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  7 

Abstract- 8 

Cuticualar hydrocarbons play an important role in chemical communication in social insects, 9 

serving, among other things, as nestmate, gender, dominance and fertility recognition cues. In 10 

ants, however, very little is known about the precopulatory signals cuticular hydrocarbons carry. 11 

These signals may serve as affecting sex pheromones and aphrodisiacs or as reliable signals for 12 

idiosyncratic traits, which indirectly affect sexual selection. In this study, we examined, for the 13 

first time, in the Cataglyphis genus, sex-specific variability in cuticular hydrocarbons. We 14 

focused on a species that exhibits split sex-ratio and found significant quantitative differences 15 

between virgin queens and their potential mates. In an analyses of both absolute amounts and 16 

relative amounts, we found different compounds to be significantly displayed on gynes and 17 

drones, suggesting absolute and relative amounts may carry different signals influencing mating 18 

behavior and mate choice. We discuss the possible signals advertised by the non-polar fraction of 19 

these hydrocarbon profiles.      20 
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INTRODUCTION 22 

While in most animals sexual selection presents itself in many elaborate and colorful ways, in 23 

social insects, pre-mating sexual selection is considered to be limited (Boomsma et al. 2005). 24 

And still, there are various mechanisms through which sexual selection acts that have been 25 

demonstrated in social insects, and in ants, most of which are post-mating, such as sperm 26 

selection, use of mating plugs and increased mating frequencies by both males and females (see 27 

overview in Boomsma et al. (2005)). Precopulatory selection in ants, however, is limited to few 28 

cases of male territoriality (Abell et al. 1999; Davidson 1982; Heinze et al. 1998; Kinomura and 29 

Yamauchi 1987; Stuart et al. 1987; Wiernasz et al. 2001) and semiochemical communication 30 

which has been  surprisingly understudied (Ayasse et al. 2001). 31 

Some studies, however, have shown virgin queens to be advertising sexual receptivity (Reviewed 32 

in Ayasse et al. (2001) and (Hölldobler and Wilson 1990)) and others have identified active 33 

female sex pheromones (Formica lugubris in Walter et al. (1993), Polyergus breviceps in 34 

Greenberg et al. (2007) and in Greenberg et al. (2018), Polyergus rufescens in Castracani et al. 35 

(2005) and in Castracani et al. (2008)). Mandibular, Dufour, poison, and pygidial glands have 36 

also been shown to contain attractants to males (Grasso et al. 2003). In several species, males 37 

have been shown to discharge their mandibular glands during nuptial flights or when leaving the 38 

nest (BENTO et al. 2007; Brand et al. 1973b; Hölldobler 1976; Law et al. 1965) and male 39 

metapleural glands were also suggested to have an active role in sexual selection (Hölldobler and 40 

Engel-Siegel 1984).  41 

Cuticular hydrocarbons (CHCs) are likely to play an important role in mating behavior and mate 42 

choice in ants because many other individual and colonial difference such as task (see for 43 
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example Greene and Gordon (2003)), caste and sex (see for example Campos et al. (2012)), 44 

nestmate recognition (See for example Lahav et al. (1999)) and fertility (See for example 45 

Dietemann et al. (2003)) are advertised by the cuticular chemical coating.  46 

Part of the chemical bouquet, displayed on the cuticle, may be active sex pheromones, but it can 47 

also contain signals indicative of other traits which influence mating behavior. In ants, few 48 

studies demonstrated unique sex-specific differences in CHCs between virgin queens (hereafter 49 

gynes) and males (drones). Those studies showed these differences to be either qualitative or 50 

quantitative (Antonialli Junior et al. 2007; Brand et al. 1973a; Chernenko et al. 2012; Cremer et 51 

al. 2002; Cuvillier-Hot et al. 2001; Hojo et al. 2008; Johnson and Sundström 2012; Kureck et al. 52 

2011; Oppelt et al. 2008).  53 

To the best of our knowledge, no study examined sexual dimorphism in CHCs in Cataglyphis 54 

ants and the mechanisms underlying sexual selection are still unknown in this large genus. In C. 55 

iberica a mixture of three linear alkanes and methylalkanes (n-C27, nC29 and 3-meC29) has 56 

been suggested to function as queen pheromones but their function was restricted to sterility 57 

inducement rather than male attraction (Van Oystaeyen et al. 2014) and another study found that 58 

gynes produce more undecane in the Dufour’s gland than drones (Monnin et al. 2018) but also 59 

suggested it may have functions unrelated to male attraction.   60 

Another possible mechanism related to precopulatory sexual selection may involve altering 61 

acceptance threshold making males able to get closer to gynes without being harassed by 62 

workers (Helft et al. 2016; Helft et al. 2015). There is, indeed, evidence of males mimicking the 63 

queen’s chemical bouquet in ants, thus allowing them to escape aggression from other males 64 

(Cremer et al. 2002) or from workers (Franks and Hölldobler 1987). Other such acceptance-65 
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altering effects have been demonstrated in honeybees where different nestmate recognition 66 

mechanisms are used to identify drones and workers (Moritz and Neumann 2004) enabling males 67 

to immigrate to foreign colonies.  68 

Kinship between gynes and males may also influence mate choice. Although it has been argued 69 

that discriminatory abilities are usually limited to nestmate recognition, regardless of kinship 70 

degree (Carlin 1988; Grafen 1990), there is evidence of the influence of kinship on mating 71 

preferences in ants (Keller and Passera 1993). Keller and Passera (1993), in this study, suggested 72 

that colony-derived cues may be of less importance in mating preferences than kinship cues. In 73 

bees, male have also been shown to discriminate between female kin through olfactory signals, 74 

such as CHCs (Smith 1983) suggesting that kinship recognition is, indeed, of importance in mate 75 

choice.    76 

CHC may carry other signals which affect pre-mating sexual selection in ants such as overall 77 

fitness of both gynes and males. Body size, in both sexes, is a reliable indicator of fitness and, in 78 

Pogonomyrmex harvester ants, for example, larger males have been documented to be more 79 

successful in mating attempts (Abell et al. 1999; Wiernasz et al. 2001; Wiernasz et al. 1995). In 80 

ants, gynes and drones vary significantly in body size, ranging from both sexes being about equal 81 

in size to queens having ∼3 times the body length and ∼25 times the body mass of males 82 

(Boomsma et al. 2005). Cataglyphis ants show significant variability in body size between gynes 83 

and drones.  84 

Body size and surface area influence the absolute amounts of CHCs on an individual ant and the 85 

total amount of a component of the cuticular lipid is proportional to it. It is hard to determine 86 

whether a factor in the pheromonal blend is informative because of its absolute amount, its ratio 87 
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with other chemicals, or both factors combined. Ratios between CHCs are usually less variable 88 

than are the absolute quantities of each hydrocarbon (See for example in Drosophila Coyne 89 

(1996)) because ratios are insensitive to body size. The opposite case was also reported, with 90 

higher variability in relative amounts than in total amounts (See for example, also in Drosophila 91 

Grillet et al. (2005)). Thus, body size variation in both gynes and drones may play a role in 92 

mating. We, therefore, chose a twofold analysis of the CHCs to account for the possibility of 93 

absolute amounts enhancing differences between gynes and males in ants of the C. niger species 94 

complex and also the possibility of them masking differences.  95 

To our knowledge, this is the first study to demonstrate sexual dimorphism in CHCs in 96 

Cataglyphis and it suggests that ratios between compounds may carry different signals than 97 

absolute amounts.  98 

    99 

METHODS AND MATERIALS 100 

Ants 101 

Gynes and males were collected on the spring of 2016 from colonies dug in Betzet beach on the 102 

northern Israeli coastline (from N33.05162, E35.10245 to N33.07868, E35.10705). This 103 

population was previously described as C. drusus (Eyer et al. 2017) but our recent species 104 

delimitation study raised the question of whether C. drusus is separate species or is it the same 105 

species as C. niger, because these populations are not differentiated by their nuclear genomic 106 

DNA (Reiner-Brodetzki et al. 2018). Colonies of this population are monogyne (headed by a 107 

single queen), polyandrous (queens are multiply mated), and monodomous (single nest per 108 

colony) (Eyer et al. 2017). We recently reported that this population exhibits split sex-ratio 109 
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allocation, that is, colonies produce either gynes or males but never both sexulas (Inbar and 110 

Privman 2018). Queens usually mate during the spring and sexuals can be found in nests in early 111 

spring. In the present study we used samples from twelve nests, 6 female-producing colonies and 112 

6 male-producing colonies, with 1-3 gynes/drones collected from each colony. All sexuals were 113 

frozen on the same evening of collection.  114 

 115 

Cuticular hydrocarbon analysis: 116 

Whole bodies were individually immersed in hexane, containing 400 ng/µl of tetracosane (C24) 117 

as internal standard. Initial analysis was conducted by gas chromatography/mass spectrometry 118 

(GC/MS), using a VF-5ms capillary column, temperature-programmed from 60◦C to 300◦C 119 

(with 1 min initial hold) at a rate of 10◦C per min, with a final hold of 15 min. Compound were 120 

identified according to their fragmentation pattern and respective retention time compared to 121 

authentic standards. We identified 34 compounds in gynes and the same 34 compounds in 122 

drones. Quantitative analyses were performed by flame ionization gas chromatography 123 

(GC/FID), using the above running conditions. Peak integration was performed using the 124 

program Galaxie Varian 1.9.  125 

 126 

RESULTS 127 

Chemical analysis of the non-polar fraction of the cuticular extracts of gynes and drones 128 

identified 34 long-chained CHCs, ranging from pentacosane (c25) to tritriacontane (c33). All 34 129 

compounds were identified in both gynes and drones with no qualitative differences between 130 
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them (Fig. 1). Quantitative differences between the two groups were examined in two ways: first, 131 

an analysis of absolute quantities calculated relative to an internal standard; second, an analysis 132 

of the percentage of every compound in the total extract, calculated according to percent area in 133 

peak integration (Table 1). Principal component analyses (PCA) of both methods are shown in 134 

Figure 2.  135 

Both relative amounts and absolute quantities showed significant differences between CHC 136 

profiles of gynes and drones (In Wilks' Lambda test (Rao's approximation) p-values were 0.044 137 

and 0.002, for absolute amounts and relative amounts respectively). Relative amounts were less 138 

variable than absolute amounts. In a linear discriminant analysis (LDA) followed by 139 

unidimensional test of equality of the means of the groups, the two analyses showed different 140 

compounds to be significantly discriminating between gynes and drones, namely, four 141 

compounds in the relative amount analysis: C25; 11,15-dime C29; 2-me C30; C31; and 13 142 

compounds in the absolute amounts analysis:  5-me C25; 3-me C25; 10-me C26; 11+13-me C27; 143 

11,15-dime C27; 3-me C27; C28; 11+13-me C29; 3-me C29; 7,11,15-trime C29; C30; 4-me 144 

C30; 13+15-me C31. Only one compound was identified in both analyses -  7,11,15-trime C27 145 

(Table 1).  146 

 147 

 148 

 149 
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 150 

 151 

Figure 1: Chromatograms of CHCs from total body extracts. The upper chromatogram is of a 152 

gyne and the lower of a drone. Only long-chained CHC are shown.  153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 
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Table 1: Quantification of CHCs of 13 gynes (from 6 colonies) and 10 drones (from 6 163 

colonies) 164 

 165 
Means ± Standard deviation are shown and ranges are given in parentheses. 166 
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(A) 167 

 168 

(B) 169 

 170 

Figure 2: Principal component analysis (PCA). (A) Absolute quantities; (B) percent of total 171 

extract. Filled blue points represent individual observations of gynes and empty points of drones.  172 

 173 

 174 

 175 

 176 

 177 
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DISCUSSION 178 

Our study reveals differences in long-chained CHCs between drones and gynes in a population 179 

of Cataglyphis colonies that display split-sex ratios. The differences were quantitative and not 180 

qualitative, and different compounds stand out in a discriminant analysis when considering either 181 

relative amounts or absolute amounts. The two analyses revealed different compounds to be 182 

significantly discriminating virgin queens and their potential mates.      183 

Two main issues can be addressed in light of our results: 184 

First, although bioassays are needed in order to demonstrate active sex pheromones, the robust 185 

differences between gynes and drones suggest that CHCs carry signals related to mating. These 186 

chemical cues may play different roles such as altering acceptance threshold, acting as reliable 187 

signals of fitness and fertility or kinship. Our results also show that there is an abundance of 188 

branched hydrocarbons in the CHC coating of both gynes and drones and it is known that such 189 

compounds reduce the waterproofing efficacy of the cuticle (Gibbs and Pomonis 1995). This 190 

reduced efficiency may, therefore, also play a role in signaling fitness, through the handicap 191 

principle (Heinze and d'Ettorre 2009; Zahavi and Zahavi 1999) as it has been suggested before 192 

(Boulay et al. 2017).  193 

Second, we have shown that it is important to analyze both total amounts and relative amounts. 194 

Our study showed them both to be significantly different between gynes and drones. Absolute 195 

and relative amounts may carry distinct cues; Absolute quantities may be indicative of body size, 196 

carrying signals of overall fitness and fertility, while relative amount may be cues for kinship. 197 

Therefore, it is not unlikely that both absolute quantities and relative amounts influence mate 198 

choice and mating behavior and that both males and gynes integrate multiple cues. We 199 
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encourage future studies to account for both factors and hope that future bio-assays will help 200 

identify specific sex pheromones as well as other signals affecting sexual behavior and mating in 201 

the Cataglyphis genus.  202 
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