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 3 

Abstract 1 

Deep learning algorithms have been successfully used in medical image classification and 2 

cancer detection. In the next stage, the technology of acquiring explainable knowledge from 3 

medical images is highly desired. Herein, fully automated acquisition of explainable features 4 

from annotation-free histopathological images is achieved via revealing statistical distortions 5 

in datasets by introducing the way of pathologists’ examination into a set of deep neural 6 

networks. As validation, we compared the prediction accuracy of prostate cancer recurrence 7 

using our algorithm-generated features with that of diagnosis by an expert pathologist using 8 

established criteria on 13,188 whole-mount pathology images. Our method found not only the 9 

findings established by humans but also features that have not been recognized so far, and 10 

showed higher accuracy than human in prognostic prediction. This study provides a new field 11 

to the deep learning approach as a novel tool for discovering uncharted knowledge, leading to 12 

effective treatments and drug discovery. 13 

 (149/ 150 word)  14 
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Trained on massive amounts of annotated data, deep learning algorithms have been 1 

successfully used in medical image classification and cancer detection. Esteva et al. 2 

successfully used a deep neural network to categorize fine-grained images of skin tumors, 3 

including malignant melanomas, at a dermatologist level1. Fauw et al. detected a range of sight-4 

threatening retinal diseases as efficiently as an expert ophthalmologist, even on a clinically 5 

heterogeneous set of three-dimensional optical coherence tomographs (OCTs)2. Chilamkurthy 6 

et al. retrospectively collected a large annotated dataset of head computed tomography (CT) 7 

and evaluated the potential of deep learning algorithm to identify critical findings on CT 8 

images3. Bejnordi et al. evaluated the performance of deep learning algorithms submitted as 9 

part of a challenge competition and found that the performance of the high-ranking algorithm 10 

was comparable to that of pathologists in the detection of breast cancer metastases in 11 

histopathological tissue sections of lymph nodes4. Currently, machine learning-enhanced 12 

hardware is also being developed. Google has announced the development of an augmented 13 

reality microscope based on deep learning algorithms to assist pathologists5. However, 14 

automated acquiring explainable knowledge from medical images has not been uncharted.  15 

Pathological examinations are used to provide definitive diagnoses and are one of the most 16 

reliable examinations in current cancer medicine6, but the diagnostic pathology knowledge and 17 

skills needed can only be acquired by completing a long fellowship program7. Although 18 

machine learning-driven histopathological image analysis4,8,9 is an attractive tool to assist 19 
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doctors, it faces two significant hurdles: the need for explainable analyses to gain clinical 1 

approval and the tremendous amount of information in histopathological images8,10. Acquiring 2 

explainable knowledge from medical images is imperative for medicine. Furthermore, there are 3 

substantial size differences between histopathological images and other medical images1-3,11,12. 4 

A pathology slide contains large number of cells and the image consists of as many as tens of 5 

billion pixels8. 6 

We aimed to develop a new method to acquire explainable features from annotation-free 7 

histopathological images and assessed the prediction accuracy of prostate cancer recurrence 8 

using our algorithm-generated features by comparison with that of human-established cancer 9 

criteria, the Gleason score by an expert in the diagnosis of prostate cancer. 10 

  11 
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Results 1 

First, we have developed a new method of generating key features that employs two 2 

different unsupervised deep neural networks (deep autoencoders13,14) at different 3 

magnifications and weighted non-hierarchical clustering15 (Fig. 1 and Supplementary Figures 4 

1 and 2). This takes histopathological images with over 10 billion pixel features and reduces 5 

them to only 100 clustered features with scores while retaining the images’ core information 6 

(Fig. 2). These clustered features can be effective for tasks such as predicting cancer recurrence, 7 

understanding the contributions of particular features and automatically annotating images. In 8 

the key feature generation dataset, short-term biochemical recurrence (BCR) cases were 9 

considered positive purely based on the recurrence time for patients (the recurrence period 10 

range: 1.7–14.4 months). No direct information regarding cancer images was provided to deep 11 

neural networks. 12 

Next, we validated the accuracy of cancer recurrence prediction using deep learning-13 

generated features by comparing the predicted results with the Gleason score, one of the most 14 

crucial clinicopathological factors in the current prostate cancer practice16. The Gleason grading 15 

system defines five architectural growth patterns, which provides information on prostate 16 

cancer aggressiveness and facilitates patients’ appropriate care. As prostate cancer usually 17 

harbors two or more Gleason patterns, the sum of primary and secondary patterns yields the 18 

Gleason score. In this paper, all images’ Gleason score were evaluated by an expert 19 
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genitourinary (GU) pathologist, T. Tsuzuki (the second author).  1 

Our cohort included 1,007 patients with prostate cancers who received a radical 2 

prostatectomy, with a total of 13,188 whole-mount pathology slides. We excluded 115 cases 3 

involving neoadjuvant therapy and 7 cases involving adjuvant therapy as well as 43 cases who 4 

could not be followed up within 1 year because of hospital transfer or death due to other causes, 5 

thus leaving 842 cases for analysis. Table 1 summarizes the clinical characteristics of the study 6 

cohort. Cancer was more likely to recur in patients with higher prostate-specific antigen (PSA) 7 

levels (P < 0.001). It was more likely to recur in patients with a higher Gleason score (≥8) than 8 

in patients with a lower Gleason score (<8). Similar patterns were observed in 1-year and 5-9 

year recurrence rates. No significant differences existed in the average age, height, weight, or 10 

prostate weight between patients in whom cancer recurred and those in whom it did not. We 11 

categorized the data for 842 patients into the following two sets: 100 patients (100 whole-mount 12 

pathology images) were used to generate key features using the deep neural networks; and 742 13 

(9,816 images) were used to perform the BCR predictions using these features. We applied 14 

lasso17 and ridge18 regression analyses and a support vector machine (SVM)19 to the clustered 15 

features to predict the BCR of prostate cancer. We evaluated the areas under the receiver 16 

operating characteristic curves (AUCs) with a 95% confidence interval (CI) and receiver 17 

operating characteristic (ROC) curves20,21. Table 2 and Fig. 3 present the AUCs and ROC 18 

curves of BCR predicted using the deep learning-generated features and we compared these 19 
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values to the Gleason score. The AUC for BCR predictions by the deep neural networks within 1 

1 year was 0.82 (95% CI: 0.766–0.873), while the Gleason score was 0.744 (95% CI: 0.672–2 

0.816). Interestingly, combining both methods produced a more accurate BCR prediction [AUC, 3 

0.842 (95% CI: 0.788–0.896)] than either method alone. Likewise, the 5-year prediction 4 

accuracies were 0.721 (95% CI: 0.672–0.769; deep neural networks), 0.695 (95% CI: 0.639–5 

0.75; Gleason score), and 0.758 (95% CI: 0.71–0.806; combined). 6 

Then, we selected the images that were closest to each cluster’s centroid as being 7 

representative of the clustered features (Fig. 4). The expert GU pathologist (T. Tsuzuki) 8 

analyzed these images to search for pathological meanings (Table 3). In summary, the 9 

pathologist found that the deep neural networks appeared to have mastered the basic concept of 10 

the Gleason score, fully automatically, generating explainable key features that could be 11 

understood by pathologists. Furthermore, the deep neural networks identified the features of 12 

stroma in the noncancerous area as a prognostic factor, which typically have not been evaluated 13 

in prostate histopathological images. Fig. 5 and supplementary videos 1–2 show feature maps 14 

for a whole-mount pathology image as well as cell-level information about images; the 15 

predicted high-grade cancer regions are shaded in red, whereas normal ducts/low-grade cancer 16 

regions are shaded in blue. 17 

  18 
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Discussion 1 

We achieved fully automated acquisition of explainable features from histopathological 2 

images in the raw. Our method found not only the human-established findings but also 3 

previously-unrecognized pathological features, resulting in higher prediction accuracy of 4 

cancer recurrence than that of diagnosis performed by an expert pathologist using human-5 

established cancer criteria, the Gleason score. 6 

The Gleason score22 is a unique pathological grading system, purely based on architectural 7 

disorders, without considering cytological atypia. In this study, none of the cancer cells in the 8 

images identified by the deep neural networks as representative of high-grade cancer showed 9 

severe nuclear atypia or prominent nucleoli. Our results of the deep neural networks indicate 10 

that the central ideas behind Gleason’s grading system are sound. 11 

The most accurate BCR predictions was produced by combining the deep learning-12 

generated features and Gleason score, possibly because the automatically derived features 13 

included factors different from those used for the Gleason score, such as the surgical margin 14 

status. Various and complex factors are believed to be associated with BCR23,24. Interestingly, 15 

representative images of the features nominated by the deep neural networks comprised not 16 

only the human-established findings but also previously unspotlighted or neglected features of 17 

stroma at the noncancerous area. These findings indicate that the deep neural networks could 18 

explore unique features that could be underestimated or overlooked by a human.  19 
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In this study, the deep neural networks identified comprehensible key features from scratch. 1 

Silver et al. reported that the AlphaGo Zero25 program, which is solely based on reinforcement 2 

learning without any human knowledge inputs, could defeat their previous AlphaGo26 program, 3 

which conducted supervised learning using human expert moves. In this study, we demonstrated 4 

another algorithm that performs well, is based on deep autoencoders13,14, and does not need 5 

human knowledge. Hopefully, this algorithm will provide a novel tool for discovering new 6 

findings. In addition, our method can be applied to non-verbal information, such as that derived 7 

from the subjective experience of experts, as long as it is used to classify images. For example, 8 

data from patients with similar symptoms but unknown causes could be used to discover the 9 

key underlying factors, resulting in more effective treatments and the development of new 10 

medicines. We anticipate that our method will lead to the new design of clinical trials using 11 

deep learning and therapeutic strategies and will help reduce the workloads of busy physicians27.  12 

This study has some limitations. Our results are limited in that we did not perform 13 

validation in multiple centers. A clinical trial is required to determine whether our method is 14 

universally effective for improving the prediction accuracy and patient care in different areas. 15 

Nonetheless, our cohort was sufficiently large and provides reliable and robust results in one 16 

facility. Furthermore, we present detailed flowcharts and methods in this paper, and all 17 

processes are sufficiently described to enable independent replication, warranting evaluation 18 

using a larger global patient cohort. 19 
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Human and computer analyses have different strengths. Our deep learning approach 1 

analyses huge medical images broadly and without oversights or bias; a human pathologist 2 

analyses the disease more accurately and with a greater focus on medical importance. Each 3 

approach can, therefore, complement the other. Medicine aims to save patients, and both 4 

medical doctors and artificial intelligence (AI) systems can contribute to this goal. The more 5 

effectively and deeply medical experts can utilize AI systems, the more patients will benefit. 6 

Increasing collaboration between medical experts and informaticians will surely improve 7 

outcomes for patients. 8 

  9 
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Methods 1 

Subjects and Ethics 2 

This hospital-based cohort comprised all patients with prostate cancers who received a 3 

radical prostatectomy from April 2000 to December 2016 at the Nippon Medical School 4 

Hospital (N = 1,007). We collected whole-mount pathology slides and clinical data for all 5 

patients in this cohort. Of note, no patients were enrolled on clinical trials of radical 6 

prostatectomy. All patients were followed and checked for the BCR every 3 months 7 

postoperatively; the median follow-up duration was 72.8 months. We defined the BCR 8 

following radical prostatectomy based on the European Association of Urology guidelines of 9 

increasing PSA levels >0.2 ng/mL28. We excluded 115 cases involving neoadjuvant therapy and 10 

7 cases involving adjuvant therapy as well as 43 cases who could not be followed up within 1 11 

year because of hospital transfer or death due to other causes, thus leaving 842 cases for analysis. 12 

This research was approved by the Institutional Review Boards of the Nippon Medical School 13 

Hospital (reference 28-11-663) and RIKEN (reference Wako3 29-14), Japan. 14 

 15 

Datasets 16 

We categorized the data for 842 patients into the following two sets: 100 patients (100 17 

whole-mount pathology images) were used to generate key features using the deep neural 18 

networks; and 742 (9,816 images) were used to perform BCR predictions using these features. 19 
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We carefully ensured that no direct information regarding cancer concepts was provided to deep 1 

neural networks. In addition, histopathological images were not checked or annotated by 2 

pathologists before key feature generation was performed by the deep neural networks. In the 3 

key feature generation dataset, short-term BCR cases were considered positive purely based on 4 

the recurrence time for patients (the recurrence period range: 1.7–14.4 months). To avoid bias, 5 

we also used the same surgery year distribution to select negative cases. Of note, images that 6 

extended beyond the edge of the cover glass were not used for key feature generation. During 7 

the key feature generation process, we simply selected the largest available image in each 8 

patient, without checking whether any cancer was included. 9 

 10 

Statistical analysis 11 

We compared the characteristics of patients whose cancer did or did not recur within 1 and 12 

5 years postoperatively using the Fisher’s exact test for categorical data and the Wilcoxon rank-13 

sum test for continuous data (Table 1). All tests were two-tailed and were considered 14 

statistically significant if P < 0.05. All statistical analyses were performed using R, version 15 

3.4.4. 16 

 17 

Preparation of whole-mount pathology images 18 

Whole prostates were fixed in 10% formalin and embedded in paraffin. All samples were 19 
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sectioned at a thickness of 3 μm and stained with hematoxylin and eosin (H&E). All H&E-1 

stained slides were scanned by a whole-slide imaging scanner (Hamamatsu NanoZoomer S60 2 

Slide Scanner) with a 20× objective lens and were stored on a secure computer.  3 

 4 

Histological grading 5 

We classified prostate cancer histologically based on the International Society of 6 

Urological Pathologists (ISUP) classification criteria16. All slides were initially reviewed 7 

independently by two board-certified pathologists, and our conclusions were confirmed by an 8 

expert GU pathologist (T. Tsuzuki) without using clinical data, including the BCR. 9 

 10 

Key feature generation method 11 

The proposed method does not require human annotation for image classification and 12 

reveals statistical distortions in image datasets by employing multiple deep autoencoders at 13 

different magnifications and weighted nonhierarchical clustering. Supplementary Figures 1 14 

and 2 provide detailed algorithm flowcharts and descriptions of the autoencoder networks. 15 

Most previous methods include a region selection step, for example to extract or annotate the 16 

region of interest. In contrast, our method derives the key features directly from the whole 17 

image, without requiring such a step. It can be regarded as a type of dimensional reduction, 18 
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and was inspired by the step-by-step microscopic inspection process pathologists typically use 1 

for diagnosis.  2 

 3 

Step 1: We generated the key features from 100 whole-mount pathology images (100 4 

cases), taken at low magnification (25x). We divided each image (considered as an image data 5 

vector Si) into a set of small 128×128-pixel images Si,j using NDP.convert software 6 

(Hamamatsu Photonics K.K., version 2.0.7.0). We then applied a deep autoencoder we had 7 

developed for pathology images (Supplementary Figure 2) to each small image, clustering 8 

the 2048 intermediate-layer features to form 100 features by k-means clustering. Clusters that 9 

included white background areas without tissue were automatically removed. Next, we found 10 

the centroid of each cluster, and calculated a score ui,j,k for each feature based on the distance 11 

from each centroid di,j.k. Here, we applied the simplest possible scoring method, as follows: 12 

ui,j,k = 1 if k = argmink di,j.k and 0 otherwise (k = 1,2,…,100). 13 

Defining the total number of small images belonging to the positive and negative groups and 14 

npositive and nnegative, respectively, we defined the positive and negative degrees rpositive, k and 15 

rnegative, k for the kth feature as 16 

rpositive, k = Σ+ ui,j,k / npositive (k = 1,2, …,100), 17 

rnegative, k = Σ- ui,j,k / nnegative (k = 1,2,…,100), 18 
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where the sums Σ+ and Σ- are over all i,j pairs such that image Si,j belonged to the positive and 1 

negative groups, respectively. Finally, we defined the impact score Ik for the kth feature and 2 

the impact score Ii,j of image Si,j for this step as 3 

Ik = rpositive, k / (rpositive, k + rnegative, k) 4 

Ii,j = Σk Ik×ui,j,k. 5 

Step 1 corresponds to the way pathologists search low-magnification images. 6 

 7 

Step 2: Next, high-magnification (200x) images were analysed to reduce the number of 8 

misclassified low-magnification images. Here, 1024×1024-pixel images for each of the small 9 

images in Step 1, considered as image data vectors S'i,j, were divided into small 28×28 pixel 10 

images S'i,j,j'. A second deep autoencoder (Supplementary Figure 2) was then applied to each 11 

of these smaller images. The 1,568 intermediate-layer features v'i,j,j' were given scores u'i,j,j',k' 12 

based on the intensity values of each node. Again, we used the following simple scoring 13 

method: 14 

u'i,j,j',k' = 1 if k' = argmax k' v'i,j,j',k' and 0 otherwise (k' = 1,2,…,1568). 15 

Defining the total number of small images belonging to the positive and negative groups 16 

as n'positive and n'negative, we defined the positive and negative degrees r'positive, k' and r'negative, k' 17 

for the k'th feature as 18 

r'positive, k' = Σ+ u'i,j,j',k' / n'positive (k' = 1,2,…,1568), 19 
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r'negative, k' = Σ- u'i,j,j',k' / n'negative (k' = 1,2,…,1568), 1 

where the sums Σ+ and Σ-, analogously to those in Step 1, are over all i,j,j' such that the 2 

image S'i,j,j' belonged to the positive and negative groups, respectively. For this step, we 3 

defined the impact score I'i,j as 4 

I'i,j = Σj'Σk' (r'positive, k' / (r'positive, k' + r'negative, k'))×u'i,j,j',k' / m, 5 

where m denotes the total number of small images S'i,j,j' used for Si,j. 6 

Step 2 corresponds to the way pathologists confirm their findings at higher 7 

magnification. 8 

 9 

Step 3: Images that were frequently in the positive and negative groups had impact 10 

scores above and below 0.5, respectively, so we defined images with impact scores above and 11 

below 0.5 as having positive and negative characteristics, respectively. We then removed 12 

images whose characters, based on the impact scores in Steps 1 and 2, did not match. Finally, 13 

we used the total numbers of each clustered feature type for the subsequent predictions. 14 

 15 

AUC comparison 16 

To evaluate our approach, we predicted cancer recurrence using 9,816 whole-mount 17 

pathology images (742 cases), excluding 100 cases that were used for key feature generation. 18 

In particular, we assessed the potential of the 100 clustered features to predict the recurrence of 19 
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cancer within 1 or 5 years postoperatively using Lasso17 and Ridge18 regression and a support 1 

vector machine (SVM)19, all popular methods for building prediction models. In addition, we 2 

created prediction models based on the application of logistic regression to an ISUP grade group 3 

assessed on the basis of the Gleason score and similarly created models combining the 100 4 

clustered features with the grade. If multiple images were available for a given patient, we 5 

averaged each feature over all the images. To address the fact that the feature values were not 6 

evenly distributed amongst patients where cancer did and did not recur, we multiplied each 7 

feature value by 1 + | Ik –0.5| (see ‘Key feature generation method’ in the methods section), 8 

which augmented the predictive power of the models. We used 10-fold cross-validation29,30 to 9 

test the prediction models, randomly dividing the whole sample set in a 1:9 ratio, using one part 10 

for testing and the other nine parts for training. For each testing/training split, we used the AUC 11 

metric to assess the performance of trained prediction models on the test data20,21. We used R 12 

for the analysis, using the glmnet package (version 2.0.16) for Ridge and Lasso regression, the 13 

e1071 package (version 1.7.0) for the SVM, and the cvAUC package to evaluate the AUC with 14 

a CI. 15 

 16 

Data availability 17 

The clinical data used for the training and test sets were collected at the Nippon Medical 18 

School Hospital. This work and the collection of data was approved by the Institutional Review 19 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2019. ; https://doi.org/10.1101/539791doi: bioRxiv preprint 

https://doi.org/10.1101/539791


 19 

Boards of the Nippon Medical School Hospital. They are not publicly available, and restrictions 1 

apply to their use. 2 

  3 
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Figure legends 1 

Figure 1. Key feature generation method 2 

This approach was inspired by the way pathologists typically conduct diagnosis via step-by-3 

step microscopic inspection. 4 

Step 1: First, we divide a low-magnification pathology images into smaller images, then 5 

perform dimensionality reduction using a deep autoencoder followed by weighted non-6 

hierarchical clustering. This process reduces an image with over 10 billion-pixel features to 7 

only 100 clustered features with scores. (This step corresponds to the way pathologists search 8 

low-magnification images.) 9 

Step 2: Next, we analyse high-magnification images in order to reduce the number of 10 

misclassified low-magnification images. Again, we divide these into smaller images, before 11 

applying a second deep autoencoder and calculating average scores for the images. (This step 12 

corresponds to the way pathologists confirm their findings at a higher magnification.) 13 

Step 3: We remove images where the results of Steps 1 and 2 do not match. Finally, we use the 14 

total numbers of each type f clustered feature to make predictions. For example, to make cancer 15 

recurrence predictions, create human-understandable features or automatically annotate images. 16 

 17 

Figure 2. Examples of compressed images 18 

Whole-mount pathology images with >10 billion-pixel features were reduced to only 100 19 

clustered features, while retaining core image information. The color of each region indicates 20 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 4, 2019. ; https://doi.org/10.1101/539791doi: bioRxiv preprint 

https://doi.org/10.1101/539791


 21 

positive (red) and negative (blue) for characteristics detected. 1 

 2 

Figure 3. Receiver operating characteristic (ROC) curves for the biochemical recurrence 3 

(BCR) prediction 4 

Average ROC curves for the BCR prediction within one year (left) and BCR prediction within 5 

five years (right). The Gleason score (black solid line), Ridge (red dot line), Lasso (green dot 6 

line), support vector machine (SVM; blue dot line), Ridge + Gleason score (red solid line), 7 

Lasso + Gleason score (green solid line), SVM + Gleason score (blue solid line). 8 

 9 

Figure 4. Representative images of key features 10 

The top 10 images are closest to the centroids of the 100 clusters, with higher-ranking images 11 

being larger, in the (a) biochemical recurrence (BCR) group and (b) no BCR group (see also 12 

Table 3). (a) 1,2,4,5,6,8,9,10: Cancers equivalent to Gleason patterns 4 or 5, which usually 13 

indicate aggressive clinical behavior. 3: Dense stromal components without cancer cells. 7: 14 

Hemorrhage. (b) 6: Cancers equivalent to Gleason pattern 3, which usually indicates benign 15 

clinical behavior. 1,2,3,4,5,7,8,9: Loose stromal components without cancer cells. 10: Surgical 16 

margin without cancer cells. 17 

 18 

Figure 5. Automatically annotated whole-mount pathology image based on key features 19 

and cell-level information 20 
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Our method directly generates key features based on the whole image, without requiring a 1 

region selection step. Using the key features and cell-level information found by the deep neural 2 

networks we automatically annotated a whole-mount pathology image. Here we show an 3 

automatically annotated whole-mount pathology image (left), as well as a low-magnification 4 

image of the yellow region (upper right) and the associated high-magnification images (lower 5 

right). The regions with impact scores above and below 0.5 in Step 1 are shaded in red and blue, 6 

respectively. The indicated cell shows [number of clusters] [impact score, Step 1] [impact score, 7 

Step 2] (see ‘Key feature generation method’ in the methods section). 8 

  9 
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Supplementary Figure legends 1 

Supplementary Figure 1 | Algorithm Flowcharts. 2 

Supplementary Figure 2 | Networks of deep autoencoders. 3 

 4 

Supplementary Videos 1-2 5 

Video1.mp4  6 

Video2.mp4 7 

  8 
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Figures and Figure legends 

 

Figure 1. Key feature generation method 

This approach was inspired by the way pathologists typically conduct diagnosis via step-by-

step microscopic inspection. 

Step 1: First, we divide a low-magnification pathology images into smaller images, then 

perform dimensionality reduction using a deep autoencoder followed by weighted non-

hierarchical clustering. This process reduces an image with over 10 billion-pixel features to 

only 100 clustered features with scores. (This step corresponds to the way pathologists search 

low-magnification images.) 

Step 2: Next, we analyse high-magnification images in order to reduce the number of 

misclassified low-magnification images. Again, we divide these into smaller images, before 

applying a second deep autoencoder and calculating average scores for the images. (This step 

corresponds to the way pathologists confirm their findings at a higher magnification.) 

Step 3: We remove images where the results of Steps 1 and 2 do not match. Finally, we use the 

total numbers of each type f clustered feature to make predictions. For example, to make cancer 

recurrence predictions, create human-understandable features or automatically annotate images.  
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Figure 2. Examples of compressed images 

Whole-mount pathology images with >10 billion-pixel features were reduced to only 100 

clustered features, while retaining core image information. The color of each region indicates 

positive (red) and negative (blue) for characteristics detected. 
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Figure 3. Receiver operating characteristic (ROC) curves for the biochemical recurrence 

(BCR) prediction 

Average ROC curves for the BCR prediction within one year (left) and BCR prediction within 

five years (right). The Gleason score (black solid line), Ridge (red dot line), Lasso (green dot 

line), support vector machine (SVM; blue dot line), Ridge + Gleason score (red solid line), 

Lasso + Gleason score (green solid line), SVM + Gleason score (blue solid line). 
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Figure 4. Representative images of key features 

The top 10 images are closest to the centroids of the 100 clusters, with higher-ranking images 

being larger, in the (a) biochemical recurrence (BCR) group and (b) no BCR group (see also 

Table 3). (a) 1,2,4,5,6,8,9,10: Cancers equivalent to Gleason patterns 4 or 5, which usually 

indicate aggressive clinical behavior. 3: Dense stromal components without cancer cells. 7: 

Hemorrhage. (b) 6: Cancers equivalent to Gleason pattern 3, which usually indicates benign 

clinical behavior. 1,2,3,4,5,7,8,9: Loose stromal components without cancer cells. 10: Surgical 

margin without cancer cells. 
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Figure 5. Automatically annotated whole-mount pathology image based on key features 

and cell-level information 

Our method directly generates key features based on the whole image, without requiring a 

region selection step. Using the key features and cell-level information found by the deep neural 

networks we automatically annotated a whole-mount pathology image. Here we show an 

automatically annotated whole-mount pathology image (left), as well as a low-magnification 

image of the yellow region (upper right) and the associated high-magnification images (lower 

right). The regions with impact scores above and below 0.5 in Step 1 are shaded in red and blue, 

respectively. The indicated cell shows [number of clusters] [impact score, Step 1] [impact score, 

Step 2] (see ‘Key feature generation method’ in the methods section). 
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 BCR* (within 1 year) 

n=79 

No BCR* (within 1 year) 

n=763 

p value 

Mean age, years (SD, range) 66.84 (5.7, 53–76) 66.72 (6, 41–81) 0.94 

Mean height, cm (SD, range) 164.65 (6.96, 147–185) 165.85 (5.69, 150–194) 0.175 

Mean weight, kg (SD, range) 65.35 (10.47, 42–96) 65.02 (10.52, 40–193) 0.99 

Gleason score: <8, n/N (%) 

≥8, n/N (%) 

22/79 (28%) 

57/79 (72%) 

532/763 (70%) 

231/763 (30%) 

 

5.15 × 10–13 

Mean PSA**, ng/mL (SD, range) 24.53 (27.32, 4.3–165) 11.73 (15.21, 0.6–218.9) 1.08 × 10–13 

Mean prostate weight, g (SD, range) 49.22 (21.05, 11–142) 45.85 (16.94, 10–138) 0.06 

Clinical recurrence, n/N (%) 14/79 (18%) 9/763 (1%) 5.52 × 10–10 

 

 BCR* (within 5 years) 

n=184 

No BCR* (within 5 years) 

n=658 

p value 

Mean age, years (SD, range) 66.3 (6.06, 49–81) 66.85 (5.94, 41–79) 0.254 

Mean height, cm (SD, range) 165.54 (6.32, 147–185) 165.79 (5.69, 150–194) 0.607 

Mean weight, kg (SD, range) 66 (9.78, 42–103) 64.79 (10.69, 40–193) 0.254 

Gleason score: <8, n/N (%) 

≥8, n/N (%) 

71/184 (39%) 

113/184 (61%) 

483/658 (73%) 

175/658 (27%) 

 

1.02 × 10–17 

Mean PSA**, ng/mL (SD, range) 22.76 (29.47, 3–218.9) 10.18 (9.91, 0.6–132.3) 2.13 × 10–22 

Mean prostate weight, g (SD, range) 46.27 (18.95, 11–142) 46.14 (16.93, 10–132) 0.945 

Clinical recurrence, n/N (%) 22/184 (12%) 1/658 (0.2%) 1.96 × 10–14 

* Biochemical recurrence (BCR). 

** Prostate-specific antigen (PSA). 

Table 1. The clinical characteristics of the cohort 
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 BCR* (within 1 year) BCR* (within 5 years) 

Gleason score (pathologist) 0.744 [95% CI 0.672–0.816]  0.695 [95% CI 0.639–0.75]  

Ridge (automated) 0.801 [95% CI 0.748–0.854]  0.696 [95% CI 0.647–0.744] 

Lasso (automated) 0.804 [95% CI 0.749–0.86] 0.684 [95% CI 0.634–0.734] 

SVM (automated) 0.82 [95% CI 0.766–0.873] 0.721 [95% CI 0.672–0.769]  

Ridge + Gleason score 0.824 [95% CI 0.77–0.878] 0.732 [95% CI 0.684–0.78] 

Lasso + Gleason score 0.83 [95% CI 0.772–0.888]  0.735 [95% CI 0.688–0.783] 

SVM + Gleason score 0.842 [95% CI 0.788–0.896] 0.758 [95% CI 0.71–0.806] 

The reported values are averages with 95% confidence interval. The bold values are the best 

accuracy of lasso, ridge and SVM. 

*Biochemical recurrence (BCR). 

Table 2. AUC comparison 
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Comments on positive images 

1. Cancers showed Gleason patterns 4 or 5 indicating aggressive clinical behavior. 

2. Stromal component without cancer cells tended to show dense cellularity compared 

to those of normal structure. 

 

Comments on negative images 

1. Cancers showed Gleason pattern 3 indicating indolent clinical behavior. 

2. Stromal component without cancer cells tended to show relatively loose cellularity 

suggesting normal peripheral zone structure. 

3. Cauterized extraprostatic connective tissue without cancer cells, which indicate that 

the surgical margin is free from the cancer. 

Table 3. Expert genitourinary (GU) pathologist’s comments on figure 4. 
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