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Abstract 

 30 

Acute pancreatitis (AP) is sudden onset pancreas inflammation that causes multiple organ 

dysfunction syndrome (MODS) and death in certain individuals who develop AP yet minimal 

systemic inflammation in others. Here, we show that this observed diversity in systemic response 

and outcome is accompagnied by diversity in molecular subtypes that can be identified using 

computational analysis of clinical and multiomic data. We integrated co-incident whole blood 

transcriptomic, plasma proteomic, and serum metabolomic data at serial time points from a cohort 

of patients presenting with AP and systematically evaluated four different metrics for patient 

similarity, using unbiased mathematical, biological and clinical measures of internal and external 

validity. Our results identify four distinct and stable AP endotypes that are characterized by 

pathway and biomarker combination stereotypes into hypermetabolic, hepatopancreaticobiliary, 40 

catabolic and innate immune endotypes. The catabolic endotype in AP strikingly recapitulates a 

disease endotype previously reported in acute respiratory distress syndrome, a recognized 

complication of AP. Our findings demonstrate that clinically-relevant and generalizable endotypes 

exist in AP. 

 

164 words 
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Main 
Acute pancreatitis (AP) is defined as acute inflammation of the pancreas gland1. AP has a 50 

worldwide incidence of 34 per 100,000 person-years2, and is the commonest gastrointestinal cause 

for emergency hospital admission3. Inflammatory damage to pancreatic acinar cells initiates an 

inflammatory cascade mediated by damage-associated molecular patterns, alarmins, inflammatory 

cytokines, metabolites and other soluble and cellular mediators of inflammation that propagate 

inflammation locally in the pancreas, and cause extrapancreatic organ dysfunction in the lungs, 

kidney and liver and other body systems, together resulting in multiple organ dysfunction 

syndrome (MODS)4,5. MODS occurs in 1 in 4 individuals who develop AP and is accompanied by 

deregulation of cardiovascular, autonomic nervous and immune system homeostasis6, leading to 

death in one fifth of those with AP-MODS7. Despite this currently accepted unifying disease 

model, each person who develops AP has a severity pattern of systemic inflammation and MODS 60 

that is unique and is not directly proportional to the amount of pancreas damage on radiological 

imaging8,9, and this individualized response determines the disease outcome. This personalized 

response to AP is further nuanced by the diversity of etiologies and initiating events in AP, that 

include choledocholithiasis, excess ingestion of alcohol, trauma, pancreatic manipulation at 

endoscopy, viral infections, certain venoms and specific prescription medicines6. Currently, the 

clinicopathological paradigm in AP is convergent, whereby diverse etiologies converge onto 

acinar cell damage, and the resulting systemic inflammatory response is stratified as mild, 

moderate or severe (Figure 1a). We propose an alternative model that describes illness trajectories 

in AP, which if correct, will have greater clinical utility in guiding treatment. Specifically, we 

propose the existence of molecular subtypes in AP, designated as endotypes10, and hypothesize 70 

that detailed knowledge of those endotypes will have clinical and therapeutic relevance (Figure 

1b). Importantly, different endotypes may present similar clinical features, and one phenotype may 

be shared by multiple endotypes11. Crucially, it is plausible that only certain endotypes within a 

given phenotype may respond to a specific treatment11. 

Until now, evidence for the existence of molecular endotypes in AP remained elusive. To 

address this, we integrated co-incident peripheral whole blood RNA-sequenced transcriptomic, 

10-plex tandem mass tag (TMT) plasma proteomic, and serum metabolomic data, 

comprehensively annotated with contemporaneous clinical and physiological data, obtained at 

serial time points from n=54 patients from the IMOFAP cohort (Inflammation, Metabolism and 
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Organ Failure in AP)12, of which n=24 had mild AP, n=22 had moderately severe AP, and 8 had 80 

severe AP requiring critical care, and the overall number of deaths was n=3 (Figure 1c and 

Supplementary Table 1). Because the majority of patients who develop AP-MODS are admitted 

to critical care within 48 hours after presentation to hospital7, we included serial time points 

between 0 and 48 hours after presentation (Figure 1d). We took an open approach to analysis, 

without preconceived notions of expected dominance of certain molecular mechanisms, and 

initially included all possible variables from the data to avoid bias due to previous findings or 

hypotheses. The total starting data set consisted of the relative expression of a normalised set of 

19766 genes from 75bp paired-end Illumina reads RNA-Seq data, integrated with 1383 protein 

abundances obtained using 10-plex Tandem Mass Tag (TMT), and abundances of 686 identified 

metabolites, curated according to containerized standards and are made openly available (link to 90 

DataStore). After pre-processing, we created a combined data file consisting of 651 metabolites, 

371 proteins and 19766 genes that was used as input. 

 To discover AP endotypes, we applied unsupervised clustering strategies to patient-to-

patient distance matrices, as in our previous work13. Specifically, we computed  single time-point 

Euclidean distances, area-under-the-curve (AUC) values within a principal component analysis 

(PCA) space, state-space trajectories in PCA space14 and dynamic time warping (DTW)15 

distances. Once dissimilarity matrices were obtained, hierarchical clustering with the 

agglomerative Ward’s method16-18 was applied to create dendrograms and obtain clusters (Figure 

1e). The stability of clusters was assessed by bootstrapping, using a 100 iterations with a random 

hold-out set and quantified using a Jaccard index (JI) of 0.5 as the dissolution point and a JI greater 100 

than 0.75 to define stability 19. These stability criteria were met by the AUC in PCA space method 

(JI = 0.78) and state-space trajectories in PCA space (JI = 0.75), demonstrating that clustering 

generates internally-robust groups (Figure 1e). Comparisons with results obtained with the other 

described methods, for a same number of clusters, showed some similarity (JI = 0.53 when 

comparing with dynamic time warping results and JI = 0.25 when comparing with trajectory results 

as illustrated in Supplementary Figure 1, Supplementary Table 2 and Supplementary Table 

3).  

Biological external validity was best for the AUC in PCA space clustering method over 

alternatives, based on pathway analysis using generalised linear model and the highly-annotated 

machine-readable KEGG pathway database as the biological gold standard20 (extracted from both 110 
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R libraries GAGE21 and MetaboAnalystR22) and co-expression clusters derived from the 

FANTOM5 project23,24 as another biological input set. The number of FANTOM5, KEGG genes 

based and KEGG metabolites based hits for each clustering method is shown in Figure 1e. For the 

AUC+PCA method, the total percentage of variance explained by the first two components used 

was 51.5%, comprising 40.2% for PC1 and 11.3% for PC2. For this four-group solution, the 

silhouette score25 based on the distance matrix was 0.39 (range 0.23 to 0.57) (Figure 1e, 

Supplementary Table 4). 

 If the maximum clinical utility is to be obtained from endotype assignation in AP, the 

endotype should be identifiable as close as possible to the time the affected individual seeks 

medical help. Using baseline data only, we computed variable importance in projection (VIP) 120 

scores using a partial least square discriminant analysis algorithm (PLS-DA) applied to the 

AUC+PCA 4-cluster grouping, as shown in Supplementary Figure 2, Figure 2a and 

Supplementary Figure 3. Critically, although the PLS-DA model was built using data solely from 

baseline, the clusterings obtained using only time = 0 data produced inferior results, with Jaccard 

indexes never exceeding 0.75 (Supplementary Figure 4). This data show that a dynamic (time 

series) dimension is beneficial for training an illness trajectory model.  

For each one of the four endotypes we identified the most prominent pathobiological theme 

and could allocate a name: i) hypermetabolic, ii) hepatopancreaticobiliary (HPB), iii) catabolic and 

iv) innate immune (Figure 2a and Supplementary Table 5). This was done rationally: each 

identified variable was cross-referenced with the following publicly available online resources 130 

GeneCards (Weizmann Institute of Science), HUGO Gene Nomenclature Committee, NCBI 

EntrezGene, UniProtKB, Ensembl, NCBI PubChem, NCBI PubMed and Google Search, and 

semantic patterns were identified, discussed and agreed among the authors. Discernable features 

for the hypermetabolic endotype include GGT2 (g-glutamyl transferase 2) – glutathione 

homeostasis; GNAI1 (glucosamine 6-phosphate N-acetyltransferase); the caffeine metabolite 

products of arylamine N-acetyltransferase, 5-acetylamino-6-(+/-formyl)amino-3-methyluracil26; 

dopamine sulphate – a marker of increased gastrointestinal metabolism of endogenous dopamine27; 

citrulline – integral to the tricarboxylic acid cycle; and SPTSSB (serine palmitoyltransferase 

subunit B) – the rate-limiting enzyme for sphingolipid biosynthesis28. For the HPB endotype, the 

thematic features were CELA2A – pancreatic elastase 2; UDP-glucuronosyltransferase – which is 140 

associated with Gilbert-type hyperbilirubinemia29,30; and SLCO1B7 – a liver-specific organic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/539569doi: bioRxiv preprint 

https://doi.org/10.1101/539569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

anion transporter involved in bile secretion. The catabolic endotype was named for the following 

prominent features: N-acetyl-3-methylhistidine and N-acetyl-1-methylhistidine – increased after 

muscle myofibrillar proteolysis and in renal failure31; SLC16A8 – a lactate and ketone body 

transporter; XIRP1 – encoding Xin, a muscle-specific actin binding protein upregulated within 12 

hours of injury32; and MAP3K6 – a mitogen-activated protein kinase kinase involved in apoptosis 

signalling33. The innate immune endotype defining features were: complement factor H-related 

protein – a heparin-binding protein involved in complement regulation; inositol-1-phosphate – the 

basis of inositol signalling; HOXD3 – upregulation of which increases immune cell adherence by 

upregulating glycoprotein IIb/IIIa34; TRIM48 – integral to interferon-g signaling and oxidative 150 

stress-responsive cell death via apoptosis signal-regulating kinase 135; PPP1R3A – which has a 

genetic association with type 2 DM and familial partial lipodystrophy 336; and REG3A – which 

encodes a bactericidal C-type lectin known commonly as pancreatitis-associated protein that, 

among multiple actions, alters the gut microbiome and regulates gastrointestinal inflammation37 

(Figure 2a). Our endotype nomenclature was also supported by a pathway analysis. In view of 

this evidence of distinct functional or pathophysiological mechanisms, we conclude that these 

groups represent disease endotypes as defined in the Stratified Medicines Framework10. 

 All participants with AP-MODS clustered in the catabolic endotype, despite data on 

clinical outcome being initially withheld from the model (Figure 2b).  Although this finding was 

statistically significant (severe vs. non-severe, Fisher-Freeman Halton test, p=0.038), it is too early 160 

to determine whether this would be replicated in a larger cohort. However, the etiology of AP was 

distributed evenly across endotypes (Fisher-Freeman Halton test, p=0.97) (Figure 2c). Gender 

(Fisher-Freeman Halton test, p = 0.67) or time of onset of symptoms (ANOVA, p = 0.97) were not 

statistically significantly associated with endotype. Moreover, we generated a clustering for the 

AUC combined with PCA method using the residuals from a linear model which included gender, 

age and time of onset. The 4-cluster solution obtained using the corrected data was compared to 

the chosen partition and showed a high level of similarity (JI = 0.82 and distance matrices 

correlation, using a Mantel test, showed a correlation of 0.91 with an associated p-value of 0.01). 

Independence between endotypes and systemic inflammatory response syndrome (SIRS) was 

tested for and was not rejected (SIRS vs no SIRS, Fisher-Freeman Halton test, p=0.097) 170 

(Supplementary Figure 5). 
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 To externally validate the generalisability of our findings, we used our results in an 

independent dataset of AP patients, the KAPVAL cohort (Figure 3a). KAPVAL (n = 312 patients, 

Supplementary Figure 6, Supplementary Table 6) has clinical (including laboratory results) 

and metabolomic data obtained at the time of presentation to hospital with AP, and outcome data 

regarding death, critical care admission and duration of hospital stay.  Reported deaths were not 

independent from group allocation (Fisher-Freeman Halton test, p < 0.001, Figure 3b). Admission 

to critical care (ICU/HDU vs. ward stay only) was also dependant of group allocation (Fisher-

Freeman Halton test, p < 0.001, Figure 3c). Length of stay varied between the groups with the 

reported values of the catabolic endotype globally higher when compared to others (median values 180 

were 6.25, 5.13, 4.33 and 4.63 days respectively, for each group with corresponding interquartile 

ranges 7.25, 10.92, 5.46 and 4.67 days, and Q1-Q3 3.25-10.54, 2.46-13.42, 1.46-6.92 and 3.38-

8.00 Figure 3d). Average values per time point per group for each one of the identified endotypes 

are presented in Supplementary Figure 7 for a subset of variables. For all compounds with a VIP 

associated value greater or equal to 2 averaged time profiles can be obtained via an online page 

that can be accessed through the following address: http://baillielab.net/pancreatitis/ (username: 

pancreas and password: review) along with some clinical and cytokine measures.   

We computed Spearman’s correlation (comparison of ranks, validated using t-distribution) 

for each pairwise comparison of groups from both cohorts, using metabolites that were not used 

to predict the group allocations (Figure 3e). We obtained significant results when comparing 190 

groups from IMOFAP cohort to their corresponding groups in KAPVAL cohort (correlation 

coefficients ranged from 0.29 to 0.61, corresponding p-values 2.20E-44, 2.37E-19, 1.28E-25 and 

6.38E-10 for each endotype, respectively). This external validation demonstrated underlying 

biological similarity between corresponding endotypes and was unlikely to be observed by chance.  

Additionally, we noticed a similarity between our endotype analysis and a disease endotype 

reported in a related but distinct condition, acute respiratory distress syndrome (ARDS)38. Severe 

AP can cause ARDS, but there are multiple other causes of ARDS including sepsis, trauma, and 

major surgery39. We hypothesised that the hypermetabolic AP endotype reflects the same 

underlying disease process as the “Type 1” ARDS endotype reported by Calfee et al35.  In order 

to test this hypothesis we matched measurements from our dataset with the measurements used to 200 

define ARDS endotypes. We found 20 variables that matched the 31 variables in the ARDS study 

(6 physiological, 7 clinical biochemical, and 2 cytokine variables that were not used to produce 
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the clusterings, and 5 genes that were). There was a significant negative correlation (Spearman’s) 

between the catabolic AP endotype with phenotype 1 in the two ARDS cohorts reported elsewhere 

(ALVEOLI p = 0.004; ARMA p < 0.001). Interestingly, the hypermetabolic AP endotype 

correlated positively with the ALVEOLI (p = 0.006) and ARMA cohorts (p < 0.001). (Figure 4a 

and Figure 4b) using AVEOLI ordered variables. This provides compelling additional external 

validation for our observations and demonstrates that the endotypes or AP that we report here are 

generalisable to another type of critical illness. 

Finally, we highlighted a significant overlap (Jaccard index 0.88) between our proposed 210 

endotypes and groups highlighted using a multi-omics data integration framework, MOFA40, when 

using AUC values. We also noticed a great difference in structure between our endotypes and the 

ones highlighted using MOFA when applied to baseline KAPVAL data, confirming that, baseline 

data alone cannot be used directly to highlight the structure of AP endotypes and that previous 

knowledge of patient trajectories is required to generate the endotype models. Once established 

the models could be applied to presentation data.  

In summary, our data confirm the existence of pathobiological mechanism-based 

endotypes in AP that could not otherwise be described using current clinical measures of severity 

or etiology. Using a novel serial evaluation approach, we identify four endotypes that passed 

stability and biological relevance validation, and that can be characterized by key pathways and 220 

biomarker combination stereotypes into hypermetabolic, hepatopancreaticobiliary, catabolic and 

innate immune endotypes. These AP endotypes are statistically stable and externally validated. 

Our findings represent a step-change advance in the understanding of acute pancreatitis and lay 

the foundation for prospective identification of individuals by endotype who may respond 

differentially to novel therapeutics as these emerge from the translational pipeline. 
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Materials and Methods 
 

Ethics & Regulatory Approvals. The IMOFAP study was approved by the Scotland A Research 230 

Ethics Committee (ref: 13/SS/0136 and amendment AM01), NHS Lothian Research & 

Development Project Number: 2013/0098 and amendment SA1. The University of Edinburgh and 

NHS Lothian ACCORD were sponsors. NHS Lothian Caldicott Guardian permission was obtained 

for access to identifiable patient data where needed prior to linked anonymisation. Adults without 

the capacity to give informed consent were recruited in accordance with the Adults with Incapacity 

(Scotland) Act 2000, Part 5, through their legal representative, and informed consent was sought 

when capacity was regained. All participants with capacity provided written informed consent. 

The study was registered on the UK Clinical Trials Gateway (ref: 16116). The KAPVAL cohort 

was approved by the East of Scotland Research Ethics Committee (ref: 15/ES/0094) and NHS 

Lothian Research & Development Project Number: 2015/0447/SR594, under the aegis of the 240 

Lothian NRS Human Annotated Bioresource. The University of Edinburgh and NHS Lothian 

ACCORD are sponsor. NHS Lothian Caldicott Guardian permission was obtained for access to 

identifiable patient data where needed prior to linked anonymisation. 

 

Clinical sample and routine laboratory data acquisition 

We used samples and clinical data from the IMOFAP cohort, which has been described in full 

previously12. In brief, consecutive emergency attendees to hospital with sudden onset abdominal 

pain with nausea and/or vomiting, and a serum amylase value greater than 100 iU/L were identified 

using an automated laboratory alert system with clinical verification, at all times of day or night 

for a period of three months. Confirmation of the diagnosis of AP according to the revised Atlanta 250 

criteria41 was made after recruitment in 57 of 79 recruited patients. For the integrated multiomic 

analysis presented here, we applied a further exclusion criterion to 3 patients who had a prolonged 

interval (greater than 200 hours) after symptom onset to first study sample, because we decided 

that those patients would have been likely to enter this study at a late point on their individual 

disease trajectory and thus introduce bias (Figure 1c). The median time interval between symptom 

onset and recruitment in the 54 included patients was 21.3 hours (interquartile range 40.8 hours, 

Q1-Q3 13.5-54.4). Timed samples of peripheral venous blood were taken at recruitment and 3, 6, 

12, 24, 48, 72 hours after that, and again at seven days. Samples were aliquoted into specific tubes 
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containing appropriate preservation solution for subsequent DNA and RNA extraction, or serum 

and plasma extracts were prepared after centrifugation and snap frozen (Figure 1d). Although 260 

every effort was made to capture all time points, this was not always possible, and on occasion 

(for example, at the request of the patient to omit a short interval repeat venepuncture), time points 

were omitted. From this biobank, samples were selected for analysis based on the completeness of 

the multiomic set for a single individual. When analysing single time point data, and more 

precisely time point 0, we selected patients based on whether or not they had a complete multiomic 

set at time point 0, leaving 40 of the pre-selected 54 patients (consisting of 22 mild, 14 moderate 

and 4 severe AP cases). Differently, when comparing time-series we required at least two complete 

time points, selecting 34 patients (including 16 mild, 13 moderate and 5 severe AP cases). 

 We used samples and data from n = 312 patients from the KAPVAL cohort for validation. 

The KAPVAL cohort is a fully-linked anonymised surplus biosample cohort which is made up of 270 

samples and data from all patients presenting to the Royal Infirmary of Edinburgh with a serum 

amylase level > 300 iU/L (3-fold above the upper limit of the reference range for our laboratory). 

An aliquot of gel-clot activator serum is retained and stored at -80 °C for all patient samples that 

have an elevated serum amylase. Using a linked anonymisation code, to which the investigators 

are blinded, the diagnosis of acute pancreatitis was confirmed by trained members of a specialist 

data collection team, using clinical and laboratory data obtained from the individuals electronic 

health record. The diagnosis of AP was made according to the revised Atlanta criteria41. Again, 

this data is not shared with the research team until it has been fully anonymised and all personal 

identifying information removed. A unique study identifier is used to subsequently link the serum 

sample with the clinical annotation prior to providing these to the investigator team. The variables 280 

used in the analysis include age, gender, date and time of admission and discharge, first 3 diagnosis 

codes, standard clinical biochemistry and clinical haematology tests, level of critical care, duration 

of critical care and mortality. Serum samples were used as described. 

 

Transcriptomic data acquisition and pre-processing 

2.5 ml of peripheral venous blood was collected into the PAXgene Blood RNA Tube (BD 

Biosciences) following the manufacturer’s instructions and stored at -80 °C until used. Total RNA 

was extracted and purified using the PAXgene Blood miRNA Kit (QIAGEN). The RNA integrity 

of total RNA samples was assessed using the Agilent 2100 Bioanalyzer. The mRNA in a total 
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RNA sample was converted into a library of template molecules of known strand origin using the 290 

reagents provided in an Illumina® TruSeq® Stranded mRNA library prep workflow. The 

subsequent sequence data was obtained using Illumina HiSeq 4000 75PE system. RNA-Seq data 

consisted of 75bp paired-end Illumina reads stored as FASTQ files. One batch was carried out 

using polyA selection and the other using rRNA depletion. Samples were filtered based on QC 

results (FASTQC). Read alignment was performed against the genome assembly hg38 using  

STAR42. Counts were generated as a proxy for gene expression by assigning previously aligned 

reads to exons using the tool featureCounts43. hg38 genome was used as the reference genome. 

The difference in RNA sequencing (library preparation) was accounted for using a protein-coding 

only filter, a batch removal algorithm (using the ARSyNseq function from NOISeq R library44) 

and a normalisation step (FPKM). Finally, the normalised counts were transformed into Z-scores. 300 

This allowed a comparison across samples. PCA plots of the counts before and after batch effect 

removal are available in Supplementary Figure 8. 

 

 

Proteomics data acquisition and pre-processing 

Serum was obtained from peripheral venous blood by centrifugation and stored at -80 °C until 

used. Sera were subjected to depletion of abundant serum proteins using Proteome Purify 12 

Human Serum Protein Immunodepletion Resin (R&D Systems). Denaturing was followed by 

alkylation with N-ethylmaleimide and acetone precipitation. Digestion used lysyl endopeptidase 

(LysC) and trypsin before labelling with 10plex TMT reagents (Thermo Fisher Scientific). TMT-310 

labelled peptides were fractionated into 4 fractions each by High-pH Reverse Phase 

chromatography then each fraction analysed by RPLC-MS/MS/MS (70 min linear gradient) on a 

Fusion Tribrid Orbitrap operating in Data Dependent Acquisition mode (MultiNotch Simultaneous 

Precursor Selection method; MS1: profile mode, Orbitrap resolution 120k, 375-1550 m/z, AGC 

target 200,000, 50 ms max. injection time, RF lens 60%; MS2: centroid mode, IonTrap, 12 

dependent scans, 1.2 Th isolation window, charge states 2-7, 60 s dynamic exclusion, CID 

fragmentation (35%, activation Q 0.25), AGC target 10,000, 70 ms max. injection time; MS3: 

profile mode, 5 precursors, 2 Th isolation window, Orbitrap resolution 50k, 100-500 m/z, AGC 

target 50,000, 105 ms max. injection time, HCD fragmentation (60%)). Control samples were used 

as internal cross-channel controls in different TMT samples and in different TMT channels to 320 
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avoid any specific bias. Raw files were searched with MaxQuant (version 1.5.7.4) against a human 

proteome obtained from UniProt, with the match-between-runs option selected to allow for transfer 

of peptide identifications between files. After raw data acquisition and initial processing to 

generate intensity-based values, any protein species with 90% or more missing values was 

discarded. Scaling and linear imputation were applied using the minimum value for each 

compound, as any missing value would suggest a value below the detection limit. As samples from 

similar batches grouped together when performing the clustering step, we corrected for it using 

ComBat to remove the irrelevant variation between samples due to the different runs carried out. 

Measurements were then transformed into Z-scores. 

 330 

Metabolomics data acquisition and pre-processing. 

Serum was obtained from peripheral venous blood by centrifugation and stored at -80 °C until 

used. Aliquots of sera were shipped on dry ice to Metabolon Inc., 617 Davis Drive, Suite 400, 

Durham, NC 27713 USA. Serum samples underwent automated protein depletion using methanol 

(MicroLab STAR® system) followed by four fraction analysis by UPLC-MS/MS with positive 

ion mode electrospray ionization, UPLC-MS/MS with negative ion mode electrospray ionization, 

LC polar platform and, GC-MS. QA/QC steps included: a pooled matrix sample as a technical 

replicate throughout, extracted water samples as process blanks, and a bespoke cocktail of QC 

standards spiked into every sample for instrument performance monitoring and chromatographic 

alignment. Instrument variability was determined by calculating the median relative standard 340 

deviation (RSD) for the standards.  Overall process variability was determined by calculating the 

median RSD for all endogenous metabolites (i.e. non-instrument standards) present in 100% of 

the pooled matrix samples. Ultrahigh Performance Liquid Chromatography-Tandem Mass 

Spectroscopy (UPLC-MS/MS):  The LC/MS portion of the platform used a Waters ACQUITY 

ultra-performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high 

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) 

source and Orbitrap mass analyzer operated at 35,000 mass resolution. Gas Chromatography-Mass 

Spectroscopy (GC-MS):  The samples for GC-MS was derivatized under dried nitrogen using 

bistrimethyl-silyltrifluoroacetamide and separated on a 5% diphenyl / 95% dimethyl polysiloxane 

fused silica column (20 m x 0.18 mm ID; 0.18 um film thickness) with helium as carrier gas and 350 

a temperature ramp from 60° to 340°C in a 17.5 min period and analyzed on a Thermo-Finnigan 
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Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron impact ionization 

(EI) and operated at unit mass resolving power. Data Extraction and Compound Identification:  

Raw data were extracted, peak-identified and QC processed using Metabolon’s hardware and 

software and compounds were identified by comparison to library entries of purified standards or 

recurrent unknown entities. Metabolite Quantification and Data Normalization:  Peaks were 

quantified using area-under-the-curve.  Where runs spanned multiple days, a data normalization 

step was performed to correct variation resulting from instrument inter-day tuning differences. 

Metabolomics data consisted of an abundance list (raw ion counts). Data were pre-processed using 

a similar pipeline as the one used for the proteomics data but did not require a batch effect removal 360 

step. 

 

Data Analysis 

Analyses were carried out using Python (version 3.5), R (version 3.3.2) and SPSS (IBM, v24). 

Libraries used include dtwclust in R and numpy, pandas, rpy2, scipy, sklearn in Python. All 

methods used pre-processed Z-scores as initial input. 

 

Single time point Euclidean distances 

The first considered strategy consisted of computing Euclidean between all pairs of patients at 

selected time points, using pre-processed data. This was performed for time point 0, 24 and 48 370 

hours individually and obtained measures were used as a way to quantify dissimilarity between 

individuals. 

 

Area Under the Curve and PCA 

For each variable and for all individuals we computed area under the curve (AUC) values for the 

corresponding time series using the trapezoidal rule and based on pre-processed values as 

described for each individual datatype. In doing so, each time series was summarised as a single 

value representing the cumulative magnitude of response over time. Consequently, values obtained 

for each variable could be treated as independent from others. We normalized the values based on 

the time difference between the first and last included time points. Using this newly created dataset 380 

we projected the values on a principal component analysis plot where, selecting the first two 

components, we computed Euclidean distances between the different individuals. The Euclidean 
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distances were weighted according to the proportion of variance explained by each principal 

component so that the distance between two individuals on PC1 axis would weigh more in the 

final distance compared to the distance on PC2. PCA is a method of choice when encountering 

high dimensionality data, as much for data visualization as for data analysis, and is hypothesis 

free45. Indeed, PCA is only sensitive to the correlation structure in the data and does not make 

specific assumptions related to the stratification of the input data. 

 

Trajectory through PCA space 390 

As described in another study14, trajectories of patients through selected components can be helpful 

when clustering patients. Here we projected all time points of each individual onto a two-

dimensional PCA space and looked at their evolution through this newly defined space. To 

characterize the trajectory of an individual through this space we considered the direction taken 

between each pair of time points for these particular patients. We coded this direction with a value 

of 1, 2, 3 or 4 depending on the direction taken when dividing the space into four quadrants. This 

was repeated for all patients and eventually a vector of directions was obtained for each patient.  

The Hamming distance was used to compare the vectors. When taking two vectors of the same 

length, the Hamming distance is computed by counting, in an element-wise fashion, the number 

of different elements. The values were then used as dissimilarity measures between patients. This 400 

allowed to combine the advantages of PCA and trajectory analysis.  

 

Dynamic Time Warping 

Computation of distances between patients using dynamic time warping was carried out using the 

dtwclust package in R. The algorithm then considers each pair of samples. More specifically, for 

each variable, a matrix is generated and reports the difference in magnitude between all possible 

pairs of time points. One matrix of dimensions (time series 1 length*time series 2 length) is 

obtained for each variable. A summary matrix is generated for each patient by summing the 

individual matrices associated to each variable, element-by-element. The warping consists of 

finding a trajectory in that matrix that will minimize the distance between the two series. The 410 

process will start from the matrix element corresponding to the first points of the two series being 

compared (in other terms the first element of the summary matrix) and will end when reaching the 

last series points (corresponding to the last element of the matrix). As this is performed on a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2019. ; https://doi.org/10.1101/539569doi: bioRxiv preprint 

https://doi.org/10.1101/539569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

summarized matrix, the selected warping represents a consensus alignment minimizing the 

summed differences in magnitude between the two multivariate time-series. From this warping a 

final distance is calculated and can be used as a dissimilarity value. We performed linear 

imputation on time series when time points were not equally spaced or missing. It was preferred 

as it allowed a fairer comparison when dealing with time series of different lengths/sampling 

pattern. 

 420 

Clustering strategy 

Using the dissimilarity matrices previously obtained we clustered them using hierarchical 

clustering and Ward’s method. Ward’s method is an agglomerative method and works by 

minimizing distances within each group. Although it is usually used for Euclidean related distances 

(which is not the case for all the presented methods) it has been used successfully for other types 

of distance16-18 and produced the best results here when compared with others (in terms of 

validation results). 

The number of clusters was chosen according to the stability of each solution. For all number of 

clusters ranging from two to twenty we assessed this using bootstrapping combined with the 

Jaccard index. For a chosen number of clusters k we replaced individuals from the initial cohort to 430 

create a new input dataset. It was then used to re-perform the clustering 100 times. Each one of the 

new results obtained was compared to the initial solution given k clusters. Each cluster from the k 

generated clusters was compared to the most similar cluster of the initial solution. The Jaccard 

index computed the overlap between the two and this was averaged for all matched groups that 

were part of a solution. After 100 repetitions we obtained a value for each k number of clusters by 

taking the average of the averaged Jaccard indexes and the solution with the highest value was 

chosen as the best one. Twenty was chosen as the maximum number as any greater value would 

have resulted in many clusters composed of one or very few individuals. This was not desirable as 

very little information could have been drawn from it. Additionally, we chose not to select for 

further analyses any solution with one group or more presenting less than three individuals. 440 

 

Validation strategy 

As bootstrapping with cluster comparisons produced a measure of stability, we used it to filter 

solutions based on a Jaccard index threshold of 0.75, meaning that when the initial dataset was 
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changed we would still get a sufficiently similar structure. Pathway analyses were carried out on 

pre-selected clusters and allowed to assess biological plausibility. To perform the analysis we 

filtered our pre-processed data to select only variable values reported at time point 0. Compound 

identifiers were converted when necessary using R package biomaRt. Data used consisted of 

KEGG pathways extracted from R package GAGE when analysing gene and protein data and from 

MetaboAnalystR when analysing metabolites. As four groups were identified, the aim was to 450 

assess whether or not a subset of compounds (corresponding to a pathway) was associated with 

the group label. For each pathway this was tested using generalised linear models. A model was 

fitted to the data for each compound of a corresponding pathway with the group label being the 

fixed effect and the response variable being the values associated to this gene. To assess the effect 

of the group on the values, we performed a likelihood test to compare the newly created model to 

a null model, returning a single p-value. Using Stouffer’s method to combine p-values, we 

computed a single p-value per pathway. For elements of a pathway, individual p-values were given 

a weight corresponding to the inverse of the total number of pathways a gene was involved in. 

This, this prevented overlapping pathways from biasing our results. R function anova with 

test="LRT" was used to do the tests. As the gene sets tested for enrichment were the same for each 460 

one of the three methods tested to cluster individuals, p-values were used to quantify the biological 

relevance of a clustering. Each pathway with an associated value under the threshold of 0.05 was 

counted as differentially expressed and counts obtained for each method were compared to 

determine the most biologically relevant result. FANTOM5 data clusters were used to compare 

cell type gene signatures with our groups and thus allowing the discovery of closely involved cell 

types. The same strategy was applied to determine if a pathway was differentially expressed or 

not, using the same 5% cut-off.  

Results were used as a way to quantify the biological pertinence, have an overall look at the results 

and select clustering solutions. 

 470 

Enrichment analysis 

Partial Least Square Discriminant Analysis (PLS-DA), a classification algorithm, was used to 

highlight potential biomarkers and processes associated with single groups. The strategy was to 

create k models for k groups obtained, each model aiming at the classification of samples to the 

group of interest or others (regardless of which other group). Given group labels it will project the 
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data onto a new space, given a number of components selected by the user, and then rotate the 

components to maximize the separation between samples of different groups. Finally, weights can 

be extracted and a correlation with each variable computed.  This is called Variable Importance in 

Projection and the higher the value the more the variable will have contributed to the classifier 

model.  We filtered variables deemed significant for the classification task  using a VIP threshold 480 

value of 1 for each one of the models obtaining respectively lists of size 10216, 6584, 9112 and 

7037 for groups 1 to 4 (ref. 46). The lists were then used to perform pathway enrichment analysis.  

To analyse the list produced for each group we first generated a Reactome database using 

files freely available from the Reactome website (https://reactome.org/download-data, lowest level 

pathway files). As our variables were of different type (transcriptomics, proteomics and 

metabolomics) we generated a merged pathway list using different Reactome files. Pathways were 

then selected for analysis if they had 10 or more compounds and no more than 500 as they were 

deemed neither robust nor informative. We then used Fisher’s exact test to obtain a p-value per 

pathway based on the number of matches present in our list and the total number of compounds 

considered initially to be included in the list of interest. For each list p-values obtained from this 490 

test were then corrected using an FDR based strategy and represented applying a threshold of 0.001 

(Supplementary Figure 9). Following the same strategy, time points 24 and 48 were also analysed 

and results added alongside the ones obtained for time point 0. 

 

Data visualisation 

An interactive webpage (available through URL) was created in order to visualise average AUC 

values and average z-score values over time for the identified endotypes. A subset of variables was 

selected using VIP scores from the PLS-DA models and a threshold of 2. In order to be able to 

visualise some of the clinical and cytokines measurements over time we filtered variables based 

on ANOVA results and a threshold of 0.05.  500 

 

Validation in an independent dataset (KAPVAL) 

To validate the groups previously highlighted we used a separate second cohort, the KAPVAL 

(Kynurenine pathway in AP, VALidation) cohort consisting of 312 individuals with confirmed AP 

as defined by the revised Atlanta criteria41. For these patients, clinical annotations as well as 

metabolomics data was available for a single time point corresponding to hospital admission. Prior 
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to normalisation, only variables appearing in both datasets were kept. The data was then 

normalised in the same way as the IMOFAP metabolomics data, quantile normalisation was 

performed before transforming the values to Z-scores. To see if the same structure could 

be observed in both cohorts we classified KAPVAL samples using PLS-DA models (with 3 510 

components) created for each one of the IMOFAP group but using solely metabolites that were 

available for the KAPVAL cohort as well. Admission IMOFAP data points were used as input to 

generate the models. VIP scores were computed and a threshold of 25 variables was set as a 

maximum of features to be included in each model. An optimal number of variables between 3 

and 25 was selected based on R2 values. To classify individuals from the KAPVAL cohort we 

applied each one of the models to our individual and allocated them to the group from which they 

were the closest to (Supplementary Figure 10). To compare the biology between the groups of 

the two cohorts we computed average values per variable per group and compared them between 

the cohorts as inspired by Sweeney and al.47. We only compared metabolites that were not included 

in the PLS-DA models used to classify KAPVAL individuals (355 metabolites). To perform the 520 

comparison between average values we computed Spearman’s correlation (comparison of ranks, 

p-values computed using a t-distribution) for each pairwise comparison of groups from both 

cohorts (Figure 3e). We obtained significant results when comparing groups from IMOFAP cohort 

to their corresponding groups in KAPVAL cohort (correlation coefficients ranged from 0.29 to 

0.61, corresponding p-values 2.20E-44, 2.37E-19, 1.28E-25 and 6.38E-10 for each group label 

respectively). This allowed use to say that biology between corresponding groups was indeed 

similar and unlikely to be observed by chance. 

 

Validation in an external dataset 

To compare our endotypes to external data we used ARDS endotypes described in another study35. 530 

From ARDS endotypes we extracted ranking of the variables used and compared it to rankings in 

each one of our endotypes. As not all ARDS reported variables were available in our dataset, we 

matched 20 variables that we used to extract and compare rankings. For each one of the two ARDS 

cohorts, we compared the lists of ranked variables to each one of our endotypes using Spearman’s 

correlation coefficients. All coefficients were computed using Python scipy module. Significant 

results were obtained when comparing our catabolic AP endotype with phenotype 1 from both 

ALVEOLI and ARMA ARDS cohorts (p = 0.004 and p < 0.001). The correlation between our 
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hypermetabolic AP phenotype and ALVEOLI and ARMA cohorts was positive and significant as 

well (p = 0.006 and p < 0.001 respectively). 

 540 

Comparison with results from an independent tool (MOFAtools) 

MOFA40 allows to highlight, in a multi-omics dataset, variables explaining variation within a 

dataset, using factor analysis. Clustering analysis is available as part of the tools suite. We chose 

to run the analysis using AUC pre-computed values that were previously used to compute the 

distances within a PCA space and to highlight our endotype groups. Default parameters were used 

with the additional filter used to drop model factors explaining less than 1% of the variance in all 

omics. Once the model was built we chose to cluster the individuals using two latent factors and 

choosing a 4-cluster solution. When comparing our clusters to the ones obtained using MOFA we 

obtained an overlap of 0.88 as illustrated in Supplementary Figure 11 (computed using an 

averaged Jaccard index) and confirming the validity of our clusters.  550 

Using our validation cohort (KAPVAL) and the available metabolomics data, pre-processed as 

described previously, we tested if the groups we obtained using PLS-DA models trained on 

IMOFAP data would highlight a similar structure in the dataset. As presented in Supplementary 

Figure 12, the overlap was quite low (Jaccard index value 0.37). We hypothesised that time-series 

data was required in order to structure the dataset and that some knowledge of the dynamics was 

required to classify patients using solely baseline data. 
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Figure legends 560 

 

Figure 1. Study concepts, design and discovery of AP endotypes. A. Convergent model of acute 

pancreatitis where diverse etiologies trigger an initial acinar cell damage that results in systemic 

inflammation that can be mild, moderate or severe. B. Endotype model. Proposed acute 

pancreatitis model suggesting the existence of clinically and therapeutically relevant molecular 

endotypes. C. Study flow chart for patient samples and data from the IMOFAP study included in 

the analysis showing filtering process and reasons for exclusion. D. Sample and data time points. 

Dashed lines show the median time from admission to hospital to intensive care admission in those 

who required it (12 hours) and median time from admission to hospital to death for AP fatalities 

(82 hours)7. E. Pipeline overview using the 34 pre-selected IMOFAP individuals (individuals with 570 

less than 2 time points were not included in the analysis, n=20). Hierarchical trees for each time 

series based clustering method are presented along with the optimal solution. Colours used to 

represent the nodes in the network view reflect the 4 groups obtained using the AUC combined 

with PCA method. Each of the clustering stability measures is reported (average Jaccard index) 

and a summary of the number of pathways differentially expressed is shown for each category 

(respectively FANTOM5 results, gene-based results and metabolic compound results). For each 

one of the three methods based on time series, the best solution, equivalent to the optimal number 

of clusters (choice based on highest Jaccard index), is presented along with stability and pathway 

analysis results summary. Results based on a single time point (using Euclidean distances) were 

not presented here as the clusters obtained using these presented poor structure (mostly a main 580 

group with the majority of individuals and a number of single-patient groups).  

 

Figure 2.  AP identified endotypes. A. AP endotypes. The top 10 variables, average values 

(normalised and scaled) for each identified group are displayed. For visualisation purposes row 

values were scaled between 0 and 1. Colours are representative of the range of values observed. 

Values were clustered based on expression patterns considering average values per variable per 

group. B. For comparison purposes, distribution of clinical severity categorised by mMODS score 

in each endotype. C. Distribution of etiology in each endotype. For each endotype, the number of 

patients is shown. 

 590 
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Figure 3.  Internal validation of AP endotypes. A. Schematics representing the process to assign 

KAPVAL individuals to endotypes identified in IMOFAP cohort. B. Distribution of in-hospital 

mortality in each endotype for KAPVAL individuals. 1 refers to death and 0 to no death. C. 

Distribution of care level in each endotype for KAPVAL individuals. D. Box plot of length of 

hospital stay (in days) per identified endotype within KAPVAL cohort. Bars represent 95% 

confidence intervals. E. Correlation matrix representing Spearman’s correlation results for 

pairwise comparisons between ranked variables from training set (IMOFAP) and testing set 

(KAPVAL). P-values associated to correlation coefficients computed between matching IMOFAP 

and KAPVAL predicted groups are shown. 

 600 

Figure 4. 

External validation of AP endotypes. A. Ordered normalised values represented for catabolic and 

hypermetabolic endotype. Variables that occur in common with those reported in the ARDS study 

of Calfee et al are presented. Linear trends and ranks of variables based on average value per 

variable per group were generated and represented using ALVEOLI ordered variables. B. 

Spearman correlation coefficients between identified groups and ARDS cohorts. P-values are 

reported for all pairwise comparisons. 
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Supplementary Figures 

 

Supplementary figure 1. Overlap between the different clustering solutions. For the 4-

group selected clustering, comparison with other four-group solutions obtained using the two 

other methods. Average Jaccard index values are reported for each comparison. Group 

matching selected based on best overall Jaccard indexes. 



 

 



 

Supplementary figure 2. PLS-DA top variables for each identified endotype. The top 10 

variables from the PLS-DA model based on VIP values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary figure 3. AP endotypes overview for VIP-selected variables. For the top 10 

variables, normalised and scaled average values for each identified group are displayed. For 

visualisation purposes row values were scaled between 0 and 1. Colours are representative of 

the range of values observed. Values were clustered based on expression patterns considering 

average values per variable per group. A star indicates a patient who did not survive. 
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Supplementary figure 4. Hierarchical clustering result for time point 0 data. Using only 

time 0 data and choosing an arbitrary number of clusters, dendrogram based on Euclidean 

distances and Ward’s algorithm. 

 

 

 

 

 
Supplementary figure 5. SIRS distribution per endotype. For each endotype, the number 

of patients is shown. 

 



 
Supplementary figure 6. Flow diagram for the KAPVAL cohort.  Study flow chart for 

patient samples and data from the KAPVAL study included in the analysis showing cohort 

structure. 
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Supplementary figure 7. Time profiles per group for selected variables. Time series 

generated from average z-score value per time point per group identified using our AUC-PCA 

strategy. Top 2 variables per group selected from PLS-DA results (graphs produced using 

http://baillielab.net/pancreatitis/, username: pancreas and password: review). 
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Supplementary Figure 8. Batch effect correction for RNA-Seq data. PCA plots before and 

after batch effect removal. RNA-Seq counts values obtained using featureCounts, for coding 

genes only, are represented in the left figure. The same counts, after batch effect correction and 

FPKM normalisation are represented in the right figure.  
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HSA 
identifier 

Full pathway name  HSA 
identifier 

Full pathway name 

HSA-

6807505 

RNA polymerase II transcribes 

snRNA genes 

 HSA-

159230 

Transport of the SLBP Dependant 

Mature mRNA 

HAS-

4570464 

SUMOylation of RNA binding 

proteins 

 HSA-

5368286 

Mitochondrial translation initiation 

HSA-

191859 

snRNP Assembly  HSA-

3108214 

SUMOylation of DNA damage 

response and repair proteins 

HSA-

5419276 

Mitochondrial translation 

termination 

 HSA-

4551638 

SUMOylation of chromatin 

organization proteins 

HSA-

6809371 

Formation of the cornified 

envelope 

 HSA-

1268020 

Mitochondrial protein import 

HSA-

72163 

mRNA Splicing - Major Pathway  HSA-

156827 

L13a-mediated translational 

silencing of Ceruloplasmin 

expression 

HSA-

2408557 

Selenocysteine synthesis  HSA-

975957 

Nonsense Mediated Decay (NMD) 

enhanced by the Exon Junction 

Complex (EJC) 

HSA-

72187 

mRNA 3'-end processing  HSA-

72689 

Formation of a pool of free 40S 

subunits 

HSA-

1799339 

SRP-dependent cotranslational 

protein targeting to membrane 

 HSA-

6791226 

Major pathway of rRNA 

processing in the nucleolus and 

cytosol 

HSA-

975956 

Nonsense Mediated Decay 

(NMD) independent of the Exon 

Junction Complex (EJC) 

 HSA-

72165 

mRNA Splicing - Minor Pathway 

HSA-

9010553 

Regulation of expression of 

SLITs and ROBOs 

 HSA-

72702 

Ribosomal scanning and start 

codon recognition 

HSA-

5389840 

Mitochondrial translation 

elongation 

 HSA-

159231 

Transport of Mature mRNA 

Derived from an Intronless 

Transcript 

HSA-

159236 

Transport of Mature mRNA 

derived from an Intron-Containing 

Transcript 

 HSA-

6790901 

rRNA modification in the nucleus 

and cytosol 

HSA-

8951664 

Neddylation  HSA-

6805567 

Keratinization 

HSA-

159227 

Transport of the SLBP 

independent Mature mRNA 

 HSA-

72764 

Eukaryotic Translation 

Termination 

HSA-

72649 

Translation initiation complex 

formation 

 HSA-

109688 

Cleavage of Growing Transcript in 

the Termination Region 

HSA-

72695 

Formation of the ternary 

complex, and subsequently, the 

43S complex 

 HSA-

72706 

GTP hydrolysis and joining of the 

60S ribosomal subunit 

 

Supplementary figure 9. Enrichment results. Significant pathway terms (adjusted p-value 

threshold 0.01%) from enrichment results for each identified group based on variables lists 

selected using VIP scores. Pathway data extracted from Reactome database. Time point 0 was 

selected for assessment. Results for time points 24 and 48 hours are reported as well. Input 

variables were selected based on PLS-DA models and applying a threshold of 1 on VIP score 

values. 



 

 

 



 
 

 
 

Supplementary figure 10. PLS-DA predicted values for each identified endotype. 

Distribution of PLS-DA predicted values for each identified endotype. For each endotype, 

distribution of predicted values for assigned and unassigned KAPVAL individuals are 

represented. 

 

 

 

 

 



 

 
Supplementary figure 11. MOFA tools results compared to highlighted clusters with 

IMOFAP cohort data.  Comparison of MOFAtools results with obtained clusters. AUC 

values used as input and a 4-cluster solution extracted from MOFA results using the first two 

latent features. Shapes are representative of clusters described in this paper and colours of 

MOFAtools predicted allocations. 

 

 

 

 

 

 
Supplementary figure 12. MOFA tools results compared to highlighted clusters with 

KAPVAL cohort data. Using KAPVAL metabolite data and selecting a 4-cluster solution, 

comparison of results. Shapes indicate results obtained using PLS-DA models and colours 

show MOFAtools results. 

 

●

●

●

●

●

●

−2.5

0.0

2.5

−5 0 5 10

LF1

LF
2

Paper results
●

●

●

●

1
2
3
4

MOFA results
● 1

2
3
4

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●

−2

0

2

−2 −1 0 1 2

LF1

LF
2

Paper results
●

●

●

●

1
2
3
4

MOFA results
● 1

2
3
4



Supplementary Tables 
Supplementary Table 1. Demographics. Summary clinical data for included participants of 

the IMOFAP cohort. The cohort is fully described in Skouras et al (for n=57 AP patients). 

Number of patients  54 
   

    Gender   

     Male     55.60% (n=30) 

    Age (years)   

     Median     56.95 

     IQR     28.98 (47.40-76.38) 

    BMI   

     Median     27 

     IQR     7.75 (23-30.75) 

    Source of recruitment   

     A&E     88.89% (n=48) 

     Other     11.11% (n=6) 

    Length of hospital stay (days)   

     Median     5 

     IQR     4.75 (3-7.75) 

    Aetiology   

     Gallstones     44.44% (n=24) 

     Alcohol     33.33% (n=18) 

     Other     22.23% (n=12) 

    Charlson index (time point 0)   

     Median     2 

     IQR     3 (1-4) 

    Inhospital mortality (binary)   

     1     5.56% (n=3) 

    Time onset recruitment (hours)   

     Median     21.29 

     IQR     40.84 (13.54-54.38) 

    Alcohol use   

     Current     57.41% (n=31) 

     Previous     5.56% (n=3) 

     None     37.04% (n=20) 

    Smoking   

     Current     33.33% (n=26) 

     Previous     18.52% (n=10) 

     None     48.15% (n=18) 

    Critical care admission (binary)   

     1     7.41% (n=4) 

    APACHE II day 1   

     Median     10 

     IQR     5 (8-13) 

    Previous AP   

     0     68.52% (n=37) 

     1     22.22% (n=12) 

     2     5.56% (n=3) 

     3 or more     3.70% (n=2) 

    CRP (mg/L) (time point 0)   

     Mean     77.39 

     SD     93.54 



Supplementary table 2. Clustering similarities for 3-cluster solutions. For each time-

series method, based on the 3-cluster solutions, comparisons were ran using Jaccard index 

values. Reported values are averaged Jaccard indexes. Values are displayed for each pairwise 

comparison. 

 

Average Jaccard 

index 

AUC+PCA PCA+Trajectory Dynamic time warping 

AUC+PCA / / / 

PCA+Trajectory 0.31 / / 

Dynamic time warping 0.63 0.27 / 

 

 

Supplementary table 3. Clustering similarities for 5-cluster solutions.  For each time-

series method, based on the 5-cluster solutions, comparisons were ran using Jaccard index 

values. Reported values are averaged Jaccard indexes. Values are displayed for each pairwise 

comparison. 

 

Average Jaccard 

index 

AUC+PCA PCA+Trajectory Dynamic time warping 

AUC+PCA / / / 

PCA+Trajectory 0.24 / / 

Dynamic time warping 0.46 0.21 / 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary table 4. Top pathways. Using global test, top 20 pathways (using KEGG 

data for gene, protein and metabolite data and FANTOM5 data for gene and protein data) for 

the AUC combined with PCA method. P-values obtained are reported along with pathway 

names/identifiers. Input data corresponds to time point 0. 

 
Pathway p-value 

hsa00190 Oxidative phosphorylation 0 

hsa00230 Purine metabolism 0 

hsa00240 Pyrimidine metabolism 0 

hsa00510 N-Glycan biosynthesis 0 

hsa00970 Aminoacyl-tRNA biosynthesis 0 

hsa03008 Ribosome biogenesis in eukaryotes 0 

hsa03010 Ribosome 0 

hsa03013 RNA transport 0 

hsa03015 mRNA surveillance pathway 0 

hsa03018 RNA degradation 0 

hsa03040 Spliceosome 0 

hsa04010 MAPK signaling pathway 0 

hsa04110 Cell cycle 0 

hsa04120 Ubiquitin mediated proteolysis 0 

hsa04141 Protein processing in endoplasmic reticulum 0 

hsa04142 Lysosome 0 

hsa04144 Endocytosis 0 

hsa04146 Peroxisome 0 

hsa04660 T cell receptor signaling pathway 0 

hsa00280 Valine, leucine and isoleucine degradation 5.79E-275 

 

 

 

 

 

 

 

 



Supplementary table 5. Heatmap compounds characteristics. Compounds detailed table for 

heatmap presented in figure 2b. As ordered in figure. Complete gene names were fetched using 

GeneCards resource and additional information using online resources as described in the main 

text. 

 
Heatmap compound Complete name Additional information 

GNAl1 G Protein Subunit Alpha I1 N-acetyl transferase activity 

SPTSSB Serine Palmitoyltransferase 

Small Subunit B 

Tricarboxylic acid cycle 

Citrulline / Sphingolipid biosynthesis 

Dopamine sulfate (2) / Gastrointestinal dopamine 

metabolism 

Testosterone sulfate /  

5-acetylamino-6-amino-3-

methyluracil 

/ 

Caffeine metabolism 
5-acetylamino-6-

formylamino-3-methyluracil 

/ 

GGT2 Gamma-Glutamyltransferase 2 g-glutamyl transferase; 

Glutathione homeostasis 

URGCP-MRPS24 URGCP-MRPS24 Readthrough  

ENSG00000262526 / Protein coding 

OR5D16 Olfactory Receptor Family 5 

Subfamily D Member 16 

 

CTAG1A Cancer/Testis Antigen 1A  

MYADML2 Myeloid Associated 

Differentiation Marker Like 2 

 

Ribose /  

CELA2A Chymotrypsin Like Elastase 

Family Member 2A 

Pancreatic elastase-2 

HOXD9 Homeobox D9  

OR6C6 Olfactory Receptor Family 6 

Subfamily C Member 6 

 

UGT1A3 UDP Glucuronosyltransferase 

Family 1 Member A3 

Associated with Gilbert-type 

hyperbilirubinemia 

SLCO1B7 Solute Carrier Organic Anion 

Transporter Family Member 

1B7 (Putative) 

Cysteine-type endopeptidase 

USP17L18 Ubiquitin Specific Peptidase 17-

Like Family Member 18 

Liver-specific organic anion 

transporter; Bile secretion 

DMRTC1 DMRT Like Family C1  

CGB3 Chorionic Gonadotropin Subunit 

Beta 3 

 

N-acetyl-1-methylhistidine* / Amino acid metabolism; 

Rhabdomyolysis; Renal failure N-acetyl-3-methylhistidine* / 

PPP1R42 Protein Phosphatase 1 

Regulatory Subunit 42 

 

SLC16A8 Solute Carrier Family 16 

Member 8 

Lactate transporter; Ketone 

body transporter 



KRTAP6-3 Keratin Associated Protein 6-3 Muscle-specific actin binding 

protein upregulated during 

muscle injury 

XIRP1 Xin Actin Binding Repeat 

Containing 1 

 

MAP3K6 Mitogen-Activated Protein 

Kinase Kinase Kinase 6 

Apoptosis signaling 

BICDL2 BICD Family Like Cargo 

Adaptor 2 

 

ZBBX Zinc Finger B-Box Domain 

Containing 

 

CFHR3 Complement Factor H Related 3 Heparin-binding; Complement 

regulation 

Inositol 1-phosphate (I1P) / Inositol biosynthesis 

HOXD3 Homeobox D3 Increases immune cell 

adherence; Overexpression 

upregulates glycoprotein 

IIb/IIIa 

SPEM1 Spermatid Maturation 1  

C6orf15 Chromosome 6 Open Reading 

Frame 15 

Putative heparin/fibronectin 

binding 

TRIM48 Tripartite Motif Containing 48 Interferon-g signalling 

(oxidative stress/apoptosis 

signal-reducting kinase 1) 

REG3A Regenerating Family Member 3 

Alpha 

Bactericidal C-type lectin; 

Known as pancreatitis-

associated protein 

PPP1R3A Protein Phosphatase 1 

Regulatory Subunit 3A 

Genetic association with type 2 

DM and familial partial 

lipodystrophy 3 

 

Supplementary Table 6. Demographics. Summary clinical data for included participants of 

the KAPVAL cohort. 

 
Number of patients  312 
   

    Gender   

     Male     46.79% (n=146) 

    Age (years)   

     Median     56.00 

     IQR     30.25 (40.75-71.00) 

    Inhospital mortality (binary)   

     1     5.13% (n=16) 

    Critical care admission (binary)   

     1     12.18% (n=38) 

    CRP (mg/L)   

     Mean     47.62 

     SD     79.85 

 

 


