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Abstract

Events and objects in the world must be inferred from sensory signals to support behavior. Because
sensory measurements are temporally and spatially local, the estimation of an object or event can be
viewed as the grouping of these measurements into representations of their common causes. Per-
ceptual grouping is believed to reflect internalized regularities of the natural environment, yet grouping
cues have traditionally been identified using informal observation, and investigated using artificial stim-
uli. The relationship of grouping to natural signal statistics has thus remained unclear, and additional
or alternative cues remain possible. Here we derive auditory grouping cues by measuring and sum-
marizing statistics of natural sound features. Feature co-occurrence statistics reproduced established
cues but also revealed previously unappreciated grouping principles. The results suggest that auditory
grouping is adapted to natural stimulus statistics, show how these statistics can reveal novel grouping
phenomena, and provide a framework for studying grouping in natural signals.

Introduction
Sensory receptors sample the world with local measurements, integrating energy over small regions of
time and space. Because the objects and events on which we must base behavior are temporally and
spatially extended, their inference can be viewed as the process of grouping thesemeasurements to form
representations of their underlying causes in the world. Grouping has been viewed as a fundamental
function of the nervous system since the dawn of perceptual science [1, 2, 3].

Grouping mechanisms are presumed to embody the probability that sets of sensory measurements
are produced by a common cause in the world [4, 5, 6]. Yet dating back to the Gestalt psychologists,
grouping hasmost often been studied using artificial stimuli composed of discrete elements [3, 7] – arrays
of dots or line segments in vision, or frequencies in sound. One challenge in relating such research
to the real world is that it is often difficult to describe natural images and sounds in terms of discrete
elements. As a result, grouping phenomena have been related to natural stimulus statistics in only a
handful of cases where human observers have been used to label local image features [8, 9, 10, 11, 12].
Grouping research has otherwise been limited to testing intuitively plausible grouping principles that can
be instantiated in hand-designed artificial stimuli.

Grouping is critical in audition, where it is believed to help solve the “cocktail party problem” – the
problem of segregating a sound source of interest from concurrent sounds [7, 13, 14, 15] (Fig. 1). As
in other sensory systems, auditory grouping is believed to exploit acoustic regularities of natural stimuli,
such as the tendency of frequencies to be harmonically related [16, 17, 18, 19] or to share a common
onset [20, 21, 22, 23, 24, 25]. But because acoustic grouping cues have traditionally been identified using
informal observation and investigated using simple synthetic stimuli, much remains unknown. First, the
extent to which known principles of perceptual grouping are related natural stimulus statistics is unclear.
Second, because the science of grouping has thus far been largely driven by human intuition, additional
or alternative grouping principles remain a possibility.

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2019. ; https://doi.org/10.1101/539635doi: bioRxiv preprint 

https://doi.org/10.1101/539635
http://creativecommons.org/licenses/by-nd/4.0/


Time [sec]

Auditory perceptual grouping as inference

sensory signal
cochleagram

Fr
eq

ue
nc

y 
[H

z]

inference
which local features were generated 

by the same source

Source 2

Source 1

sources
in the environment

sensory system
the ear / cochlea

Figure 1: Auditory perceptual grouping. Multiple sources in the world generate signals that sum at the ear. Local
sensory measurements must then be grouped to form source inferences.

We sought to link auditory grouping principles to the structure of natural sounds by measuring fea-
ture co-occurrences in natural signals and assessing their relation to perception. Unlike previous work,
our approach was independent of prior hypotheses about the underlying features or the regularities
that might relate to grouping. We first derived a set of primitive auditory patterns by learning a dictio-
nary of spectrotemporal features from a corpus of natural sounds, using sparse convolutional coding
[26, 27]. We then measured co-occurrence statistics for these features in natural sounds. We found
that superpositions of naturally co-occurring features were more likely to be recognized as a single
source than pairs of features that do not commonly co-occur, indicating that the auditory system has
internalized the co-occurrence statistics over evolution or development. We next developed a method
to summarize the observed co-occurrence statistics with a set of cues. The cues were instantiated as
linear templates that defined stimulus properties predictive of whether features were likely to co-occur.
The learned templates captured traditional grouping cues such as harmonicity and common onset, but
also revealed novel grouping principles. Our results suggest that auditory grouping cues are adapted
to natural stimulus statistics, and that considering these statistics can reveal previously unappreciated
aspects of grouping.

Results
In order to study grouping in natural sound signals without relying on a prior hypothesis of the features
or principles that would be involved, we used convolutional sparse coding [26, 27] to first learn a set of
features from which natural sounds can be composed. These features were learned from recordings
of single sources of speech or musical instruments represented as ‘cochleagrams’ – time-frequency
decompositions intended to approximate the representation of sound in the human cochlea. Examples
of spectrotemporal features and stimuli used in all experiments can be found on the accompanying
webpage: http://mcdermottlab.mit.edu/grouping_statistics/index.html.

The spectrotemporal features were optimized to reconstruct the training corpus given the constraints
of non-negativity (on both feature kernels and their coefficients) and sparsity (on the coefficients). These
constraints produce features that can be thought of as ”parts” of the cochleagram, similar to non-negative
representations of natural images [28]. The learned features capture simple and local time-frequency
patterns, including single frequencies, sets of harmonic frequencies, clicks, and noise bursts (Fig. 2A),
loosely analogous to the spectrotemporal features that might be detected in early stages of the auditory
system [29]. Each feature can itself be viewed as an initial elementary stage of grouping sound energy
likely to be due to a single source. But because natural sound signals are represented with many such
features (as a set of time-varying, sparsely-activated coefficients, Fig. 2B), these features must in turn
be grouped in order to estimate sound sources from the feature representation.
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Figure 2: Spectrotemporal feature decompositions of natural sounds. A Spectrotemporal features optimized
to reconstruct the corpus of speech and instrument sounds. Two example features are shown at higher reso-
lution. B Example reconstruction of a speech excerpt (top) from time-varying feature coefficients (second from
top). The contribution of the two example features from A to the reconstruction are shown in the bottom two rows.
The cochleagrams show the convolution of the feature kernel with its time-varying coefficient (shown below each
cochleagram).

Feature co-occurrence statistics in natural sounds
Once a signal is decomposed into a feature representation, the problem of grouping thus consists of
determining which features are activated by the same source – an inherently ill-posed inference problem
(Fig. 1). We measured co-occurrence statistics that should constrain this inference. In principle the
inference of sources from feature activations could be constrained by the full joint distribution of all
features. In practice this distribution is challenging to learn and to analyze [27]. Instead, we measured
dependencies between pairs of features, which are tractable to measure and analyze, and which we
found to contain rich structure. The key idea was to compare the co-occurrence of features within the
same source to the co-occurrence of features in different sources, on the grounds that feature activations
should be grouped together if they co-occur in a particular configuration substantially more often in the
same source than otherwise.

To measure co-occurrences for features in the same source, we took encodings of large corpora of
single sources – speech and instrument sounds – and for each feature f (e.g. Fig. 3A) computed the
average activations of all other features at each of a set of time offsets, conditioned on the activation of
the feature f being high (exceeding the 95th percentile of its distribution of activations) (Fig. 3B). This
co-activation measure is high for features that tend to be activated at a particular time offset when the
selected feature f is activated. To measure co-occurrence for features in distinct sources, we assumed
distinct sound sources in the world to be independent. Given that assumption, the distribution of ac-
tivations of one feature conditioned on the activation of another can be approximated by its marginal
distribution (Fig. 3C). Thus, as a summary measure of the co-occurrence of one feature and another,
we computed the ratio of the mean conditional activation of the feature to its mean marginal activation
(the mean feature activation, averaged over time and across the entire training corpus). Dividing by
the mean marginal activation can also be viewed as a normalization step that prevents the resulting
measure from being dominated by how often a feature occurs in the training corpus. In all subsequent
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analyses we display the logarithm of this ratio, which we term the “association strength”. We consider a
feature as co-occurring or not with the selected feature depending on whether the association strength
is positive or negative.

This analysis yielded a matrix for each feature (containing its association strength with each other
feature at each of a range of time offsets; Fig. 3D), and thus a three dimensional tensor for the entire
dictionary (Fig. 3E). These matrices are not obviously structured when inspected visually, apart from
containing dependencies that on average grow weaker as the time offset between features increases
(Fig. 3F). However, the tensor can be used to draw pairs of features that are strongly co-activated in the
training corpus, or not, and these exhibit intuitively sensible relationships. The examples in Fig. 3G for
a harmonic feature reveal that other features that strongly co-occur with it share a common fundamental
frequency (f0) and fall in the same general frequency range. Conversely, features that are unlikely to
co-occur with the example harmonic feature are those that are misaligned in f0 or that are far apart in
frequency. These examples suggest that the co-occurrence statistics can capture reasonable relations
between features, but it was not obvious to what extent the full co-occurrence tensor would have been
internalized by human listeners, and to what extent it would contain comprehensible structure.

Perceptual grouping reflects co-occurrence statistics
To test whether human listeners have internalized the measured co-occurrence statistics, we conducted
a psychophysical experiment with stimuli generated by superimposing sets of features. On each trial,
participants heard two such stimuli and judged which of them contained two sound sources (Fig. 4A).
One feature pair was selected from the feature pairs with an association strength in the top 1% of all
co-occurring pairs, and the other from the feature pairs with an association strength in the lowest 5% of
the non-co-occurring pairs, i.e. the most negative (Fig. 4B; the inclusion thresholds were asymmetric
because the distribution of associations strengths was asymmetric about 0). To set a ceiling level on
task performance, in a second condition, one stimulus was an excerpt of a single speech or instrument
sound while the other was a mixture of two such excerpts. Because natural sounds contain a superset of
the dependencies measured in the co-occurrence tensor, performance on this condition should provide
an upper limit on performance for the task with feature superpositions.

Human listeners reliably identified unlikely combinations of features as sounds consisting of two
sources (Fig. 4B, left bar; t-test , t(14) = 10.95, p < 0.001), only slightly below the level for speech
mixtures (Fig. 4B, right bar, t(14) = 93.75, p < 0.001). This result suggests that humans have internalized
aspects of the co-occurrence tensor and use the learned statistics for perceptual grouping.
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Figure 3: Co-occurrence statistics of spectrotemporal features. A Example feature of interest. B Average
conditional activations of other features, conditioned on the example feature of interest exceeding an activation
threshold. C Average marginal activations of other features (averaged over time and across the corpus). These
are by definition constant over time. D Co-activation matrix for the feature of interest, formed by the logarithm
of the ratio of the mean conditional and marginal activations of the other features. E Co-activation tensor formed
from the co-activation matrices of all features. F Positive and negative tensor entries averaged across features. The
strength of association between features decreases with their time offset, as expected. G Examples of features with
high and low association strength with the feature from A. Left column: Features colored red/blue have high/low
association strength with the example feature of interest from A. Right column: mixtures of the selected features
with the example feature of interest from A.
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Figure 4: Perceptual sensitivity to natural feature co-occurrence statistics. AStimulus from an example trial.
Listeners heard two feature pairs and judged which consisted of two sources. B Conditions and results of Experi-
ment 1. Listeners discriminated i) feature pairs assembled using natural co-occurrence statistics or ii) mixtures from
single excerpts of speech and/or instruments. Asterisks denote statistical significance of t-tests (vs. chance; ***:
p<.001). C Results of Experiment 2. Listeners discriminated feature pairs assembled using i) natural co-occurrence
statistics or ii) co-occurrence statistics measured from artificial sound textures. The textures were synthesized to
match some of the statistics of speech (related to power and modulation spectra). Asterisks denote statistical signifi-
cance of t-tests (vs chance or between conditions; ***: p<.001). D Conditions and results of Experiment 3. Listeners
discriminated feature pairs drawn from different ranges of the co-activation continuum, producing large, medium, or
small co-activation differences between the two pairs presented on a trial. Asterisks denote statistical significance
of repeated measures ANOVA comparing performance in the three conditions.

To assess the extent to which the perceptual sensitivity was specific to natural co-occurrence statis-
tics, we ran a control experiment using stimuli derived from a co-occurrence tensor measured from
synthetic sound textures [30]. The textures were synthesized to match the power spectrum and mod-
ulation spectrum of speech, but were otherwise unstructured (see Methods). Co-occurrence statistics
were measured using the same features learned from the natural sound corpus. The experiment thus
controlled for the possibility that the features and their encoding process might themselves create de-
pendencies that could support task performance, independent of natural signal statistics. In contrast
to stimuli from the natural co-occurrence tensor, the control stimuli produced near-chance performance
(Fig. 4C, right bar; not significantly different from chance, t(14) = 0.1748, p = 0.86 and significantly worse
than the natural stimuli, t(14) = 10.57, p < 0.001). The results suggest that grouping judgments depend
on internalized statistics that are to some extent specific to natural sounds.

To further probe the extent to which perceptual grouping judgments would reflect natural co-occurrence
statistics, we generated pairs of feature pairs whose association strength difference fell into one of three
ranges (Fig. 4D; each range differed from that used in Experiment 1). If listeners have internalized
natural feature co-occurrences, performance should scale with the association strength difference. As
shown in Fig. 4D, performance was best when the association strength difference was large, and de-
clined as it decreased, yielding a main effect of the association strength difference (F(1.39, 19.45) =
17.46, p < 0.001). This result is further consistent with the role of natural co-occurrence statistics in
perceptual grouping judgments.
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Predicting grouping cue strength from natural statistics
Grouping is typically conceptualized in terms of cues – stimulus properties that are predictive of group-
ing and that could thus help to solve the inference problem at the heart of grouping. We sought to
relate grouping cues to co-occurrence statistics, both to evaluate the statistical validity of traditionally
proposed cues and to learn cues de novo from statistics. We formalized a grouping cue as a function
of two stimulus features whose value depends on whether the two features are likely to belong to the
same source or not (Fig. 5A). We quantified the statistical strength of a cue using the co-occurrence
tensor, measuring the cue for all pairs of strongly positively associated features and all pairs of strongly
negatively associated features, and then quantifying the difference in the distributions of cue values for
the two sets (Fig. 5B).
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Figure 5: Grouping cue evaluation. A Cues are defined as functions of feature pairs that should differ depending
on whether the features are likely to be due to the same source. Cue strength is quantified as the separation of
cue distributions for co-occurring and non-co-occurring feature pairs. B Evaluation of the cue strength of common
onset and common offset. Left and middle panels illustrate cue measurement for an example feature pair (top)
and the resulting cue distributions for co-occurring and non-co-occurring feature pairs (the top 75% of positive and
bottom 75% of negative of feature pairs when ranked according to their association strength). Logarithmic axis
serves to reveal the difference between the tails of the distributions. Right panel plots the Bhattacharya distance,
a summary measure of the separation of the cue distributions for co-occurring and non-co-occurring feature pairs,
predicting that common onset should be a stronger grouping cue than common offset. C Evaluation of the cue
provided by differences in fundamental frequency (f0), which is small for co-occurring feature pairs and large for
non-co-occurring pairs. This analysis was restricted to features that were above a criterion level of periodicity, and
that thus had a well-defined f0.

We first considered the two most commonly cited cues from traditional accounts of auditory grouping:
common onset and offset [20, 21, 22, 23, 24, 25], and common fundamental frequency [16, 17, 18, 19].
We measured onsets and offsets of each feature as the time points where their broadband envelope
exceeded or dropped below a threshold value, and measured the difference in onset or offset time
for all pairs of strongly positively or negatively co-activated features (corresponding to the top 75% of
positive entries and bottom 75% of negative entries in the association strength tensor). Both onset and
offset differences were smaller for co-activated features, but the difference was larger for onsets than
offsets. This difference provides an explanation for the documented difference in the perceptual effect
of common onset and offset (whereby grouping from offsets is weaker than grouping from onsets) [22].
Similarly, the f0 difference between features was smaller for co-activated features (measured in features
that exceeded a criterion level of periodicity, such that the f0 was well-defined). These analyses provide
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what to our knowledge is the first evidence that conventionally cited grouping cues have a sound basis
in natural signal statistics.

Grouping cues derived by summarizing co-occurrence statistics
We next sought to derive grouping cues from the co-occurrence tensor in order to explore the cues
that would emerge independent of human intuition. We searched for acoustic properties that would
predict the association strength of feature pairs, restricting the properties to those defined by linear tem-
plates in order to facilitate their interpretability. The resulting discriminative model learned templates in
the time-frequency and modulation domains whose dot-product with a spectrotemporal feature kernel
was similar for frequently co-occurring features, but different for non-co-occurring features. Specifically,
the model used the magnitude of the difference in the projections for two features (the ‘cue value’) to
predict whether they have high association strength or not (via logistic regression; Fig. 6A). The two
domains considered (time-frequency and modulation planes) are the most common representations in
which to examine sound; the modulation plane is simply the two-dimensional power spectrum of the
time-frequency representation of a sound [31]. Templates were learned sequentially until performance
reached an asymptote, resulting in four templates, two in each of the time-frequency and modulation
planes (Fig. 6B-E; additional templates only marginally improved performance, see Methods). Despite
the limitations inherent to linear templates, the four templates were sufficient to differentiate co-occurring
from non-co-occurring features with reasonable accuracy (81%), indicating that they captured a substan-
tial amount of the variance in feature co-occurrence.

Even though the templates were derived purely from co-occurrence statistics, without regard for prior
hypotheses or human intuition, inspection of the learned templates reveals interpretable structure. The
first cue template (Fig. 6B, left) can be interpreted as computing a spectral centroid, implying that fea-
tures with similar frequency content are likely to co-occur. We quantified this effect by measuring the
spectral centroid of each feature and comparing the centroid difference for feature pairs with high and
low cue values (Fig. 6B, middle and right). Spectral differences are known to influence the grouping of
sounds across time [7, 32], but this result suggests that they also should affect the grouping of concurrent
sound energy (because the temporal extent of the tensor was -/+ 80 ms from the center of the refer-
ence feature, and the width of feature kernels was 162 ms, all feature pairs considered in this analysis
overlapped in time to a fair extent).

The second template (Fig. 6C, right) appears to compute a temporal derivative - features that have
similar projections tend to be aligned in time (Fig. 6C, middle left), recapitulating the established group-
ing cue of common onset/offset [20, 21, 22, 23, 24, 25]. This template also detects misalignments in
fundamental frequency (Fig. 6C, middle right), another established grouping cue [16, 17, 18, 19, 33].

The modulation plane templates (Fig. 6D&E) compute differences between the power in different
regions of the modulation plane, and thus capture the tendency of features with different spectral shapes
(tone vs. clicks, for example) to belong to distinct sources, regardless of their temporal configuration. To
our knowledge this type of cue has not been previously noted in the auditory scene analysis literature,
although modulation rate has been shown to affect the grouping of sequences of sound elements [34].

8

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2019. ; https://doi.org/10.1101/539635doi: bioRxiv preprint 

https://doi.org/10.1101/539635
http://creativecommons.org/licenses/by-nd/4.0/


Pair of stimuli Cue computation Logistic regression Decision

Learning linear grouping cues with logistic regression

cue sum

pr
ob

.

0

1

0 max

Stimuli co-active
(single source)

Stimuli not 
co-active 
(two sources)

Sum over many cues. Each cue compares energy in 
different regions of either time-frequency or modulation spectrum.

use cues to compute probability of stimuli
being non co-active in natural environment

Features separated by a time offset

b

freq. centroid 
difference [kHz]

pd
f

0

max

0 2.4

Low cue vals (grouping) 
High cue vals (separating)

Fr
eq

. [
Hz

]

2e1

8e3

temporal centr.
difference [ms]

pd
f

0

max

0 24

Fr
eq

. [
Hz

]

f0 difference 
[semitones]

0 24

0 0.16
Time [s]

0 0.16
Time [s]

c

7 12 19

Low cue vals
High cue vals

Low cue vals
High cue vals

Time diff. distribution F0 diff. distribution

Example feature mixturesFreq. difference distributions

Example 
feature 
mixtures

Cue I: frequency centroid

a

+

-

+

-

d

Sp
ec

. M
od

. 
[c

yc
/o

ct
]

-2.5

2.5

-100 100
Temporal

modulation [Hz]

Cue III: spectrotemporal modulation

+

-

Low cue value Hi. cue value Low cue value Hi. cue value

0 0.16
Time [s]

0 0.16
Time [s]

0 0.16
Time [s]

0 0.16
Time [s]

e

Sp
ec

. M
od

. 
[c

yc
/o

ct
]

-2.5

2.5

-100 100
Temporal

modulation [Hz]

Cue IV: spectrotemporal modulation

+

-

Low cue value Hi. cue value

0 0.16
Time [s]

0 0.16
Time [s]

Fr
eq

. [
Hz

]

2e1

8e3

Fr
eq

. [
Hz

]

2e1

8e3

Fr
eq

. [
Hz

]

2e1

8e3

Cue II: temporal centroid / fundamental frequency 

Cue template Example feature mixtures

Example feature mixtures

Cue template

Cue templateCue template

Cue template
(spectrotemporal) 

2e1

8e3

+
Cue template
(modulation) 

Time-
frequency

Modulation Cue template
(spectrotemporal) 

+
Cue template
(modulation) cue sum

pr
ob

.

0

1

0 max

(in two domains)

Figure 6: Learning grouping cues fromnatural signal statistics. ASchematic of discriminativemodel fromwhich
cues were learned. Cues are computed for pairs of features, by projecting each feature onto a cue template and
taking the absolute value of the difference. The discriminative model takes the sum of these absolute differences for
a set of cue templates and predicts whether the feature pair co-occurs or not using logistic regression. The templates
could be defined in either the time-frequency or modulation planes. B-E Characterization of the four learned cues.
Left: Cue templates. Middle (B&C only): distribution of stimulus properties hypothesized to be captured by template.
Right: Example feature pairs with high and low cue values. The cue in C appears to capture two conceptually distinct
sound properties (temporal offset and fundamental frequency difference) with a single template.

Perceptual test of learned grouping cues
The derived cues embodied in the templates varied in their statistical cue strength, but all were individu-
ally predictive of whether feature pairs were associated or not (Fig. 7A, using the analysis of Fig. 5). To
test whether the derived cues affect perceptual grouping, we used each individual template to construct
experimental stimuli, and measured whether listeners’ ability to use the cue in a grouping judgment var-
ied in accordance with its statistical strength in the training corpus of natural sounds. For each cue, we
searched for pairs of features with high values of that cue but low values of the other three cues, such
that the cue of interest would provide the only indication that the two features were not part of the same
source (Fig. 7B, left). We then presented the pair successively with another pair in which all four cues
had low values, and asked listeners to judge which of the two pairs consisted of two sources. Listeners
were significantly above chance for each cue (Fig. 7B, right; t(14) ≥ 4.17, p<.001 in all cases), suggest-
ing that all cues contribute to perceptual grouping judgments. Moreover, performance varied with the
statistical cue strength, providing additional evidence that perceptual grouping is based on internalized
co-occurrence statistics.

As a further test of the predictive value of the learned cues, we used them to predict the perceptual
grouping of three types of stimuli: pairs of the learned spectrotemporal kernels, mixtures of artificial
sounds synthesized from “blobs” in the time-frequency plane, and mixtures of speech segments win-
dowed by time-frequency apertures. Apertures were used for the speech conditions because mixtures
of extended speech excerpts almost never perceptually group to resemble a single source. We searched
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for stimuli that the cue model confidently judged to be single sources as well as stimuli that the model
confidently judged to be mixtures, and on each trial presented listeners with one stimulus from each
group, asking them to identify the single source. In all three cases listeners’ judgments agreed with
those of the model (being well above chance for each condition; t(14) ≥ 5.82, p<.001 in all cases).
These results provide further evidence for the perceptual reality of the derived cues, and show that they
have fairly general predictive power.

a
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Experiment 5 - Human agreement with model decisions
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Figure 7: Perceptual sensitivity to learned grouping cues. A Cue strength of the learned cues, measured as
the Bhattarcharya distance between the cue distributions for co-occurring and non-co-occurring feature pairs. B
Description and results of Experiment 4, which measured perceptual sensitivity to each of the four learned cues.
The task was the same as in Experiments 1-3: listeners heard two feature pairs and judged which one consisted of
two sources. One feature pair on a trial had a low cue value (implying high association strength) and one had a high
cue value (implying low association strength). C Description and results of Experiment 5, which measured human
agreement with model decisions about the segregation of mixtures of three types of stimuli (the spectrotemporal
kernels learned from speech and instruments, artificial time-frequency “blobs”, and speech excerpts windowed in
the time-frequency plane). On each trial listeners heard two mixtures and judged which consisted of two sources.

Grouping of feature sequences
Experiments 1-5 demonstrate the perceptual relevance of empirical co-occurrence statistics, and of
the cues that we derived from them, but utilized pairs of features or sound excerpts in close temporal
proximity. To test whether the measured co-occurrence statistics would be predictive of the perceptual
grouping of more extended sound sequences, we used the co-occurrence tensor to generate sequences
of features spaced more widely in time, and measured whether the co-occurrence statistics could predict
the perceptual “streaming” of these sequences. Each sequence was seeded with an initial feature.
Subsequent features were chosen from a probability distribution derived from their association strength
with the previous feature, with features with higher association strength having higher probability (Fig.
8A). For each of a set of reference sequences, we generated two types of mixtures: one with a second
sequence whose features had high association strength with the features of the reference sequence,
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and one whose features did not (Fig. 8B; see Methods). Listeners were presented with a mixture and
judged whether it was generated by one or two sources.
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Figure 8: Streaming of spectrotemporal feature sequences. A Sequence generation from co-occurrence statis-
tics. First, a seed feature is chosen. Second, the column of its association strengthmatrix is extracted corresponding
to the desired time offset for the next feature (here fixed at 75 ms). Third, the column is transformed to a probability
distribution via the softmax function. Fourth, the next feature is drawn from this distribution. These steps are iterated
until a sequence of the desired length is obtained. B Example reference sequence (top), mixed with a co-occurring
sequence (middle), and non-co-occurring sequence (bottom). C Description and results of Experiment 6. On each
trial listeners heard a mixture of two feature sequences and judged whether it was produced by one or two sources.
Asterisks denote statistical significance of a paired t-test between conditions.

As shown in Fig. 8C, listeners reliably judged the mixture with the non-co-occurring sequence as
two sources, but showed the opposite tendency for the mixtures with the co-occurring sequence (t(10)
= 9.56, p < .001, t-test). Subjectively, the sequences in a non-co-occurring mixture typically differed in
their acoustic qualities, and attention could often be directed to one or the other. There was thus some
similarity to classical examples of streaming with alternating tones and other simple sound elements [32,
35] even though the sound sequences here were more stochastic and varied. The results indicate that
pairwise co-occurrence statistics capture some of the principles that cause extended sound sequences
to perceptually stream.

Discussion
We introduced a framework for measuring natural signal statistics that could underlie perceptual group-
ing, and explored their relationship to perception in the domain of audition. We first learned local acous-
tic features from natural audio signals (Fig. 2) and computed their strength of co-occurrence (Fig. 3).
Our results revealed that acoustic features exhibit rich pairwise dependencies, but also that these co-
occurrences could be summarized to a large extent with a modest number of “cues”. We formalized
the notion of a cue as a stimulus property that predicts the co-occurrence of pairs of features (Fig. 5),
and derived cues from the large set of measured pairwise co-occurrence statistics (Fig. 6). The cues
that emerged include some previously known to influence grouping, such as common onset and fun-
damental frequency, but also some factors that have not previously been widely acknowledged (such
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as separation in acoustic and modulation frequency for concurrent features). We found evidence that
the auditory system has internalized these statistics and uses them to group features into coherent ob-
jects. This was true both for isolated pairs of features (Experiments 1-3) and for more extended feature
“streams” (Experiment 6), and for each of the individual cues revealed by the co-occurrence statistics
(Experiment 4). These results provide what to our knowledge is the first quantitative link between au-
ditory perceptual grouping and natural sound statistics, show how these statistics may be harnessed
to study auditory scene analysis, and offer a general framework for relating natural signal properties to
perceptual grouping.

Related work
The derivation of ideal observer models has a long and productive history in perception research [36],
and such models have been used to learn cues for a range of natural tasks [37]. However, previous
such attempts to relate perceptual grouping to natural scene statistics have largely been limited to con-
tour grouping in images [8, 9, 10, 11, 12]. These influential earlier efforts inspired our present work, but
were reliant on hand-picked features labeled by human observers (object edges), and their analysis was
limited to dimensions thought to be important a priori (position and orientation). Our results demonstrate
how one can derive grouping cues from features learned entirely from natural signals without prior hy-
potheses about the features or underlying grouping principles. Learning signal features and grouping
cues from the structure of natural sounds paid dividends by revealing statistical effects that were not
obvious beforehand and that were found to underlie novel perceptual effects. Our methodology also
gives additional support to commonly discussed cues, by showing that they emerge from the large set
of possible cues that might in principle have been derived from natural sound statistics.

Our results complement a long research tradition that has documented behavioral and neural effects
of a handful of acoustic grouping cues, relying on intuitively plausible cues and synthetic stimuli [7, 16, 17,
18, 19, 20, 21, 22, 23, 38, 39, 40]. Our results provide statistical justification for the two most commonly
studied cues from this literature (onset and harmonicity), but also identify other statistical effects, and
show their perceptual relevance. Frequency separation is known to strongly affect the grouping of stimuli
over time [32], but is less acknowledged to influence the grouping of concurrent features. Our results
show that it is the strongest effect evident in local co-occurrence statistics of natural audio, at least for
the corpora that we analyzed, and that it has a correspondingly strong perceptual effect. Modulation
separation has also not been appreciated as influence on the grouping of concurrent features [34], but
emerged from the analysis of co-occurrence statistics and also proved to have a large perceptual effect.
The analysis of natural signal statistics is thus both “post-dictive”, suggesting normative explanations for
known effects, but can also be predictive, pointing us to phenomena we should test experimentally.

Our quantitative approach to grouping has the added benefit of taking us beyond verbal descriptions
of phenomena to enable grouping predictions for arbitrary stimuli. We leveraged this ability to make
such predictions for three different types of stimuli (Experiment 5). The verbal characterizations of cues
from classical approaches cannot be tested in this way.

Our approach also complements engineering efforts to solve auditory grouping. Early attempts in
this domain were inspired by psychoacoustic observations, and thus implemented hand-engineered
grouping constraints based on common onset and periodicity [41, 42, 43]. More recent attempts to build
computational models of sound segregation similarly focus on the intuitively plausible cue of temporal
coincidence [24, 25]. Current state-of-the-art engineering methods instead rely on learning how to group
acoustic energy from labeled sound mixtures [44, 45], but are at present difficult to probe for insight into
the underlying acoustic dependencies. Our methodology falls between these two traditions, utilizing
the rich set of constraints imposed by natural signals but providing interpretable insight into factors that
might underlie grouping. Indeed, our choices to restrict the analysis to pairwise dependencies, and to
learn linear cues that summarize the measured dependencies, were made to facilitate inspection of the
results. It could be fruitful to apply our analysis methods to contemporary source separation methods,
as well as to use the dependencies that we measured to separate sources from mixtures.

Open issues and future directions
Our approach leveraged available recordings of single sound sources. Single source recordings provide
a weak form of supervision, in that the resulting feature activations can be assumed to belong together
without requiring the use of human labels that were critical to previous work in this vein [8, 9, 10, 11, 12].
However, because large numbers of single source recordings are presently available only for speech
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and musical instruments, our analysis was limited to these sound genres, and as such may not be
representative of the full set of dependencies in natural sounds. The use of available audio recordings
had the additional consequence that our analysis was restricted to monaural audio. Natural auditory
input likely contains important binaural dependencies that contribute to grouping [40, 46, 47, 48, 49],
that our approach could in principle capture if applied to audio recorded from two ears [50]. Another
limitation of our approach lies in the use of sparse feature decodings, which efficiently describe speech
and music sounds, but are a poor description of more noise-like sounds such as textures. Textures are
an important part of auditory scene analysis [51], and studying the statistical basis of their grouping will
likely require an alternative encoding scheme, potentially based on summary statistics [52] rather than
localized time-frequency features.

Our results suggest that human listeners have internalized the co-occurrence statistics that we mea-
sured, in that listeners reliably discriminate between feature pairs with high and low association strength
(Fig. 4). However, the results leave open whether knowledge of the dependencies is built into the au-
ditory system over evolution, whether it is learned during development, and/or whether it continues to
be updated during adulthood. Some types of sound source structure can be learned relatively quickly
[53] and can aid source separation [54], but it remains unclear whether such rapid learning effects apply
to the sorts of local feature dependencies studied here. This could in principle be addressed by ex-
posing listeners to sounds with altered statistical dependencies and then measuring whether perceptual
grouping is altered.

A full account of auditory scene analysis will undoubtedly require more complete statistical models
of natural sound sources, incorporating more than the pairwise dependencies between local features
studied here [27]. In addition to multi-element dependencies, a full model will likely require additional
hierarchical structure, in which groups of local features are in turn grouped into larger-scale configu-
rations. Such hierarchical organization could be one way to model the grouping effects of repetition
[55, 56], which is one powerful grouping phenomenon not accounted for by our analysis.

The instantiation of perceptual grouping in the brain remains a key open issue in systems neuro-
science, particularly in audition [24, 57, 58, 59]. The features that we measured could plausibly be de-
tected by neurons in the auditory system [29], and the co-occurrence statistics that we analyzed could in
principle be encoded by connections between neurons representing local features, analogous to the as-
sociation fields for contour grouping which are thought to be instantiated in lateral connections between
visual neurons [60]. Alternatively, co-occurrence statistics could be encoded by higher-level sensory
neurons implementing logical AND/OR-like computations [61, 62, 63]. The latter possibility could be
tested by comparing the components of such multi-dimensional receptive fields to the cue templates
that we derived.

Although our methodology starts from an encoding scheme based on local features, in part because
these are most readily mapped onto early stages of sensory systems [64, 65, 66], problems of scene
analysis can also be approached with generative models more rooted in how sounds are produced. For
instance, speech and instrument sounds are fruitfully characterized as the product of a source and a
filter that each vary over time in particular ways [67, 68], as are sounds in reverberant environments
[69], and humans appear to have implicit knowledge of this generative structure [70]. Reconciling these
generative models for sound with those rooted in neurally plausible local feature decompositions is a
critical topic for future research.

Materials and Methods

Natural sound corpus
We created a corpus of sounds generated by individual physical sources by merging corpora of record-
ings of individual talkers and musical instruments in equal proportion. Speech sounds were taken from
the TIMIT database [71], and included voices of male and female speakers speaking sentences in En-
glish. Solo instrument sounds were taken from the RWC Music Database72. The database consists of
individual notes played by a diverse set of instruments including pianos, guitars, brass, woodwinds and
drums. We uniformly sampled random excerpts of sound from all recordings in the database. The final
dataset consisted of 7000 excerpts (3500 excerpts of speech and 3500 excerpts of instruments), each
3 seconds long, resulting in approximately 5 hrs 48 minutes of sound. The sampling rate was set to 16
kHz.
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Cochleagrams
All analyses used a cochleagram representation of sounds intended to approximately simulate the output
of the auditory nerve. Cochleagrams were generated as in previous publications [52, 30]. Raw sound
waveforms were passed through a bank of 81 bandpass filters. Filters were regularly spaced on an
equivalent rectangular bandwidth (ERB) scale with bandwidths matched to those expected in the healthy
human ear [72]. Center frequencies spanned 31 Hz - 7656 Hz. Transfer functions were shaped as the
positive portion of a cosine function. The cochleagram was generated from Hilbert envelopes of the
output of each filter, transformed with a power function (with the exponent 0.3, roughly approximating
properties of the basilar membrane compression [73]). The result was downsampled to 400 Hz.

Learning the feature dictionary
To learn an acoustic feature basis for cochleagrams we used a convolutional sparse-coding model de-
scribed in [27] with an additional non-negativity constraint imposed on the basis functions, to aid inter-
pretability in terms of sound energy (which is non-negative) and produce localized features [28]. The
model represents a cochleagram excerpt as a sum of spectrotemporal kernels (STKs) ϕ (162 ms in
duration) convolved with their activation time courses s:

x̂t,f =
[∑

i

ϕi,fsi

]
t

(1)

The model finds feature activations for individual cochleagram excerpts by minimizing the following
cost function:

L(x, ϕ, s) =
∑
t,f

(
x̂t,f − xt,f

)2

+ λ
∑
i,t

|si,t| (2)

where λ is a parameter controlling the degree of sparsity. The sparsity term in equation 2 implicitly
assumes that feature activations follow an exponential distribution.

A feature dictionary was learned from the speech/instrument corpus described above with the fol-
lowing standard iterative two-step learning procedure. All spectrotemporal kernels were first initialized
with Gaussian noise. During each learning epoch a random cochleagram excerpt (320 ms in length, i.e.
129 samples) was drawn from the dataset. In the first step, optimal coefficients were inferred for the
cochleagram excerpt by minimizing equation 2 with respect to sparse coefficients s. In the second step,
the inferred coefficients were used to perform a gradient step on the basis functions ϕ. The two steps
were iterated (each time with a different randomly drawn cochleagram excerpt) for 100, 000 epochs.
The value of the sparsity controlling parameter λ was set to 0.2.

Because the inference of all coefficients s is computationally demanding, we relied on an approximate
inference scheme75. Instead of inferring the values of all coefficients for each excerpt, we selected a
subset of them to be minimized. This subset consisted of the 1024 coefficients si,t where the associated
kernels ϕi generated the strongest projections on the cochleagram (i.e. best matched the structure of
the signal). During the inference process, only the values of these coefficients were optimized, while
the others were set to 0. The gradients of the basis functions were then computed using the coefficients
from this approximate inference step.

We set the number of learned kernels to 80. We found empirically that if this number was larger,
some of the kernels would not converge during training. Because different random initializations yield
slightly different sets of feature kernels, we trained 10 different sets of kernels, and then combined them
for subsequent analyses as described below. The analyses were thus based on a total of 800 learned
kernels.

Co-occurrence statistics
Association strength matrices were computed by first averaging a feature’s coefficients conditioned on
another feature exceeding an activation threshold. Using the learned features ϕ, we first inferred optimal
coefficients si,t for each of the 7000 3-second-long sound excerpts in the sound corpus. In that way we
obtained 7000, 3-second long (1200 samples) coefficient maps. Rows of coefficient maps corresponds
to individual kernels ϕi and columns to time points t. From each coefficient map generated in that way
we then sampled 50 random, 160 ms (65 samples) long excerpts. This resulted in a dataset of 350 000
excerpts of coefficient maps.
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For each kernel of interest ϕi we selected the coefficient map excerpts where the activation coefficient
si at the excerpt’s center (i.e. t=33) exceeded an activation threshold τi. The activation threshold τi was
set to be equal to the 95th percentile of the distribution of coefficients si,t, estimated using the entire
dataset. The coefficient map excerpts selected in this way were averaged to obtain the conditional
activation matrix S. We note that one justification for using the mean conditional activation as a measure
of dependence is that the features were learned assuming an exponential prior on the coefficients, whose
scale parameter is fully captured by the empirical average.

Marginal kernel activations were computed by averaging the corpus encodings across time and sam-
ples, resulting in a vector vi of average activations of each kernel ϕi. This vector was then concatenated
65 times to create a marginal activation matrix M (since the marginal activation by definition does not
depend on time).

Association strength matrices for each kernel ϕi were then computed by taking the logarithm of the
element-wise ratio of the corresponding conditional activation map S and the marginal activation map
M . This procedure was followed for each of the 10 feature dictionaries, yielding 10 different tensors.

One interpretation of this ratio is that it compares the expected co-activation of a feature with another
when they are generated by the same source vs. when they are generated by different sources. This
interpretation assumes that different sources are independent, such that the distribution of a feature
conditioned on another being active is just that feature’s marginal distribution. Another interpretation is
that the ratio serves to normalize the conditional activation of a feature by its mean activation, so that
the quantity can be compared across features that have different average activations.

Computing cues
Onset/offset detection

The onset of each STK was computed from the mean across frequency channels of the subband tem-
poral envelopes composing its cochleagram. Onset time was defined as the first time point (measured
from the beginning of the kernel) at which the envelope exceeded 5% of its maximal value. Analogously,
offset time was defined as the time point where the envelope dropped below the 5% threshold of the
maximal value for the last time.

F0 extraction with YIN

Periodicity and fundamental frequency of each kernel were computed using the YIN pitch tracking al-
gorithm [74] applied to a waveform representation of the kernel (see below for details of cochleagram-
to-waveform inversion method). We analyzed F0 differences only among kernels with an aperiodicity
index below 0.2.

Stimulus generation - cochleagram inversion
Stimulus waveforms were generated from cochleagrams via an iterative inversion procedure. The wave-
form was initialized with white noise. Each iteration consisted of the following steps:

1. Generate subband decomposition of waveform using cochlear filterbank.

2. Divide out Hilbert envelopes of eachwaveform subbands andmultiply by the corresponding cochlea-
gram envelope.

3. Refilter the modified subbands and sum to yield a new waveform

These steps were repeated 20 times. Iteration was necessary because step 3 altered the subband
envelopes, partially undoing the effect of step 2. Over time the resulting waveform converged to a state
in which the subband envelopes were close to the desired values.

Learning grouping cues through discriminative model training
The purpose of the discriminative model was to learn acoustic properties that were predictive of the
co-occurrence of STK pairs in the training corpus. We quantified acoustic properties with linear tem-
plates in the time-frequency and modulation planes (the two most common domains in which to analyze
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sound). The discriminative model learned templates in the time-frequency and modulation domains (θSi
and θMj respectively) whose dot-product with an STK was similar for frequently co-occurring STKs, but
different for non-co-occurring STKs. A grouping cue was thus operationalized as the absolute value of
the difference in template projections between two sounds in one of the two domains:

cuei(x1, x2) =
∣∣∣θTi x1 − θTi x2

∣∣∣ (3)

where T denotes the transposition operator. Although the model was trained using STKs, it could be
applied to an arbitrary pair of sounds, which we denote x1, x2.

For each pair of kernels, represented in the spectrotemporal and modulation domains (xS
1 , x

S
2 and

xM
1 , xM

2 respectively), the following sum across all cues was computed:

S(x1, x2) =
N∑
i

∣∣∣(θSi )TxS
1 − (θSi )

TxS
2

∣∣∣+ K∑
j

∣∣∣(θMj )TxM
1 − (θMj )TxM

2

∣∣∣ (4)

where each term in each of the sums is a value of a cue corresponding to a particular template. The
probability of the two sounds being non-co-occurring in the training set was then computed by applying
a logistic nonlinearity to S(x1, x2):

p(C = mixture|S(x1, x2)) =
1

(1 + exp(−(S(x1, x2) + β)))
(5)

Cues were learned in a greedy fashion. First, the total desired number of cues was chosen (here,N+
K = 4, chosen because this number was found empirically to produce good discrimination performance,
but was not so large as to preclude inspection of individual cues). Adding additional cues only marginally
improved discrimination performance (4 cues yielded 81% correct, 12 cues gave 82%, and 16 cues gave
83.5%). The sub-ceiling asymptotic performance presumably reflects limitations of linear cues, which we
adopted to facilitate inspection rather than maximize discriminative performance. Nonlinear operations
are likely needed to fully capture some quantities that are important for grouping, and to maximize
discrimination. Nonlinear cues could in principle be explored using a similar framework, but would likely
be more challenging to interpret.

During each iteration a new cue template was learned in the time-frequency domain, and another
one in the modulation domain. These cue templates were learned by maximizing the log-likelihood of
the data via gradient descent. In the next step, the cue template (either time-frequency- or modulation-
based) that increased the data log-likelihood by the largest amount was retained and incorporated into
the cue basis. The other cue was discarded. These steps were iterated until the total desired number
of cues was learned. Cue templates within each domain were constrained to be mutually orthogonal.

To create the training dataset, we combined co-occurring and non-co-occurring STK pairs corre-
sponding to positive and negative entries within the co-occurrence tensor respectively. From individual
co-occurrence matrices corresponding to each STK, we selected STK pairs corresponding to the highest
positive 512 entries and the lowest negative 512 entries. Since each matrix consists of 5200 entries, this
approximately corresponded to the upper and lower 10% of entries within each co-occurrence matrix. To
facilitate learning, templates were learned in a lower dimensional subspace. The dimensionality of the
time-frequency feature representations was reduced with principle components analysis to 32 dimen-
sions. These 32 dimensions accounted for 72% of the variance across features. The dimensionality of
features in the modulation domain was reduced to 16 dimensions, accounting for 99% of variance. We
experimented with different numbers of PCs and these settings produced the best convergence out of
those that we tried. Once learned, the templates were projected back to the stimulus space for display
purposes.

Perceptual experiments
All experiments were approved by the Committee on the use of Humans as Experimental Subjects
at the Massachusetts Institute of Technology, and were conducted with the informed consent of the
participants.

General setting

With the exception of Experiment 6 (streaming of STK sequences), each experiment followed the same
2-AFC design. During each trial participants heard two 0.16 second-long sounds separated by a 0.5

16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 3, 2019. ; https://doi.org/10.1101/539635doi: bioRxiv preprint 

https://doi.org/10.1101/539635
http://creativecommons.org/licenses/by-nd/4.0/


second-long silence period. Participants were asked to judge ”Which of the two sounds consisted of two
different sources”, and indicated their choice on the keyboard. Participants were allowed to listen to the
two stimuli as many times as they wished on each trial. All stimuli were presented at 70 dB SPL over
Sennheiser HD 280 Pro headphones, played out via a Mac Mini computer. A 20 ms Hanning window
was applied to the beginning and the end of each sound to prevent onset/offset transients.

Experiment 1 - Sensitivity to STK co-occurrence statistics

For each STK in each of the learned feature dictionaries we created co-occurring mixtures and non-co-
occurring mixtures by pairing it with other STKs. Because the distribution of the association strength
was both asymmetric about zero and variable in shape and extent across STKs, we used two criteria
to select the STK pairings. First, the pair had to have an association strength in the top 1% of all
positive association strength values (for the co-occurring mixtures) or in the bottom 5% of all negative
association strength values (for the non-co-occurring mixtures). Second, each STK could contribute
at most 9 mixtures of each type. These mixtures were chosen to be those that had maximal (for co-
occurring mixtures) or minimal (for non-co-occurring mixtures) association strength values subject to
the first constraint. Additionally, the mixtures were constrained to lie in the central temporal region of
the co-activation matrix of that STK (specifically, the entries within 25 ms of the center; see Experiment
6 for stimuli with more widely spaced features). Each value corresponded to a particular STK and time
offset, and the two STKs were superimposed with the designated time offset. In that way we could
obtain at most 9 × 80 × 10 = 7200 co-occurring STK mixtures and 7200 non-co-occurring mixtures.
The combination of the selection constraints with the empirical distributions of association strengths
resulted in 7156 co-occurring STK mixtures and 2775 non-co-occurring mixtures.

On each trial one mixture (superposition) of co-occurring STKs and one of non-co-occurring STKs
were selected at random. A response was considered correct if a participant selected the interval con-
taining the non-co-occurring STKs. Participants completed 100 trials with STK mixtures derived from
natural sounds statistics.

In a separate block, we tested participants’ ability to discriminate individual natural sound sources
from mixtures thereof. Using the sounds used to train the STKs, we generated 100 random excerpts
of individual sources (speakers and instruments) and 100 mixtures of two random excerpts (speakers
and/or instruments). Each excerpt had a duration equal to that of an individual STK. Participants com-
pleted 100 trials with these natural stimuli. Performance on the odd-numbered trials was used to select
participants (to eliminate participants who might have misunderstood the task, or who might not have
been motivated, as described below in the Participants section), and was then discarded. Only the
even-numbered trials were used for the analyses in the paper, to avoid errors of non-independence.

Experiment 2 - Sensitivity to coactivation strength in artificial sounds

The experiment was identical to Experiment 1 except that a condition with stimuli derived from co-
occurrence statistics of a corpus of artificial sounds was substituted for the speech/instrument condition.
Artificial sound textures were synthesized to match a set of statistics measured in speech. Specifically,
we used the synthesis algorithm of McDermott and Simoncelli [30], imposing the marginal statistics
(mean and variance) of cochlear filter envelopes and the power in each of a set of modulation filters
applied to the cochlear envelopes. These statistics were chosen to create stimuli with naturalistic spec-
tra and modulation content, so that they would be well described by the feature set learned from nat-
ural sounds, but to otherwise lack the statistical dependencies present in natural sounds. Statistics
were measured and imposed using an auditory model identical to that described in the original publi-
cation [30] except that the cochlear filterbank parameters were changed to those used to generate the
cochleagrams from which co-occurrence statistics were measured. We generated 600 excerpts of such
textures, each 6 seconds long. Each excerpt had statistics matched to a unique, random combination
of 20 sentences from the TIMIT database. Each sound was split into two 3 second excerpts. These
excerpts were then encoded using the feature dictionaries learned from speech and instruments, and
experimental stimuli were derived using the same procedure as for condition 1 of Experiment 1. The
other experimental condition was identical to condition 1 of Experiment 1.
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Experiment 3 - Sensitivity to coactivation strength

The experiment was identical to Experiment 1 except that there were three conditions, differentiated
by the magnitude of the difference in association strength between co-occurring and non-co-occurring
STK pairs. Co-occurring STK pairs were drawn from the following association strength intervals: [2,
10] (condition 1), [1, 1.2] (condition 2), [0, 0.2] (condition 3). Non-co-occurring STK pairs were drawn
from the following intervals [-10, -2] (condition 1), [-1.2, -1] (condition 2), [-0.2, 0] (condition 3). These
intervals were selected to approximately uniformly span the range of values of the co-activation tensor
entries. In a manner analogous to Experiment 1, for each of the three conditions we generated up to 9
co-occurring stimulus mixtures and 9 non-co-occurring mixtures per STK, randomly sampled from the
interval.

During the experiment participants completed 70 trials from each class (210 trials in total) in a random
order.

Experiment 4 - Sensitivity to individual learned cues

Stimuli were selected from an initial set of 50,000 STK mixtures consisting of pairs of STKs randomly
drawn from 10 learned dictionaries, at random time offsets within the [0, 50] ms range. We computed
cue values for each STK mixture (the absolute value of the difference in the template dot-products with
each STK in the mixture), and for each of the cues, we computed two thresholds: the cue value at the
20th percentile of the cue values within the initial set of 50,000 random STK pairs (the low threshold),
and the cue value at the 80th percentile (the high threshold).

There was one experimental condition per cue, and each trial for a condition presented two STK pairs
with either high or low values of the cue. The low-value STK pairs were selected to yield cue values that
were smaller than the respective low thresholds for each cue. High-value STK pairs were selected to
yield a cue value above the high threshold for that cue, while simultaneously having values of all other
cues that fell below their respective low thresholds. On each trial a participant heard one low-value and
one high-value STK mixture in random order.

During the experiment participants completed 80 trials per condition (320 trials in total). The trials
occurred in random order.

Experiment 5 - Human agreement with discriminative model decitions

To identify stimulus mixtures classified by the discriminative model as generated by either one or two
sources, we first generated 50,000 random pairs of sounds (described for each stimulus type below). We
then used the discriminative model to compute the probability of each pair being generated by different
sources. We selected the 200 pairs generating the highest probability value and the 200 pairs generating
the lowest probability value, and on each trial presented one of each in random order.

The experiment consisted of three blocks, randomly ordered. In each block participants completed
100 trials from each of the following stimulus classes:

1. STK mixtures. Each of the two sounds in the mixture corresponded to one of the STKs (drawn
from the 10 learned dictionaries).

2. Modulated noise (spectrotemporal blobs).
Each of the two sounds in the mixture was a sample of modulated noise generated using a Gaus-
sian process over the cochleagram. The covariance matrix of the Gaussian process was designed
to generate stimuli that were localized and smooth in the cochleagram domain (see below). Each
stimulus was randomly drawn as a 40 x 40 pixel shape, subsequently embedded at a random
position on the time-frequency plane of the cochleagram (which spanned a time range of [0, 160]
ms and a frequency range of [0.02, 8] kHz). Stimuli were thus 160 ms in duration.
The covariance function for each pair of cochleagram pixels c1, c2 had the following general form:
cov(c1, c2) = exp(−d(c1,c2)

(2∗σ2) ), where σ parameter was set to 10. The distance function d(c1, c2) had
the following form d(c1, c2) =

√
(a(c1,t − c2,t)

2 + b(c1,f − c2,f )
2), where a and b are parameters

controlling the strength of covariance in the temporal and frequency dimension.
To generate a diverse set of stimuli spanning a wide range of spectral and temporal modulation,
we used three settings of a and b parameters:
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(a) a = 1, b = 1 - these values generated oval-like spectrotemporal shapes
(b) a = 0.1, b = 1 - these values generated temporally elongated, frequency localized, harmonic-

like shapes
(c) a = 1, b = 0.1 - these values generated frequency elongated, time-localized, click-like shapes

During stimulus generation, one of these parameter settings was selected randomly with equal
probability to generate a sound. We generated a total of 512 sounds which were randomly com-
bined into 50000 pairs.

3. Mixtures of apertured speech.
Each of the two sounds in a mixture was generated as follows. We randomly drew 160 ms long
excerpts of speech from the TIMIT corpus. Each sample was bandpass filtered and time-windowed
to isolate a local patch within the time-frequency plane. We found that this produced stimuli yielding
above-chance performance on our task, unlike mixtures of full speech excerpts, which human
listeners almost never mistook for a single source. Filtering was performed with a Butterworth filter
whose bandwidth was randomly selected to be between 1 and 3 octaves. The lower cutoff of the
filter was a random point along the logarithmic frequency axis, constrained to no be more than the
Nyquist limit minus the filter bandwidth. After filtering, the waveform of each excerpt was multiplied
by a Gaussian window centered at a random position along the excerpt (generated by Matlab
function gausswin). The width of the window was controlled by a width parameter proportional to
the reciprocal of the standard deviation. The value of the width parameter was randomly drawn
from the [1.5, 4] interval with uniform probability.

Experiment 6 - Streaming of STK sequences

Stimulus generation
The stimuli on a trial consisted of a reference sequence paired with a second sequence generated
to contain elements that would have either high or low association strength with the elements of the
reference sequence. The features within each sequence were spaced further apart in time than those
in Experiments 1-5 (75 ms compared to an upper limit of 25 ms in Experiments 1-5).

We generated the STK reference sequence probabilistically using the STK association strength ten-
sor. To generate a sequence, we first chose the first STK in the sequence (each STK was used as
the starting STK the same number of times). In the next step we selected a column of the coactivation
strengthmatrix for the first STK corresponding to the desired temporal spacing of the STK to-be-sampled.
We used that column to select the next STK in the sequence. To make this choice probabilistic, we trans-
formed this column of coactivation strength values using the softmax transform:

p(i) =
exp

(
Li,t+∆t

)∑
j exp

(
Lj,t+∆t

) (6)

where Li,t denotes entries of the association strength tensor. The softmax transform generated a
discrete probability distribution over the STKs, in which STKs of highest positive association strengths
were assigned highest probabilities. STKs with negative association strengths were assigned lowest
probabilities. An STK was sampled from the resulting distribution, and this step was iterated to obtain a
sequence of the desired length.

The softmax transform is controlled by the ”temperature” parameter β. If β = 0, the probability
mass was equal to 0 for all STKs except for the most strongly associated STK, hence the choice was
deterministic. For large β values (β → ∞), the distribution over STKs became uniform, and all STKs
were equally likely regardless of their association strength. The temperature parameter enabled us to
generate sequences with varying degrees of randomness.

Sequences of STKs were therefore parametrized by three parameters: the total number of STKs,
the temporal spacing of consecutive STKs within a stream, and the temperature parameter controlling
the degree of randomness of each stream. All stimuli used here were 4 seconds long (54 STKs). The
temporal distance between STKs was set to 75 ms, and the temperature parameter was set to 0.1.

Additionally, to quantify the extent to which the STKs of a sequence should group with each other,
we computed the average association strength between consecutive STKs. We refer to this quantity as
the ”stream coherence”.
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For each reference sequence, we generated associated sequences which were either likely or un-
likely to co-occur with the reference sequence. We did this by selecting subsets of STKs of either high or
low average association strength with the reference sequence. We first computed a weighted average
of all columns of the STK tensor used to generate a given sequence. Each column was weighted by
the number of occurrences of the corresponding STK in the reference sequence. The resulting average
vector had the largest positive values assigned to STKs which were strongly co-activated (on average)
with STKs in the stream. The smallest, negative values corresponded to STKs with smallest association
strength. We used that average vector to select the 20 most strongly coactivated STKs, or the 20 least
strongly coactivated STKs. We then generated sequences in the same way as the reference sequence,
only using the selected STKs.

We generated stimuli using a single, randomly chosen STK dictionary. For each of the STKs in the
dictionary, we generated 20 random reference sequences with that STK as the first sequence feature,
using the procedure described above. For each reference sequence we then generated a co-occurring
sequence and a non-co-occurring sequence and added them to the reference sequence, creating two
mixtures. This resulted in 20x80=1600 co-occurring sequence mixtures and 1600 non-co-occurring se-
quence mixtures. We found empirically that non-co-occurring sequences had smaller average stream
coherence than co-occurring sequences. To eliminate this difference we selected only the STK se-
quence mixtures for which the associated co-occurring or non-co-occurring sequences had a stream
coherence falling within the interval [0.9, 1.1]. The final stimulus set consisted of 121 co-occurring
sequence mixtures and 246 non-co-occurring sequence mixtures, whose associated sequences had
approximately the same coherence on average (1.002 and 0.998, respectively). The average stream
coherence of the two types of mixtures differed, as intended (1.55 and 0.05 respectively).

Experimental procedure
The experiment consisted of 2 blocks of 50 trials. On each trial a participant heard a 4 second-long mix-
ture of a reference stream with either a co-occurring stream or a non-co-occurring stream. Participants
judged whether they heard a single source changing in time, or a mixture of two sources. Participants
could listen to the stimuli repeatedly if they desired.

Participants

Experiments 1, 3, 4, 5 used the same set of 15 participants (8 female, mean age = 25.5, SD = 11.4)
who performed the experiments in random order. To ensure task comprehension and motivation, these
participants were selected from a larger group of 26 as those who exceeded 90% correct on the speech
and instrument condition of Experiment 1. So that we could also measure their performance on this
condition without bias from double-dipping, we selected participants using their performance on the odd-
numbered trials from this condition, and then analyzed and displayed the performance of the selected
participants for the even-numbered trials.

Experiment 2 used a separate set of 15 participants (4 female,mean age = 35, SD = 12.23). To
ensure task comprehension and motivation, these participants were selected from a larger group of 23
as those who exceeded an average performance level of 55% correct across both conditions in the
experiment (the inclusion criterion was neutral with respect to the hypothesis that performance would
be different for natural and artificial co-occurrence statistics).

Experiment 6 used a separate set of 11 participants (6 female, mean age = 36.8, SD = 18.5).

Sample sizes

A power analysis performed on pilot data indicated that 14 participants would be needed to reliably
detect above-chance performance at the anticipated levels (80% correct; 1 - β = 0.8, α = 0.05). As
described above, we ran a larger number of participants and selected those that performed best on
speech mixture discrimination, yielding an N of 15 (11 for Experiment 6, which was somewhat easier
than the other experiments).

Statistics

t tests were used to test for differences in performance between conditions or for differences from chance
levels. There was generally one or two such comparisons per experiment, so no correction for multiple
comparisons was employed. A repeated-measures ANOVA was used to test for differences among
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multiple conditions in Experiment 3. Mauchly’s test indicated that the sphericity assumption was violated,
and so we report the Greenhouse-Geisser correction. Data distributions were assumed to be normal
and were evaluated as such by eye.
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