scan for the training sample; this was a 

timepoint 2 scan for all 46 C-well participants with follow-up scan and the 37 HR-well participants with 

the highest chronological ages at follow-up.  

  Similar to previous studies (see Cole et al., 2019), the sGMM and corresponding chronological 

ages of the training sample were used to train a brain age prediction model. This model was 

implemented in Python (version 2.6.6). Corresponding to recent recommendations (Smith et al., 2019), 

this model initially consisted of dimension reduction of all sGMM voxels to 73 brain components 

(based on eigenvalue > 1) using principal component analysis (PCA) based on singular value 

decomposition (SVD) from scikit-learn (Pedregosa et al., 2011). We subsequently used these brain 

components (X) and chronological age (y) as input for estimating a Relevance Vector Regression 

(RVR) model with linear kernel (Tipping, 2001); this was implemented using the publicly available 

scikit-rvm package  (https://github.com/JamesRitchie/scikit-rvm). The RVR algorithm was chosen 

because kernel-based methods have been most commonly implemented in brain age models (Cole et 

al., 2019), because linear RVR was found to be the favourable algorithm in a previous brain-PAD 

study (Franke et al., 2010) and because RVR does not require estimation of hyperparameters using 

cross-validation (a procedure that would limit our sample size).  

  The trained model was then applied to each participant's sGMM to predict their brain age, 
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ensuring that the participant for whom the brain age was being predicted was left out of the training 

sample to prevent bias (leave-one-out training). A residuals approach was used to regress out 

chronological age and gender, and subsequently calculate brain-PAD (for details see Appendix A.7), 

i.e. the gap between brain age prediction and chronological age. This residuals based approach is 

typically used to derive measures of accelerated ageing (e.g. epigenetic ageing; Chen et al., 2016; 

Horvath, 2013) and is recommended for the brain-PAD approach (Smith et al., 2019).  

  Regarding brain development, a positive brain-PAD reflected a brain-predicted age older than 

the chronological age of the participant, while a negative brain-PAD indicated a brain-predicted age 

younger than the participant’s chronological age. Changes in brain-PAD over time indicated a relative 

acceleration in brain maturation if brain-PAD became more positive (or less negative), or a relative 

deceleration in brain maturation if brain-PAD became more negative (or less positive).  

  Given the aim of the current study to specifically investigate brain structure ageing trajectories 

within the SBFS cohort, as well as the demographics of our cohort (particularly the narrow age range, 

also including late adolescence), we achieved within-sample model evaluation based on the brain age 

predictions for the training sample, using leave-one-out cross-validation.  

 

2.5 Comparison of brain maturation trajectories  

   Since the objective of this study was to investigate deviation of brain maturation trajectories in 

young individuals at high risk for mood disorder and the association with illness onset, participants 

were divided in three groups based on clinical information as described above. Clinical information 

from all available assessments was considered in group categorisation as described above.   

  In order to compare brain structure ageing trajectories between groups, we applied a linear 

mixed model (LMM) to the brain-PAD measures, taking into account loss to follow-up as well as 

individual and family-related effects (Gueorguieva and Krystal, 2004). This was modelled using R 

(version 3.2.3) package nlme (Pinheiro et al. 2015) with the formula: ‘Brain-PAD ~ Timepoint * Group, 

random = ~1 | FamilyID / SubjectID’. Within this single pre-defined LMM model, we were interested in 

the following contrasts: group differences in brain-PAD at baseline (group effect), differential 

trajectories of brain-PAD between groups (group by timepoint interaction effect), and group differences 

at follow-up. For these contrasts we tested all three pairwise comparisons, and we multiple 

comparison corrected results (n = 3 pairwise comparisons) with the Holm-Bonferroni method (Holm, 
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1979) using R package ‘emmeans’ (https://github.com/rvlenth/emmeans).  

  Exploratory analyses were conducted to further explore group differences in Brain-PAD 

trajectories. Firstly, we tested a longitudinal model that considered the interaction effect between age 

(at baseline) and group on the difference in brain-PAD between baseline and follow-up; this was 

modelled in R using the formula: ‘Brain-PAD_difference ~ Age_baseline * Group, random = ~1 | 

FamilyID/SubjectID’. A second exploratory analysis also modelled the brain-PAD trajectory for the 

group of control participants who developed a mood disorder (C-MD) within the LMM of the main 

analysis, considering the pairwise comparisons with control group C-well. In all of the analyses 

described above, continuous variables (brain-PAD, age) were transformed to Z-scores to retrieve 

standardised β-coefficients.  

 

3. Results 

3.1. Demographic and clinical variables 

  Sample sizes, demographic information and clinical measures are presented in Table 1. There 

were no significant differences between groups with regard to age at either timepoint, and no 

differences in gender, handedness and NART intelligence quotient score.  

  However, HR-MD participants reported greater depression symptomatology on the HRSD as 

compared to the groups of participants who remained well (C-well and HR-well) at both timepoints 

(Table 1). At baseline, seven HR-MD participants (20%; MHRSD = 11.4) reported subclinical symptoms 

of depression (defined as HRSD score > 7). At timepoint 2, ten HR-MD participants reported 

symptoms of depression (defined as HRSD score > 7). For two of these participants depression 

symptoms were at subclinical level, as they were not yet diagnosed with a mood disorder. In contrast, 

there was a very low prevalence of subclinical depression symptomatology within the well-groups: two 

participants at timepoint 1 (1.2%; MHRSD = 9.0) and two other participants (with included follow-up 

scans) at timepoint 2 (2.6%; MHRSD = 9.0).  

  Participants did not report any use of psychotropic medication at baseline. At follow-up, six 

included HR-MD participants reported the use of psychotropic medication, whereas none of the well-

group participants received medication for the treatment of psychiatric symptoms.  

 HR-MD showed lower attrition (11.4%) than C-well (50.5%; χ2(1) = 14.6, p < .001) and HR-

well (36.5%; χ2(1) = 6.2, p = .01), with no significant difference between C-well and HR-well (χ2(1) = 
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2.8, p = .10). None of the clinical or demographic variables at baseline differed between those 

individuals with and without a follow-up scan (see Table S2 in Appendix B.1). 

  

3.2 Model evaluation 

 Our model showed a significant positive Pearson correlation between predicted brain age and 

chronological age (r(165) = .40, p < .001), and a mean absolute error (MAE) of 2.21 years (scaled 

MAE = MAE / age range = 0.17; see Appendix B.2) within the training sample. For a discussion on 

model evaluation within the context of the current study, see section 4 (discussion) and Appendix B.2.   

  The 73 brain components that were used as input for the brain age prediction algorithm 

indicated a mean total explained variance of 84.0% (SD = 0.0004) for all (leave-one-out) training 

sample dimension reduction iterations. These brain components showed loadings distributed across 

the brain, because dimension reduction was spatially unconstrained. This complicated unbiased 

interpretation (Smith et al., 2019), and therefore, also given our aim to comprehensively assess global 

patterns of brain structure ageing trajectories, these components were not further explored. However, 

we do present visualisation of these brain components in order to illustrate the method (Figure S3 in 

Appendix B.3). 

 

3.3 Comparison of brain maturation trajectories 

 

3.3.1 Comparison at baseline 

  Group allocation based on diagnostic information resulted in mean brain-PADs of +0.04 (SD = 

1.14, n = 93) for C-well, -0.36 (SD = 1.22, n = 74) for HR-well, and -0.01 (SD = 1.39, n = 35) for HR-

MD. Results of the LMM (Table 2) suggested lower baseline brain-PAD for HR-well compared to C-

well (-0.42 years; β = -0.37, p = .03, pcorrected = .08), but statistical significance did not survive multiple 

comparison correction. There were no baseline differences in brain-PADs for HR-MD versus C-well (-

0.05 years; β = -0.07, pcorrected = .73) or HR-MD versus HR-well (0.35 years; β = 0.30, pcorrected = .24). 

 

3.3.2 Brain structure ageing trajectories 

  Results showed a statistically significant timepoint by group interaction effect for HR-MD 

compared to C-well (-0.70 years; β = -0.60, pcorrected < .001) and HR-well (-0.43 years; β = -0.36, 
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pcorrected = .02), indicating decelerating brain structure ageing trajectories. Besides that, HR-well 

showed a intermediate trajectory (-0.28 years; β = -0.24, pcorrected = .06) which was not statistically 

significant. Figure 1 displays brain maturation trajectories per group as modelled by unstandardised 

LMM fixed effects; for clarity, these trajectories are displayed relative to the control group following 

correction for the effects observed in C-well (i.e., intercept and the significant timepoint coefficient, see 

Table 2). Figure 2 shows the heterogeneity in observed brain maturation trajectories by displaying the 

participants’ individual changes in brain-PAD over time. 

  

3.3.3 Comparison at follow-up  

  At follow-up, two years later, the mean brain-PADs were +0.36 (SD = 1.01) for C-well, -0.08 

(SD = 1.04) for HR-well, and -0.30 (SD = 1.30) for HR-MD. Results indicated a statistical significant 

difference in brain-PAD between HR-MD and C-well (-0.69 years; β = -0.61, p = .02, pcorrected = .06), 

and between HR-well and C-well (-0.54 years; β = -0.48, p = .04, pcorrected = .06), although these results 

not survive multiple comparison correction. We found no evidence for a difference between HR-MD 

and HR-well at follow-up (-0.15 years; β = -0.13, pcorrected = .57). 

 

3.3.4 Exploratory findings 

  Our exploratory longitudinal model showed similar group trajectories as our main model, and 

furthermore suggested that within our sample, younger individuals from the HR-MD group showed 

greater deceleration in their structural brain trajectory than older HR-MD individuals (see Figure S4 

and Table S4 in Appendix B.4). Exploratory findings of the model including the C-MD group showed a 

non-significant negative trajectory of brain-PAD for this group (-0.42 years; β = -0.36, p = .11; see 

Table S5 and Figure S5 in Appendix B.5). 

 

4 Discussion  

  The results of the current study showed that in young individuals at familial risk the onset of 

mood disorder was associated with differences in brain structure changes over time. Statistically 

significant reductions in brain-PAD indicated decelerated brain structure ageing trajectories in young 

HR individuals who developed a mood disorder as compared to control and HR individuals who 

remained well. Intermediate effect sizes indicated that young individuals who were at risk but remained 
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well showed intermediate trajectories. These results suggest genetic predisposition to mood disorder 

is accompanied by changes in adolescent brain structural development trajectories that are increased 

with the onset of mood disorder. Further research will be necessary to disentangle the role of genetic 

predisposition and additional environmental risk factors (e.g. adverse life events) on global age-related 

brain structure changes. As development of mood disorder was associated with a more decelerating 

trajectory, differences observed for the mood disorder group may also partly reflect prodromal 

symptoms or early-disease mechanisms of psychological stress. Notably, all groups showed 

considerable heterogeneity in the direction, size and emergence of the individual brain-PADs. 

Additional research is therefore required to substantiate the hypothesis that the emergence of a lag in 

brain structure ageing in youth indicates mood disorder onset and familial risk. 

 The current findings correspond with previous neuroimaging studies using different methods 

that also indicated deceleration, in the same as well as independent prospective longitudinal cohorts 

(Ducharme et al. 2014; Whittle et al. 2014; Papmeyer et al. 2015a). According to empirical-based 

neural models, dysfunctions in medial prefrontal networks and limbic areas underlie disturbances in 

emotion regulation and cognitive control (e.g. Drevets et al. 2008) which are proposed to play a causal 

role in the development of mood disorder (Nolen-Hoeksema et al., 2008; Phillips et al., 2008). 

Correspondingly, previous findings within the same cohort have revealed that illness risk and onset 

were associated with differential cortical thickness trajectories in prefrontal areas (Papmeyer et al. 

2015a) as well as differential patterns of brain activation during emotional tasks in cortico-thalamic-

limbic regions (Whalley et al. 2015; Chan et al. 2016), and neurocognitive performance was found to 

be a trait-marker of familial risk (Papmeyer et al. 2015b). Although the current study adopted a global 

approach (thus refraining from investigation of regional brain structural or functional development), we 

speculate about a potential neural mechanism by which decelerated trajectories of brain structural 

change in young individuals potentially disrupt frontal and limbic brain networks that underly emotion 

regulation and cognitive control, consequently increasing vulnerability to mood disorder. Inferences of 

causality however should be drawn with caution. It is important to consider that though prospective 

longitudinal studies are one approach to examining causal processes, interpretation is complex. In the 

current study for example, individuals who subsequently developed a mood disorder also showed 

higher mean subclinical depression symptomatology at baseline. This could be interpreted as a 

predictor of subsequent illness, or indeed as prodromal or early stages of the illness itself.   
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  Importantly, our findings suggest disease-related brain ageing deceleration may emerge in 

young individuals, in contrast to findings of accelerated ageing in older adults with mood disorder 

(Koutsouleris et al., 2014; Sibille, 2013; Wolkowitz et al., 2011). This reflects non-linear brain ageing 

trajectories, which are well-established (Giedd et al., 1999; Scahill et al., 2003; Shaw et al., 2008; 

Tamnes et al., 2010; Wierenga et al., 2014). During adolescence and early adulthood, brain ageing 

represents continued development, and decelerated brain structure changes may therefore be 

disadvantageous In later life, brain ageing reflects degeneration, and accelerated ageing therefore 

also corresponds to brain structure deficits. Therefore, accelerated ageing observed in older age could 

also be a vulnerability factor to mood disorder disease processes (but perhaps also a negative 

consequence). Although our findings in young individuals are in the opposite direction to previous 

findings in older individuals, both indicate a poorer trajectory in brain structure changes; further 

research will need to determine the turning point as well as the specificity to mood disorder 

psychopathology. 

 The current study applied a novel pattern recognition method that, to our knowledge, has not 

been previously applied to a longitudinal cohort of young individuals at risk of mood disorder. This 

approach derives a global measure of brain structure, which captures the complexity of spatial and 

temporal dynamics of brain ageing. Challenges in collecting clinical data from young individuals mean 

that large cohorts are scarce; the SBFS provided a unique opportunity to investigate the dynamics of 

brain structure ageing trajectories in relation to mood disorder. Development of mood disorder was 

found to be associated with decelerated age-related changes in brain grey matter, which could not 

have been identified within a cross-sectional design. Clinical information was also available for up to 

six years, which produced some heterogeneity in the HR-MD group, due to a range in times before 

onset, but also provided confidence that those classified as HR-well were not in the early stages of 

mood disorder at the time of imaging assessments. Overall, the current study of the SBFS shows 

unique strengths for youth mental health research. Ongoing work on the sample seeks to implement 

data linkage at 10+ years to obtain more definitive, stable diagnoses. 

  One limitation of our study was the low correlation between brain age prediction and 

chronological age, reflecting suboptimal performance of the brain age prediction model. However, this 

is probably also related to the tight age range of our sample as well as individual differences within this 

life stage. Performance of the model was constraint by the limited cohort size, as for the purpose of 
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the current study, we adopted a within-sample approach. In order to maximise the use of available 

data in building our brain age prediction model, we adhered to a cross-sectional segmentation 

approach and included all individuals who remained well, also those at high familial risk for mood 

disorder. Brain-PAD slightly increased over time within the control group, indicating that a brain-PAD 

of zero did not indicate normative brain maturation in the current study (for details see Appendix B.2). 

This suggests that the brain age prediction model was biased by familial risk related structural 

differences following inclusion of HR-well participants within the training sample. Although this 

explanation would not invalidate our results, as it would suggest valid comparison of relative group 

differences in brain-PAD, it is considered a limitation that we cannot reliably tease apart the familial 

risk effect from the normative trajectory. Importantly, we directly addressed potential threats to the 

validity of the brain age prediction model, to the extent possible within the current sample, with a 

deliberate pre-defined approach consisting of dimension reduction, sparse RVR modelling and a 

residuals approach, in order to prevent overfitting and thereby optimise the overall model validity. 

However, our prediction model was not validated for generalisability to other samples because of 

challenges related to scanner heterogeneity, so that transferability of the model remains uncertain. 

Further limitations of the current study are that we were unable to investigate differences between 

MDD and BD, and that we cannot exclude the possibility of medication effects, although use of 

psychotropic medications was limited within the current sample (see section 3.1). Additionally, out-of-

sample predictions often show more prediction error than within-sample predictions achieved using 

cross-validation (Varoquaux et al. 2017). Although participants from all three groups belonged to the 

same cohort and were recruited and assessed according to the same procedures, brain age 

predictions for individuals with mood disorder onset (i.e., HR-MD) were out-of-training-sample 

predictions, whereas predictions for individuals who remained well (i.e., HR-well and C-well) required 

leave-one-out cross-validation. Although these differential prediction procedures may have led to 

increased prediction error for HR-MD, our finding of intermediate trajectories in the HR-well group 

strongly suggests that results in HR-MD are unlikely to be driven entirely by increased random error. 

Further, additional testing of out of training sample scans of well-group participants indicated that 

prediction error was not significantly increased compared to within training sample estimates 

(Appendix B.2), conferring further confidence in our findings. However, taken together, the findings of 

the current study should be interpreted in the context of these limitations. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 17, 2019. ; https://doi.org/10.1101/537951doi: bioRxiv preprint 

https://doi.org/10.1101/537951


16 

 

  In order to resolve the above limitations, future research should aim to replicate our results 

within a larger sample (Button et al., 2013; Jollans et al., 2019). Large-scaled and extended MRI 

follow-up assessments would furthermore allow the application of a longitudinal brain age prediction 

model, which will provide a more nuanced understanding of individual developmental trajectories. A 

sufficient sample size would also allow for investigation of MDD and BD separately, and could account 

for potential medication effects. Spatial interpretability of the current model’s brain age prediction was 

limited, but with a larger sample methods such as orthonormal projective non-negative matrix 

factorisation (OPNMF) could provide information about specific regions or networks involved in 

associations between brain age and mood disorder (Sotiras et al., 2017, 2015; Varikuti et al., 2018). 

Additionally, our exploratory findings suggest it may be useful to investigate associations between 

brain structure ageing trajectories and mood disorder in a slightly younger sample. For now, the 

present study lays a theoretical and empirical foundation for the field to build upon, and will hopefully 

encourage further longitudinal studies of clinical youth cohorts. In the future, replication and further 

investigation of the association between mood disorder and decelerated brain structure ageing 

trajectories may provide important insights into the prediction of mood disorder onset in young 

individuals.  
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Supporting information 

  Supplementary Methods (Appendix A) and Supplementary Results (Appendix B) can be found 

in the online version of this article. 
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Tables and figures  

 

Table 1. Demographic and clinical characteristics. 

 C-well  HR-well HR-MD p-value 

n, timepoint 1 93 74 35  

n, timepoint 2 46 47 31  

Age, timepoint 1a 21.6 (3.8) 21.6 (4.9) 21.4 (5.2) .82 

   Age range 16.3-25.6 15.2-26.6 16.0-30.0  

Age, timepoint 2a  23.4 (3.6) 23.8 (5.2) 23.7 (5.0) .45 

   Age range 18.3-27.6 17.6-28.1 18.1-28.1  

Genderb    .51 

   Male      42 (45.2%)  38 (51.4%)  14 (40.0%) 

   Female      51 (54.8%)  36 (48.6%)  21 (60.0%) 

Handednessb    .32 

   Left        5 (5.4%) 7 (9.5%) 2 (5.7%) 

   Right 86 (92.5%) 65 (87.8%) 33 (94.3%) 

   Mixed 0 (0%) 2 (2.7%)        0 (0%) 

   Unknown        2 (2.2%) 0 (0%)        0 (0%) 

NART scorea       111 (9.0)       111 (10.7)       107 (8.9) .15 

HRSD, timepoint 1a         0 (1.0)         0 (2.0)         2 (5.5) <.001*** α 

HRSD, timepoint 2a         0 (2.0)         0 (1.0)         5 (8.0) <.001*** α 

*** p < .001 

Note: Individual NART scores were averaged over all completed assessments (max. 4).  

a Medians and interquartile ranges for variables not normally distributed (Kruskal-Wallis test) 

b Frequency and percentages for categorical variables (Chi-squared test). 

α HR-MD vs. C-well and HR-MD vs. HR-well (Chi-squared test, followed by Dunn’s test for pairwise comparisons) 

C-well, group of participants without family history who remained well; HR-MD, group of participants at high 

familial risk who developed a mood disorder; HRSD, Hamilton Rating Scale for Depression; HR-well, group of 

participants at high familial risk who remained well; NART, National Adult Reading Test.  
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Figure 1. Modelled fixed effects of the brain-predicted age difference (brain-PAD) per group, for clarity corrected 

for effects in C-well (i.e., the intercept and timepoint coefficients) as this group functions as control group. Shaded 

areas display standard errors of the timepoint by group interaction effects. 

 

Brain-PAD, brain-predicted age difference; C-well, group of participants without family history who remained well; 

HR-MD, group of participants at high familial risk who developed a mood disorder; HR-well, group of participants 

at high familial risk who remained well. 
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Table 2. Fixed effects of linear mixed model applied to investigate group differences in the brain-predicted age 

difference (brain-PAD). 

 

* p < .05, ** p < .01, *** < .001 

Note: β-coefficients are standardised following scaling of the outcome variable.  

C-well, group of participants without family history who remained well; HR-MD, group of participants at high 

familial risk who developed a mood disorder; HR-well, group of participants at high familial risk who remained 

well. 

 

 

 

 

 

 

Main model - Comparison to C-well 

Fixed effect β-coefficient SE df t-value     p-value 

(Intercept)         0.09 0.10 174  0.84      .55 

Timepoint 2         0.37 0.09 121  4.10    <.001*** 

HR-well        -0.37 0.16 25 -2.33      .03* 

HR-MD        -0.07 0.20 25 -0.35      .72 

Timepoint 2*HR-well        -0.24 0.13 121 -1.93      .06 

Timepoint 2*HR-MD        -0.60 0.14 121 -4.23    <.001*** 

Main model - Comparison to HR-well 

Fixed effect β-coefficient SE Df t-value     p-value 

HR-MD         0.30 0.21 25  1.14      .16 

Timepoint 2*HR-MD        -0.36 0.14 121 -2.52      .01* 
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Figure 2. Display of brain structure ageing trajectories per participant, reflecting a changing brain-predicted age 

difference (brain-PAD) between timepoint 1 and timepoint 2 (two years apart). Each panel contains the 

trajectories of one group in thin line graphs, whereas the thicker line graph represents the average trajectory of 

that group (of complete cases). The star dots display the mean brain-PAD at each timepoint. Left panel, C-well; 

Middle panel, HR-well; Right panel, HR-MD.   

 

Brain-PAD, brain-predicted age difference; C-well, group of participants without family history who remained well; 

HR-MD, group of participants at high familial risk who developed a mood disorder; HR-well, group of participants 

at high familial risk who remained well.
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