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Abstract 

Reliable propagation of firing rate – specifically slow modulation of asynchronous spikes in 

fairly short time windows [20-500]ms across multiple layers of a feedforward network (FFN) 

receiving background synaptic noise has proven difficult to capture in spiking models. We, in 

this paper, explore how information of asynchronous spikes disrupted in the first layer of a 

typical FFN, and which factors can enable reliable information representation. Our rationale is 

that the reliable propagation of information across layers of a FFN is likely if that information 

can be preserved in the first layer of the FFN. In a typical FFN, each layer comprises a certain 

number (network size) of excitatory neurons – leaky integrate and fire (LIF) model neuron in this 

paper – receiving correlated input (common stimulus from the upstream layer) plus independent 

background synaptic noise. We develop a reduced network model of FFN which captures main 

features of a conventional all-to-all connected FFN. Exploiting the reduced network model, 

synaptic weights are calculated using a closed-form optimization framework that minimizes the 

mean squared error between reconstructed stimulus (by spikes of the first layer of FFN) and the 

original common stimulus. We further explore how representation of asynchronous spikes in a 

FFN changes with respect to other factors like the network size and the level of background 

synaptic noise while synaptic weights are optimized for each scenario. We show that not only 

synaptic weights but also the network size and the level of background synaptic noise are crucial 

to preserve a reliable representation of asynchronous spikes in the first layer of a FFN. This work 

sheds light in better understanding of how information of slowly time-varying fluctuations of the 

firing rate can be transmitted in multi-layered FFNs.  

 

Key Words: Slowly time-varying firing rate, asynchronous spikes, information transmission, 

feedforward network (FFN), synaptic weight, closed-from optimization, network size, 

background noise 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2019. ; https://doi.org/10.1101/538736doi: bioRxiv preprint 

mailto:milad.lankarany@gmail.com
https://doi.org/10.1101/538736


I. Introduction 

The brain is highly modular. Effective communication between modules relies on the reliable 

transmission of information. Feedforward connections are responsible for linking upstream 

neurons with downstream neurons, either across different layers within the same cortical region, 

or between different cortical regions. Notwithstanding the influence of lateral and recurrent 

connections, multi-layered feedforward neural networks (FFN) play a critical role in conveying 

information within the brain [1].  

Information can be encoded by firing rate (i.e. the spike count over a relatively long time 

window) or by the temporal patterning of spikes [2]–[10]. In temporal coding, information is 

carried by groups of neurons that fire more or less synchronously, as in synfire chains [10], [11]. 

In rate coding, neuronal firing ideally remains asynchronous across neurons[12-14]. The reliable 

propagation of synchronous spikes (temporal code) is well understood and relatively easy to 

implement in computer models [10, 14, 15]. In contrast, the reliable propagation of rate-

modulated asynchronous spiking (rate code) is poorly understood and remains difficult to 

implement in computer models [12]. Indeed, spikes may synchronize as the signal progresses 

through deeper layers or spike rate may tend toward an attractor state representing quiescence or 

a fixed rate. In all of the scenarios, rate-based coding is compromised.  

Several studies have addressed the conditions required for spike-rate propagation [1], [12]–[16]. 

Shadlen and Newsome [14] demonstrated the feasibility of rate transmission using leaky 

integrate and fire (LIF) models receiving balanced excitatory and inhibitory inputs. But Litvak et 

al [12] showed, using the same parameters quoted by [14], that rate was not reliably transmitted 

when >2 layers were considered. They concluded that rate transmission in FFNs is highly 

unlikely. Van Rossum et al [15] showed the feasibility of reliable transmission of instantaneous 

firing rate (asynchronous spikes) in un-balanced FFNs where the input to each layer is delivered 

as an injected current, which is not biologically realistic. Kumar et al [13] studied conditions for 

propagating synchronous spiking and asynchronous firing rate using more complicated and 

biologically realistic network models. They showed that the coexistence of firing rate and 

synchrony propagation can be achieved under precise combinations of synaptic strength and 

connection probability [1]. More recently, Cortes and Vreeswijk [17] showed that pulvinar 

thalamic nucleus allows for asynchronous spike propagation through the cortex; they supply the 

input-output firing rate relationship between two cortical areas without manipulating synaptic 

strengths. It is to be noted that in all previous studies (except Van Rossum et al [15]) the input 

signal to FFNs is uncorrelated, meaning that the average firing rate is the sole information to be 

transmitted. More considerations should be given to a correlated (shared) input signal where 

information of the time-varying firing rate reflected by slow-modulation of asynchronous spikes 

are to be transmitted. Nevertheless, reliable propagation of the time-varying firing rate under 

biologically realistic assumptions is rarely considered in the literature. 
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In this paper, we investigate the necessary conditions for reliable propagation of time-varying 

firing rate –slowly time-varying asynchronous spikes–  through FFNs. As reliable transmission 

of firing rate across several layers of a FFN is achievable if the asynchronous spikes can be 

maintained almost unchanged in the preceding layers, we explore those conditions in a FFN with 

only one layer. To this end, we create a FFN composed of excitatory neurons, modeled by leaky 

integrate and fire (LIF) model, receiving shared input from the previous layer plus background 

synaptic noise (see Figure 1). The novelty of this work lies in (i) the development of reduced 

network model that allows systematic understanding of information propagation in FFNs, and 

(ii) the exploration of necessary conditions for reliable propagation of time-varying firing rates. 

In the proposed reduced model, synaptic weights are introduced as vectors (rather than as 

matrices, see Figure 1) to encode the common input signal. This enables the use of convex 

optimization techniques to calculate synaptic weights for maximum information transmission. 

By incorporating optimum synaptic weights, we show that the network size and the level of 

background synaptic noise are critical factors for reliable propagation of the time-varying firing 

rate. The organization of this paper is as follows. In Section II, the reduced network model of a 

FFN is developed. The constrained and un-constrained optimization methods for calculating 

synaptic weights of the reduced model are presented in Section III. Necessary conditions for 

reliable representation of asynchronous spikes are studied in Section IV. And finally, concluding 

remarks and future directions are provided in Section V.  
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II. Reduced Network Model of FFN 

In this section, the reduced network model of a FFN is derived from its full network model. 

Figure. 1 shows a schematic representation of an all-to-all connected multi-layered FFN 

comprising N neurons and M layers. Each neuron – modeled by LIF model (see Methods) – 

receives an independent background synaptic noise – modeled by Ornstein-Uhlenbeck (OU) 

process (see Methods). Neurons in the first layer receive a common slow signal indicating the 

projection of slowly-modulated asynchronous spikes generated by upstream neurons. Our 

objective is to find the necessary conditions for reliable information transmission, meaning that 

the common input can be reconstructed from the spikes of each layer of the FFN. In this paper, 

we study these conditions for representation of information in the first layer of the FFN.  

 

 

Figure. 1: FFN model of information propagation. Schematic representation of information 

propagation in a feed-forward neural network with all-to-all connectivity comprising N neurons 

and M layers. 

Although the focus of this study is on the quality of signal processing in the first layer of a FFN 

where the common input signal is generated by an OU process (time constant = 50 msec, see 

Methods), the problem of reduced network model is stated for more general scenarios. In fact, 

we consider that the common input of layer 1 is composed by spikes in layer 0 (see Figure. 1), 

and this problem statement can be generalized to any consecutive layers in a multi-layered FFN. 

For each neuron in the first layer of the FFN, the post-synaptic potential (input, I) is produced by 

passing (convolving) the spikes of the preceding layer (layer 0), in all-to-all connection case, 

through an identical synaptic waveform. Then, the spikes of each neuron is generated by feeding 

the weighted sum of those post-synaptic potentials into the LIF model (note that each neuron 

receives an independent background noise as well). The spike train of neuron i in the first layer, 
1layer

is , can be written as follows. 
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where Ii and Fi indicate the (synaptic) input and the model neuron (LIF, see Methods) of neuron 

i. As neurons, in this paper, are homogeneous, Fi = F for all i = 1, …, N. And, Ii
layer1 can be 

expressed by: 
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where Ii
Noise stands for background synaptic noise received by neuron i, and modeled by 

Gaussian noise with zero mean and standard deviation  , i.e., the level of background synaptic 

noise.  
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In (2), W represents the synaptic weight matrix. 
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And, 0layer (non-weighted post-synaptic potentials) indicates a vector comprising spikes (layer 0) 

convolved with the synaptic waveform, and it can be expressed as follow. 
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where, 
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ii                                                                                                               (6) 

(.) is an identical synaptic waveform modeled by a double exponential function of τrise = 0.5 

msec & τfall  = 3 msec, and ‘*’ stands for the convolution function. 

Here, we define the objective function underlying maximum information representation in the 

firs layer of a FFN, that is equivalent to minimization of the l2 norm between the instantaneous 

firing rate in the first layer and that in the initial layer (layer 0 in Figure. 1).  
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where, KFR(S) = S * Kn, represents the instantaneous firing rate, and Kn is a Gaussian kernel 

with standard deviation of 50 ms.  klayer

N

klayerklayer ssS ,,1   shows the vector of all neuron’s 

spikes, and k indicates the layer index. Since the exact spike timing cannot be reproduced in even 
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purely information propagation, we consider the instantaneous firing rate with a moderate time 

window of 50 ms – equivalent to time constant of the input – to compare the spikes in the initial 

and first layers.  

Network Model Reduction: Figure. 2 shows a reduced network model which is equivalent to the 

full model shown in Figure. 1 under some biologically-reasonable assumptions, namely, 

homogeneity of neurons and synapses, as well as the convergence of upstream neurons that 

produce a common input to the neurons in FFN.    

 

 

Figure. 2: Schematic representation of an abstract model of propagation equivalent to Figure 1. 

Given abovementioned assumptions, one can express the common input to the neurons of an 

arbitrary layer as: 

  ,
CommonCommon

IENormalI                                                                                                   (8) 

where E{.} is the expectation function, and   is the level of background synaptic noise. One 

can see that the common input has a Gaussian distribution whose variability is produced by the 

synaptic noise that each neuron (homogeneous) receives, that is    ,0NormalIEI
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(see (2)). Considering the homogeneity of each neuron, the mean of the common input is equal to 

that of each individual neuron, that is 
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In fact, (10) implies that the mean of the input signal to all neurons in a specific layer is identical. 

Thus, we can write, 
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Thus, (11) offers a network model reduction, as shown in Figure. 2, with respect to 

abovementioned assumptions. Given (9), (10) and (11), one can replace the synaptic matrix W 

with the synaptic vector W
~

, where, 
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the mean of the input to a neuron, i.e., identical for all neurons in a specific layer, can be written 

as: 
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Therefore, unlike W that reflects the synaptic weights, W
~

expresses the contribution of neurons 

in constructing (decoding) the input signal, i.e., each neuron has a certain contributing weight 

which is identically distributed to all following neurons.   

III. A Tractable Optimization Framework to Calculate Synaptic Weights 

The reduced network model implies that the mean of common input to each layer of a FFN can 

be described by a matrix of post-synaptic potentials, , in the preceding layer multiplied by the 

vector of synaptic weights (see (13)). Thus, the generated spikes by a neuron in the first layer, as 

expressed in (1), can be rewritten as follows. 
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And equivalently, the spikes matrix of all neuron in the first layer will be expressed by: 
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In fact, the objective function (7) is equal to: 
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Here we use a rational to simplify (16), and solve it in an indirect but innovative way. 

Minimization of (16) implies that the reconstructed input by spikes of neurons in the first layer of 
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the FFN should be equal (ideal case) to the original input (in layer 0). This interpretation is 

equivalent to maximization of information representation from decoding perspective [2]. Using 

this interpretation, we write a new objective function as below. 
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As we aim to calculate the synaptic weights through a tractable convex optimization problem, we 

write (17), given N and σ, as follow. 
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We have derived constrained and unconstrained optimization solutions for (18). We use 

constrained optimization technique, “lsqnonneg” in MATLAB. As well, we use unconstrained 

optimization (Least-square method) where the negative weights (after calculation) are set to zero. 

In this case, we have: 

  inputW
HlayerlayerHlayerlayer 1

1
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where H indicates a matrix Hessian. 

IV. Necessary Conditions for Reliable Representation of Asynchronous Spikes 

We study, in this section, the effect of synaptic weights (W
~

), network size (N), and level of 

background synaptic noise (σ) on the reliability of information (asynchronous spikes) 

representation in the first layer of a FFN. The reduced network model and corresponding 

optimization solutions are used in the following numerical simulations. 

Figure. 3 shows the main steps underlying the numerical simulations for a FFN comprising 200 

neurons. Each neuron receives an independent background synaptic noise with the standard 

deviation of 15 pA. The common input in layer 0 is produced by OU process with an 

autocorrelation time of 50 msec. Figure. 3(A) shows the input (inset: distribution of amplitudes) 

and generated spikes (raster plot) of neurons in the first layer of the FFN (inset: firing rate of all 

individual neurons). The reconstructed inputs using constrained and unconstrained optimization 

techniques as well as the distribution of synaptic weights are shown in Figure. 3 (B) and (C), 

respectively. In this example, the synaptic weights (and accordingly the reconstructed inputs) are 

almost the same using both unconstrained and constrained techniques. Note that the dimension of 

synaptic weights is expressed by pA/mV based on (19) and the excitatory synapses (excitatory 

reversal potential = 0 mV). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2019. ; https://doi.org/10.1101/538736doi: bioRxiv preprint 

https://doi.org/10.1101/538736


 

 (A) 

 

(B) 

 

 

 

 

(C) 

 

 

 

 

 

 

Figure. 3: Reconstruction of a common slow input signal from the generated spikes of the first 

layer of a FFN using constrained and unconstrained optimization techniques. (A) common slow 

signal (left) and generated spikes (N = 200 & std of noise = 15 pA). Insets of (A): statistical 

characteristics of input (OU process of time constant 50 msec) and spikes (average firing rate = 7 

Hz). (B) Original vs. reconstructed input signals using constrained (left) and unconstrained 

(right) optimization techniques. (C) The histogram of connectivity weights (corresponding to the 

abstract model of propagation) are shown at the bottom of each reconstructed signal in (B). 
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Network Size has a key role to preserve information of the preceding layer 

Using the same procedures as explained in Figure. 3, we reconstruct the input signal of a FFN 

with different network sizes. Figure. 4 indicates that the reconstructed input for N = 500 is better 

representing the original input than that for N = 50. The level of background synaptic noise is 15 

pA for both scenarios. The distribution of synaptic weights is also different for different network 

sizes. For N = 500, almost 150 neurons have very weak contributions in signal reconstruction 

(transmission), implying that an optimum network size (no redundant weights) might exist. 

 

 

 

 

 

 

 

 

Figure. 4: Original vs. reconstructed signals using unconstrained optimization of a FFN with N 

= 500 (left) and 50 (right) for noise std = 15 pA. The histogram of connectivity weights 

(corresponding to the abstract model of propagation) are shown at the bottom of each 

reconstructed signal.  

 

To explore whether an optimum network size exists, the mean squared error between the original 

and reconstructed inputs are calculated for different network sizes given a consistent synaptic 

noise (σ = 15 pA). Figure. 5 shows this error for different network sizes. As expected, the error 

has a minimum for N = 200, i.e., information (asynchronous spikes) transmission, given a fixed 

level of synaptic noise, is maximized for a certain network size. 
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Figure. 5: Quality of reconstructed signal depends on network size. Error plot of information 

representation for different network sizes for noise std = 15 pA. 

Quality of reconstructed signal depends on the level of background synaptic noise 

In order to study whether the quality of reconstructed signals in the first layer of a FFN depends 

on the level of background synaptic noise, we calculate the error shown in Figure. 5 for a higher 

level of noise, σ = 25 pA. As can be seen in Figure. 6, the error decreases when network size 

increases. In fact, Figures. 5-6 demonstrate that the reliability of information transmission 

depends on both network size and the level of background synaptic noise. It is to be noted that 

the noise std of 25 pA is equivalent to the level of background synaptic noise observed in-vivo 

[18]. Other studies based on reverse correlation analysis [19] showed that this level of noise 

maximizes coding fraction of asynchronous spikes in reconstruction of slow signals.   

To better visualize the quality of information representation for different levels of background 

synaptic noise, the input signal is reconstructed by FFNs with fixed network sizes (N=200) and 

different levels of noise, σ = 15 pA and σ = 25 pA. Figure. 7 shows that the reconstructed input 

by a FFN with σ = 25 pA is better – compared to σ = 15 pA – describing the original input. 

Moreover, unlike the FFN with σ = 15 pA, the distribution of synaptic weights of the FFN with σ 

= 25 pA does not comprise any weak synapses (redundant neurons).   

 

Network Size

M
SE

 (p
A

)

0 100 200 300 400 500
6

6.5

7

7.5

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 2, 2019. ; https://doi.org/10.1101/538736doi: bioRxiv preprint 

https://doi.org/10.1101/538736


 

Figure. 6: Quality of reconstructed signal depends on the level of background noise. Error plot 

of information representation for different network sizes, and a fixed noise level (std = 25 pA). 

 

 

 

 

 

 

 

 

Figure. 7: An example of reconstructed signal for N = 200 and different level of background 

synaptic noise, noise std = 15 pA (left) and noise std = 25 pA (right). The histogram of 

connectivity weights (corresponding to the abstract model of propagation) are shown at the 

bottom of each reconstructed signal.  
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Although the error decreases for larger network sizes in Figure. 6, it should be regulated by 

biologically realistic levels of synaptic weights. In fact, the amplitude of the synaptic waveform 

indicates how much membrane potential of a neuron (in the next layer) depolarizes (for 

excitatory neurons) given pre-synaptic spikes. The values of estimated synaptic weights using 

our optimization framework should be rescaled accordingly, and biologically unrealistic synaptic 

weights should be excluded.      

 

V. Conclusion 

Necessary conditions for reliable information propagation in a multi-layered FFN were 

investigated in this paper. Previous studied have addressed those conditions for transmission of 

synchronous spikes as well as the mean of firing rate in multi-layered FFNs. However, these 

conditions barely remain valid for transmission of asynchronous spikes – slowly time-varying 

firing rate. In this paper, we investigated the necessary conditions for reliable transmission of 

asynchronous spikes in a FFN. Specifically, we explored those conditions within a single layered 

FFN where the quality of represented information can be better controlled with respect to certain 

parameters (conditions). One can agree that the instantaneous firing rate of spikes in two 

consecutive layers of a FFN – with all-to-all connectivity comprising homogeneous neurons and 

synapses – should be almost similar if their underlying common input are the same. This was our 

rationale to derive an objective function that is a L2-norm error between the original input and 

that reconstructed by spikes of the first layer of the FFN. After establishing that a FFN with all-

to-all connectivity can be represented by an abstract network model (i.e., vector representation of 

synaptic weights), we used optimized synaptic weights, which minimizes the objective function 

(equivalent to maximizing coding fraction [2]), to study the optimal conditions for reliable 

representation of asynchronous spikes. We found that not only the values of synaptic weights but 

also two other factors, namely (i) the network size and (ii) the level of background synaptic noise 

are critical to enable reliable information representation.  

Validation of these conditions in reliable transmission of asynchronous spikes in multi-layered 

FFN creates our future lines of research. It is to be noted that other biological factors like 

heterogeneous synapse and dendritic integration can significantly change the quality of signal 

representation (coding fraction). we will study the effect of these factors in our future studies.  
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Methods 

LIF model. Neurons were modeled as follows. 

 

V

injL RIEV

dt

dV




  

where EL=-70 mV, R = 1 MΩ, and τV = 10 msec. Iinj indicates the injected current (slow signal in 

this paper). Spike occurs when V≥Vth, where Vth = - 40 mV and the reset voltage is -90 mV.  

Slow Signal and background synaptic noise. The slow signal and background synaptic noise are 

generated using an Ornestein-Uhlenbeck (OU) process of autocorrelation time of 50 msec and 5 

msec, respectively. The mean and variance of the slow signal (in layer 0) is 16 pA and 6 pA, 

respectively. 
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