Brain-enriched coding and long non-coding RNA genes are overrepresented in recurrent autism spectrum disorder CNVs

Hamid Alinejad-Rokny ${ }^{1}$, Julian I.T. Heng ${ }^{1,2}$, Alistair R.R. Forrest ${ }^{1}$
${ }^{1}$ Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
${ }^{2}$ Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia

Correspondence to: HAR (h.alinejad@ieee.org) and ARRF (alistair.forrest@gmail.com)

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with substantial phenotypic and etiological heterogeneity. It is estimated that $10-20 \%$ of cases are due to copy number variations (CNVs). Here we apply a newly developed CNV association tool (SNATCNV) to reanalyse CNV data from 19,663 autistic and 6,479 control subjects from the AutDB database. We demonstrate that SNATCNV outperforms existing CNV association methods by finding smaller genomic regions that better discriminate cases and controls. By integrating data from the FANTOM5 expression atlas we show that both known ASD causal genes identified by the SFARI and MSSNG consortia and genes within the CNVs identified by SNATCNV have brain enriched expression patterns; both brain-enriched coding and long-noncoding RNA genes are over-represented. We provide full lists of these brain enriched coding and IncRNA genes as a resource to the research community. We also go on to show that each CNV region is associated with a distinct set of phenotypes, that some are sex biased and highlight one deleted region where a brain-enriched IncRNA is the only gene present. Our analyses identify 47 high confidence ASD associated CNV regions and identifies brain-enriched genes which underlie this neurodevelopmental disorder.

Keywords: Autism spectrum disorder, copy number variation, gene discovery, gene/IncRNA prioritization, brain enrichment.

Introduction

Autism spectrum disorder (ASD) is collectively used to describe a group of neurodevelopmental disorders with a spectrum of phenotypes including impaired social interaction, repetitive behaviours, learning and speech impediments. There is a strong genetic component to ASD with a recent study of familial risk estimating heritability at 83%, and suggesting the majority of ASD risk is attributable to genetic factors $(1,2)$. The types of genetic lesions that lead to ASD are heterogeneous, and range from highly penetrant single gene mutations and copy number variations (CNV), through to weakly penetrant risk alleles identified by GWAS (3). Of note, recent studies reported by the SFARI (4) and MSSNG (5) consortia have identified 98 recurrently mutated, highly penetrant ASD candidate coding genes. Further, an estimated $15-25 \%$ of cases are attributable to de novo mutations (3), the majority of which correspond to CNVs.

There are at least 14 independent CNVs that have been previously associated with ASD (6, 7). Several are associated with distinct phenotypes, for example, the Prader-Willi/Angelman syndrome region on 15q11-q13 (8) is associated with obesity and ASD, while 1 q21.1 is associated with intellectual disability (ID) and ASD; terminal deletions of 2 q and 22 q (9); and microdeletion and microduplication of 16p11.2 are associated with developmental delay (DD), ID and ASD (10). Despite the importance of CNVs to ASD causation, there remains a need to clarify what fraction of ASD is actually due to CNVs as estimates range greatly, from 10-20\% (11-13). Additionally to understand the causative genes within these CNV regions, improved methods are needed to focus on the critical regions most strongly associated with ASD and prioritise the (often hundreds of) genes contained within each.

Here we have applied a novel CNV association tool, SNATCNV (Single Nucleotide Association Test for CNVs) to a combined CNV dataset curated by the Simons Foundation Autism Research Initiative (SFARI) containing 19,663 autistic and 6,479 control samples from multiple published data sets (14). Benchmarking against PLINK
(15) showed that SNATCNV was able to identify smaller critical regions that better discriminate ASD cases from controls. Using the FANTOM5 (Functional Annotation of the Mammalian Genome 5) (16) CAGE associated transcriptome atlas we then show that critical regions identified by SNATCNV contain substantially more brainenriched coding and long-non-coding RNA genes than expected based on the genome-wide occurrence of these genes. Notably, such gene enrichment was not observed for regions identified by PLINK. Furthermore, we attribute distinct phenotypes and ontological traits to distinct ASD CNVs. To our knowledge, our results represent the first account of recurrent ASD associated CNV regions containing a significant overrepresentation of genes with nervous system enriched expression profiles.

We present a summary of the regions identified in our analysis, assessment of their novelty, candidate ASD associated coding and long-non-coding RNA genes within the regions, phenotypes associated with specific CNVs and validation of the identified regions in two independent cohorts of ASD patients. Our results show that these regions are enriched for brain-specific genes, and that specific gene ontology terms and phenotypes are associated with different regions. This highlights the spectrum of genetically diverse etiologies currently grouped together as ASD.

Results

Robust identification of ASD associated CNVs

To robustly identify recurrently deleted and duplicated regions significantly associated with ASD, we developed a novel tool called SNATCNV (Single Nucleotide Association Test CNV) and applied it to a cohort of 19,663 autistic and 6,479 non-autistic individuals (http://autism.mindspec.org/autdb; download date: July 2016). For every position in the genome, SNATCNV counts how often the nucleotide is either deleted or duplicated in the case and control CNVs. It then uses the onetailed Fisher's exact test (Supplementary figure S1) to determine whether the base is significantly more frequently duplicated or deleted in cases or controls. As an example of our output, Figure $\mathbf{1 a}$ and \mathbf{b} shows the distribution of P values for deletions and duplications in ASD found on chromosome 17, respectively. To identify
significant regions, we calculated P values for 500,000 random permutations of case/control labels to estimate the probability that an association emerges by chance (see Methods for further details). To filter for significant associations, users can specify a confidence interval based on random permutations (the dashed lines in Figure 1a and b show regions identified at the 95% and 99.9999% confidence intervals; also see Methods and Supplementary figures S2 and S3, Supplementary table S1).

To evaluate the performance of SNATCNV, we compared the regions identified across a range of confidence intervals to regions identified by the most commonly used CNV tool PLINK (15). Shown in Figure 1c-e, SNATCNV identified smaller regions that account for a significantly larger proportion of cases and significantly fewer controls than those identified by PLINK at all tested confidence intervals. At the most stringent threshold of 99.9999% C.I., 27% of ASD cases and 5.1% of controls overlap the identified regions thus the regions identified by SNATCNV are 5.3 fold more likely to be found in cases than controls. This is in comparison to only 2.2 fold for PLINK at its most stringent threshold.

Importantly, the regions identified in this cohort by SNATCNV explain a greater proportion of ASD case CNVs from two additional independent cohorts than those found by PLINK (Figure 1f - 1,441 additional ASD cases in the newest release of AutDB (6 Jun 2018) and Figure 1g-549 ASD cases contained within DECIPHER (Database of Chromosomal Imbalance and Phenotype in Humans Using ENSEMBL Resources; 1 Feb 2017) (17)).

We also compared SNATCNV performance against the next most commonly used CNV association tool ParseCNV (18). ParseCNV requires the input data be in PennCNV format therefore we used a CNV dataset provided on the ParseCNV website (http://parsecnv.sourceforge.net) in PennCNV format that includes 785 ASD cases and 1,110 control individuals. Here again, SNATCNV outperformed both PLINK and ParseCNV (Supplementary figure S4). For a detailed comparison of features and limitations of these and other CNV tools see Supplementary table S2.

Overrepresentation of brain-enriched genes in Autism associated CNV regions

Next, we focussed on 118 CNV regions identified by SNATCNV at the highest threshold of 99.9999% C.I., corresponding to 56 deleted and 62 duplicated regions, for further analysis of gene content. We used the FANTOM5 CAGE associated transcriptome (19) to identify 1,025 coding and 926 IncRNA genes contained within the 118 regions and examined their expression patterns across 347 sample types (Figure 2a). Hierarchical clustering of the genes based on their expression profiles revealed a substantial proportion of genes were highly expressed in the brain while smaller clusters of genes were highly expressed in blood, T-cells and tissues of the reproductive system.

To test whether the ASD associated CNV regions contained an overrepresentation of genes expressed in distinct tissues we next calculated the fraction of all coding and IncRNA genes in the genome with enriched expression in each tissue and compared the fractions to that observed within the CNV regions (see Methods and Supplementary table S3). Through this analysis, only brain-enriched genes were significantly overrepresented within ASD CNVs (Figure 2b, c and Supplementary table S3). We note, this enrichment was also observed when considering different sub structures of the brain. (Supplementary table S4).

Supporting the notion that brain-enriched genes are more likely to be causative in ASD we note that 64% of the ASD genes identified by SFARI and MSSNG are brainenriched by our criteria, this is well above the genome wide expectation of 35% (Figure 2b). In contrast the regions identified by PLINK and the two largest studies of ASD, intellectual disability and developmental delay to date, Coe et al. and Cooper et al. (20, 21), showed no such brain enrichment. Although enrichment of brain enriched genes in deleted regions has been observed by Pinto et al. (22), to our knowledge this is the first report of overrepresentation of brain-enriched genes in recurrently deleted and duplicated CNV regions associated with ASD. Further supporting our analyses, the CNV regions identified by SNATCNV contain an overrepresentation of homologs of coding genes that cause nervous system
phenotypes when mutated in the mouse
(http://www.informatics.jax.org/mp/annotations/MP:0003631, 12 June 2018) (Fig. 2c).

Brain-enriched coding genes within highly significant regions are associated with ASD specific biological processes and phenotypic ontologies

We next used WebGestalt (23) to investigate whether the 346 brain-enriched coding genes from the deleted and duplicated regions were associated with specific gene ontology (GO), human phenotype ontology (HPO) or disease terms (DisGeNet and GLAD4U) (24-26) (Supplementary table S5; all brain-enriched coding genes were used as a background). As expected, candidate genes in the CNV regions were more likely to be annotated with the ASD related disease ontology terms 'autism spectrum disorder', 'intellectual disability', 'speech disorders', 'Angelman syndrome', 'Prader-Willi syndrome' and 'Rett syndrome'. Similarly overrepresented human phenotype ontology terms included 'Autism' and 'Neurological speech impairment'. Interestingly the most common overrepresented gene ontology term for 19 genes was 'axon development', which is a key developmental process in the etiology of ASD (27). Together this supports the biological relevance of the CNV regions identified by SNATCNV.

Independent regions and dependent regions

Manual examination revealed some of the 118 regions were closely separated on the genome and were likely larger regions that were split by SNATCNV. This appears to be due to small regions of common CNV found in both the controls and cases which cause the P value to lose significance (see Supplementary figure S5 as an example). Given this observation we next examined the independence of each of the 118 regions.

For each region we removed all case and control samples that overlapped the region and then recalculated the P value for the remaining 117 regions. This was repeated for all 118 regions (see Supplementary figures $\mathbf{S 6}$ and 7 for P values after removal of deleted and duplicated regions, respectively). For 36 regions, removal of cases and controls found in any other region still yielded a significant P value (<0.002),
these we refer to as independent regions. For the remaining regions, 51 were removed as they lost significance when the cases and controls from the 36 independent regions were withheld. A further 31 corresponded to co-dependent scenarios where removal of all cases and controls from one region or another led to reciprocal lost significance. These 31 co-dependent regions were then merged into 11 superset independent regions (see Supplementary figure S8, Supplementary table S6). Thus we focus on 47 independent regions, comprising 36 non-merged independent regions and 11 independent merged superset regions (formed from 31 co-dependent regions) (Table 1). Note repeating the heatmap from Fig. 2a using the 1,649 genes contained within the 47 regions confirmed they are similarly enriched for brain genes (Supplementary figure S9).

Using a similar strategy to above we also tested whether the 118 significant regions were specific to individual cohorts, we removed case and controls from the five largest cohorts within AutDB and recalculated the P values for each region with the remainder of case and control samples. We repeated this analysis for each of the 5 cohorts separately. From this analysis we identified 12 regions that lost significance upon removal of one or more cohorts, which corresponds to 5 of the 47 independent regions mentioned above (Supplementary table S7). We suspect this is due to a reduction in power rather than a bias from a specific cohort as 9 of these lost significance by removal of the largest study (28) which itself is a collection of multiple geographically distinct cohorts.

Potential ASD causal genes in regions identified using SNATCNV

For each of the 47 independent regions we next carried out literature searches to determine whether they contained known ASD genes or overlapped CNVs previously associated with ASD or intellectual disability (summarised in Supplementary tables $\mathbf{S 8}$ and S9). As expected, many genes from these independent regions (e.g. NRXN1, GABRB3, MBD5, SHANK3, and MECP2) show association with ASD (29-32). In total, 17 regions contained at least one gene that is known to be mutated in non-CNV mediated ASD (34 known ASD genes in 17 regions). Comparison of the 47 independent regions with CNV regions in DECIPHER, SFARI and MSSNG confirmed 34 overlapped previously identified
syndromic/pathogenic regions with ASD-related neurodevelopmental phenotypes (e.g. autism, intellectual disability, delayed speech and language development, global developmental delay). Further systematic literature searches confirmed three of the remaining regions had strong evidence of ASD association (33-37) and a further seven were possibly associated with intellectual disability, but not specifically ASD (Supplementary table 9). Together this analysis highlights that the regions identified by SNATCNV are significantly associated with autism and intellectual disability.

For the 30 regions without a known causal gene we next asked whether any of the brain-enriched genes were strong candidates to cause ASD phenotypes. 22 of the 30 regions contained at least one brain-enriched coding gene (13 of them contained the human homologs of genes associated with mouse nervous system phenotypes). As an example, a deleted super region on chromosome 13 (chr13:111699708115085141) contains no known ASD gene. However, it contains 15 brain-enriched coding and 14 brain-enriched IncRNA genes. Of note, mutations in mouse orthologs of three of the brain-enriched coding genes (SOX1, ATP11A, GRK1) cause nervous system phenotypes. Similarly, independent region chr17:1038189-1673212 contains no known ASD genes but contains six brain-enriched coding genes and two brainenriched IncRNAs. Of these, mutations in mouse orthologs of four of the brainenriched coding genes (ABR, YWHAE, CRK, PITPNA) cause nervous system phenotypes. Interestingly, one of the remaining 8 regions (chr2:242930600243007359) lacks coding genes but does contain a novel brain-enriched IncRNA (ENSG00000237940), suggesting it may be important in ASD (Supplementary figure S10.

Chromosomal rearrangements in males and female ASD patients

Given the 4 -fold higher incidence of autism in males compared to females (38), we next examined the frequency of the 47 regions in a focused analysis on 8,083 cases (6,271 males and 1,812 females) and 2,741 control individuals (1,289 males and 1,452 females) where gender information was available. 22% of male and 37% of female cases had a CNV overlapping at least one of the 47 regions. When we
compared the ratios of cases to controls for males and females, we identified 2 regions that were at least 2 -fold more likely in male cases and 13 regions that were at least 2 -fold more likely in female cases (Table 2 and Supplementary table S10 for more details). While further analyses will be needed to confirm our results, we note that one of the male-biased regions (chr16:15248707-16292499) and one of the female-biased regions (chr17:16789275-18299275) that we identify have been previously reported as gender biased $(39,40)$.

Specific phenotypes associated with distinct regions of copy number variations

We next used the DECIPHER (17) database, containing detailed phenotypic information for over 12,795 patients with CNVs, to identify patient phenotypes specifically associated with each of the refined 47 SNATCNV-identified ASD CNV regions. Given that DECIPHER contains 1,360 patients annotated as autistic, 5,559 patients annotated with intellectual disability (637 both annotated as ASD and ID) and 6,513 patients with other phenotypes, we quantified the number of patients which overlapped each one of the 47 independent CNV regions and compared it to the total number of patients in DECIPHER annotated with distinct Human Phenotype Ontology (HPO) terms. At 95\% confidence interval 34 of the 47 super regions had at least one phenotypic term that was 2 -fold over-represented in DECIPHER patients with CNVs overlapping the region (Figure 3, Supplementary table S11).

The most commonly overrepresented terms were HP:0000729 autistic behaviour, HP:0001513 obesity and HP:0000750 delayed speech and language development, each found overrepresented in 5 of the SNATCNV-identified ASD CNV regions. The next most common terms were HP:0100543 cognitive impairment, HP:0001250 seizures, HP:0001252 muscular hypotonia, and HP:0000252 microcephaly. Of note, three regions had enrichment for both autistic behaviour and obesity. chr16:28822499-29052499 (16p11.2) has previously been associated with ASD and obesity (41) and chr15:23094431-29410239 (15q11-12), corresponds to the PraderWilli syndromic region (8). The remaining region, deletion of chr1:146113643147870095 (1q21.1-21.2) is not only associated with HP:0000729 autistic behaviour
and HP:0001513 obesity but also HP:0001636 tetralogy of fallot and HP:0000256 macrocephaly. Interestingly duplication of the overlapping region chr1:146113643147727385 is associated with the reciprocal phenotype HP:0000252 microcephaly (42), which could suggest dosage sensitivity of constituent genes within the loci. Three brain-enriched coding genes NBPF12, FMO5, BCL9 and two brain-enriched IncRNA genes lie within a region of overlap between the deleted and duplicated regions, implicating these as candidate genes in microcephaly and macrocephaly.

Of note, half of the CNV regions of interest (23/47) had only one overrepresented term. For example, HP:0004209 clinodactyly of the 5th finger was overrepresented in patients with deletion of chr15:30938215-32510863 (2.5-fold) while HP:0001631 atria septal defect was overrepresented for patients with deletions of chr8:1065759710695288 (24 fold). As another example, HP:0008064 ichthyosis was overrepresented in patients with deletion of chrX:6490000-7885155 (64-fold). Steroid sulfatase gene (STS) is the only brain-enriched gene in this region and it has been reported that X-linked ichthyosis caused by deletions or point mutations of the STS gene are associated with increased risk of ASD (43).

In addition to the identification of CNV regions associated with unique phenotypes we also found evidence of segmentation of single syndromic regions into multiple, distinct sub-loci defined by unique phenotypic traits. For example, three of our deleted regions overlap the known syndromic deletion region 16p11.2-p12.2. Note in the literature, sub-loci in this region have been previously described based on the presence of 5 distinct breakpoints (BP1-BP5 (44)). Two of the regions we identify, chr16:28822499-29052499 and chr16:29517499-30367499 correspond to BP2-BP3 and BP4-BP5 respectively, however chr16:21942499-22462224 is outside of BP1BP5 (see Supplementary figure S11). Examining the phenotypes we note, chr16:21942499-22462224 is associated with HP:0100543 cognitive impairment and HP:0000718 aggressive behaviour, chr16:28822499-29052499 is associated with HP:0000729 autistic behaviour and HP:0001513 obesity; and chr16:2951749930367499 is associated with HP:0001513 obesity and HP:0100543 cognitive impairment. Based on our analysis, SNATCNV is able to identify these as separate
regions and the DECIPHER analysis demonstrates they are associated with different phenotypes.

Taken together, our implementation of SNATCNV has led to the curation of ASD CNVs which are enriched in genes expressed in the nervous system, including IncRNAs; and that the diversity of phenotypic traits in ASD caused by CNVs can likely be defined by unique genomic signatures.

Discussion

We developed a new computational method, SNATCNV, to systematically analyse recurrent copy number variations and applied it to ASD. It equally can be applied to any genetic disease and disorder with sufficient cases and controls. SNATCNV more precisely identifies CNV regions, and more accurately discriminates cases from controls, thereby reducing the genomic search space for ASD and its causal genes. We applied SNATCNV to investigate 19,663 autistic and 6,479 healthy individuals and found 118 CNV regions that contain an overrepresentation of brain-enriched coding and IncRNA genes. The 118 regions were then further narrowed to 47 CNV super regions by merging co-dependent regions and removing co-deleted and coduplicated (dependent) regions. Of the 47 regions, 10 overlapped SFARI syndromic regions, 24 overlapped DECIPHER neurodevelopmental related syndromic regions (see methods), and 36 overlapped with regions previously associated with developmental delay (20, 21). Interestingly, 22 of the 47 regions overlapped with CNV regions recently identified in whole genome sequencing carried out by MSSNG (5). Our systematic literature search also revealed that 17 of the 47 regions contained at least one known ASD causal gene with recorded single gene mutations from MSSNG, SFARI and other studies. For some of these regions, we report additional ASD candidate genes, which based on their brain-enriched expression are more likely candidates. For example, in the duplicated region "chr22:1902000020308799", there are two genes where an association between rare variants and ASD (i.e. CLTCL1 (45), GNB1L (46)) have been made. However, neither of these are brain-enriched-and both are classified by SFARI gene as category 4 'Minimal Evidence' ASD candidate genes. We identify six brain-enriched coding genes in this region. Mutation of mouse orthologs of three of these (SEPT5, ZDHHC8, and RTN4R) cause nervous system phenotypes suggesting these genes are better potential candidates for this region.

Supporting this hypothesis that brain-enriched genes are more probable ASD casual genes than others we note that 63% of high-confidence ASD genes from MSSNG and SFARI consortiums are brain-enriched (Fig. 2b). Thus for the 29 regions without a known ASD causal gene we provide lists of brain-enriched ASD candidate genes for further investigation. As an example, in deleted region chr17:4370421744164182, we identify three brain-enriched coding genes MAPT, CRHR1 and KANSL1. All three cause nervous system phenotypes in mutant mice, and all three have been linked to neurological phenotypes in human (deletion of MAPT is associated with developmental delay and learning disability (47), CRHR1 controls stress-induced behavioural adaptations and is associated with mood disorders (48, 49) and KANSL1 deletion in 17q21.31 deletion syndrome is associated with intellectual disability, hypotonia and friendly behaviour (50)). It is interesting to hypothesize that loss of each individually may be insufficient to cause ASD but the loss of all three contributes to an ASD phenotype. Totally, we report 299 novel ASD candidate coding genes.

In addition to brain-enriched coding genes we also report for the first time to our knowledge, 266 novel recurrently duplicated or deleted ASD candidate IncRNAs, which are brain-enriched. Suggesting an importance in neurodevelopment, 94 are dynamically expressed in an induced pluripotent stem cell model of neuron differentiation (Supplementary table S8). We note that although IncRNAs that are differentially expressed in post mortem brain of ASD cases have been reported there is no evidence of them playing a role in ASD causation (51). In contrast the IncRNAs we identify here are in recurrent CNV regions, are brain-enriched and in the case of one IncRNA (ENSG00000237940) is the only gene in the region. This suggests that this IncRNA is the most likely ASD candidate gene for this region.

In establishing phenotypic associations for the 47 super CNV regions, our analysis using DECIPHER classification terms identified overrepresented traits including autistic behaviour, delayed speech and language, cognitive impairment and global developmental delay. For 34 of the 47 identified regions, at least one phenotype term
was over-represented (fold enrichment above 2). Of note the majority of these 34 regions had unique combinations of overrepresented phenotypes (40 combinations in total), thus we conclude that ASD CNV regions are associated with distinct clinical phenotypes. The observation of these combinations of additional phenotypes may assist in diagnosis of patients (e.g. obesity, microcephaly, macrocephaly, split hand). Importantly, for patients with a subset of these CNVs, genomic diagnosis will inform the clinician that these patients should be examined and potentially treated for associated co-morbidities such as renal cysts, atria septal defects and tetralogy of fallot.

In conclusion by application of a novel tool SNATCNV, integration of brain-enriched expression profiles from the FANTOM5 consortium and phenotypic information from DECIPHER we have annotated 47 recurrent CNV regions associated with ASD. Looking to the future, screening for these CNVs and single gene variants identified by the MSSNG and SFARI consortia using whole genome sequencing has the potential to provide a rapid and accurate genetic diagnosis for children with ASD. By knowing the genes and phenotypes associated with the region a personalised treatment plan can be developed that considers the specific phenotypes associated with their genomic lesion.

Materials and methods

Tool availability

The SNATCNV source code for both R and matlab versions, a sample dataset, and instructions on how to run SNATCNV are provided at https://github.com/hamidrokny/SNATCNV.

ASD and control data used in this study

For the region discovery, CNV data from 19,663 autistic patients (47,189 CNVs) and 6,479 normal individuals (24,888 CNVs) compiled from multiple large ASD CNV datasets (with different microarray versions and different 'individual-level' CNV callers) by the Simons Foundation Autism Research Initiative (SFARI) was downloaded (http://autism.mindspec.org/autdb; download date: July 2016).

For the validation cohorts, CNV data from i) 1,441 autistic patients were downloaded from the same source (download date July 2018), and ii) 549 autistic individuals were downloaded from DECIPHER (download date 1 Feb 2017; we excluded those individuals that were also annotated with intellectual disability, developmental delay, heart and muscular diseases). As CNVs from different studies were reported using different genome build versions (hg17, hg18, and hg19), we first converted all CNV coordinates to UCSC hg19 using UCSC Lift Genome Annotations tools (52) and confirmed the locations with NCBI remap tools (www.ncbi.nlm.nih.gov/genome/tools/remap). We excluded all CNVs smaller than 1kb or where there was no information provided about their genomic coordinates. In the sex specific analysis, we excluded those samples with no sex information.

Genome-wide association analysis using SNATCNV to identify significant regions

To identify regions that are significantly more often deleted or duplicated in autism patients than in phenotypically normal individuals, we counted, for every position in the genome, how often the base was either deleted or duplicated in the case and control CNVs. Fisher's exact test (Supplementary figure S7) was then used to determine whether the base was significantly more frequently observed in a duplicated or deleted region of cases or controls. To determine the significance of this association we then used permutation testing by randomising 500,000 permutations of case and control labels and for a range of observed CNV frequencies from 1-700 (min and max number of CNVs that overlapped any base in the original data). In each permutation, we randomly selected case/control labels and then estimated the probability of the observed associations using the Fisher's exact test. By performing this permutation 500,000 times and for CNV frequency 1-700, we could estimate the probability that an association at a given level of CNV frequency emerges by chance. From this we defined significant regions as those with P values better than 1.2e-08 (approaching 100\% confidence) (Supplementary figure S8). Note, due to the poor coverage of CNVs on chrY it was not included in the analysis.

PLINK and ParseCNV comparisons

Identical AutDB sample sets were run on both SNATCNV and PLINK version 1.07 (http://zzz.bwh.harvard.edu/plink/download.shtml). We used the burden-style methods in PLINK "-cnv-indiv-perm" with 50,000 permutations and the default options in PLINK, which returns one-sided empirical P values, assuming that the regions are more common in case individuals than in control individuals.

As ParseCNV requires input files in PennCNV format we were unable to use the same dataset as above. Consequently the ParseCNV comparison was run using a CNV dataset provided on the ParseCNV website (link to data: https://sourceforge.net/projects/parsecnv/files/TestDataParseCNV_Plink_AGRE_Ca seControl.tgz/download). CNV carrier frequencies between case and control individuals were compared using the one-tailed Fisher exact test and those regions with P value <0.05 considered as significant regions. Both SNATCNV and PLINK were run on this PennCNV format dataset for direct comparison (Supplementary figure S4).

Identification of genes with nervous system enriched expression

To determine whether a gene had nervous system enriched expression we first extracted its normalised expression profile from the FANTOM5 expression atlas (FANTOM5 (16) and FANTOMCAT (19)). We chose this resource as it contains expression profiles for both coding and long-non-coding RNA genes across 1,829 human samples, including 101 nervous system samples. For each gene we first ranked all 1,829 human FANTOM5 samples based on highest to lowest expression and then used Fisher's exact test to determine a P value indicating whether the top 101 samples with the highest expression were more likely to be nervous system samples or not.

To determine a threshold on the P value we carried out 50,000 permutations randomising the sample labels to determine P value thresholds at the 99% confidence interval; any gene with a P value better than this permutation-specific P value threshold, we consider a significantly nervous system-enriched gene (Supplementary table S3). The same strategy was used to identify genes with enriched expression in blood, muscle, and sub-regions of the brain. A list of all brainenriched genes is provided in Supplementary table S12.

Identification of genes with mouse nervous system phenotypes

Mouse genes with nervous system phenotypes were extracted from the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org; June $12^{\text {th }} 2018$) (53). Specifically HTML was parsed from the following pages covering, (i) Nervous system phenotype (MP:0003631) http://www.informatics.jax.org/mp/annotations/ MP:0003631, (ii) abnormal nervous system morphology (MP:0003632) http://www.informatics.jax.org/mp/annotations/MP:0003632 and (iii) abnormal nervous system physiology (MP:0003633) http://www.informatics.jax.org/mp/ annotations/MP:0003633. Mouse to human gene ortholog mappings were obtained from http://www.informatics.jax.org/downloads/reports/HGNC_homologene.rpt.

Gene ontology, disease ontology and human phenotype ontology analyses of nervous system enriched genes in the 118 regions in the brain candidate genes

We used the gene ontology analysis tool WebGestalt (54) to observe overrepresentation of gene ontology, disease ontology and human phenotype ontology terms annotations associated with our genes in the significant regions. Test gene set corresponded to all nervous system enriched coding genes found within the 118 regions. Background gene set corresponded to all nervous system enriched coding genes found in the entire genome. Default values for WebGestalt parameters were used.

DECIPHER analysis

Phenotypic information of patients with copy number variation were taken from the publicly available DECIPHER database (17), which contains phenotypic information of $\sim 13,000$ patients (including 1360 patients annotated as autistic and 5,559 patients annotated with intellectual disability). To assess whether a phenotype term was overrepresented for a specific region, we used 5,000 random permutations of the patientphenotype associations in DECIPHER. In order to keep the data structure of the CNVs, we needed to permute all the phenotypes of a given patient en bloc. It means
in each permutation, the patient details (e.g. CNV, sex) do not change but all the phenotypes will be changed. For each permutation, we had a new order of phenotype sets randomly matched to patient sets. By performing this permutation 5,000 times, we could estimate the fraction of patients with the same regionphenotype pair that emerges by chance. Because of the small number of samples in some regions, we only reported those region-phenotype term pairs that had a fraction more than the permutation-specific fraction and seen in at least 5% of patients with a minimum of 5 patients overlapping the region.

Annotation of known and putative novel ASD associated genes

All genes in the SNATCNV identified regions were first compared to the 96 known causal genes from MSSNG [5] and SFARI [4, 15] (Supplementary table S13). If a region contained one or more of these genes we considered it 'known'. For the remaining regions, we carried out a comprehensive literature search of all genes in the region. For the extended literature search, we specifically searched for "gene name + autism" or "gene name + ASD" (e.g. SAMD11 + autism or SAMD11 + ASD). We did this search for all coding genes in the 47 super regions. As a result, if a gene with a previous ASD casual association was identified it was labelled as 'known'.

Annotation of known and putative novel ASD associated CNVs

To investigate whether the regions we identified have been previously associated to ASD, we compared the regions identified by SNATCNV to the data from DECIPHER (17), SFARI [4, 15], MSSNG [5] and to the two largest CNV studies of Global developmental delay to date by Coe et al. [21] and Cooper et al. [22]. We also carried out a comprehensive literature search. As a result of our investigation, If the region completely overlap with a known ASD-associated CNV, it was labelled as "known CNV"; if the region contains a known ASD-associated CNV region (the known CNV was a subset of the region), it was labelled as "contains known CNV"; if the region was a subset of a known ASD-associated CNV, but smaller, it was labelled as "known CNV, but finer mapping", otherwise, it was labelled as "novel".

References

1. Yip BHK, Bai D, Mahjani B, Klei L, Pawitan Y, Hultman CM, et al. Heritable Variation, With Little or No Maternal Effect, Accounts for Recurrence Risk to Autism Spectrum Disorder in Sweden. Biol Psychiatry 2017.
2. Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The Heritability of Autism Spectrum Disorder. JAMA 2017; 318(12): 1182-4.
3. Ramaswami G, Geschwind DH. Genetics of autism spectrum disorder. Handbook of clinical neurology 2018; 147(2018): 321-9.
4. Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW, Iossifov I, et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. The American Journal of Human Genetics 2016; 98(1): 58-74.
5. Yuen RK, Merico D, Bookman M, Howe JL, Thiruvahindrapuram B, Patel RV, et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nature neuroscience 2017; 20(4): 602.
6. Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015; 87(6): 1215-33.
7. Torres F, Barbosa M, Maciel P. Recurrent copy number variations as risk factors for neurodevelopmental disorders: critical overview and analysis of clinical implications. Journal of medical genetics 2016; 53(2): 73-90.
8. Holland AJ, Whittington JE, Butler J, Webb T, Boer H, Clarke D. Behavioural phenotypes associated with specific genetic disorders: evidence from a population-based study of people with Prader-Willi syndrome. Psychological medicine 2003; 33(1): 141-53.
9. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Molecular psychiatry 2006; 11(1): 18-28.
10. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. The New England journal of medicine 2008; 358(7): 667-75.
11. Carter MT, Scherer SW. Autism spectrum disorder in the genetics clinic: a review. Clinical genetics 2013; 83(5): 399-407.
12. Scherer SW, Dawson G. Risk factors for autism: translating genomic discoveries into diagnostics. Human genetics 2011; 130(1): 123-48.
13. State MW, Levitt P. The conundrums of understanding genetic risks for autism spectrum disorders. Nature neuroscience 2011; 14(12): 1499-506.
14. Banerjee-Basu S, Packer A. SFARI Gene: an evolving database for the autism research community. Disease models \& mechanisms 2010; 3(3-4): 133-5.
15. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 2007; 81(3): 559-75.
16. Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Haberle V, et al. A promoter-level mammalian expression atlas. Nature 2014; 507(7493): 462-70.
17. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et aI. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. American journal of human genetics 2009; 84(4): 524-33.
18. Glessner JT, Li J, Hakonarson H. ParseCNV integrative copy number variation association software with quality tracking. Nucleic acids research 2013; 41(5): e64-e.
19. Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, et al. An atlas of human long non-coding RNAs with accurate 5' ends. Nature 2017; 543(7644): 199-204.
20. Coe BP, Witherspoon K, Rosenfeld JA, Van Bon BW, Vulto-van Silfhout AT, Bosco P, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature genetics 2014; 46(10): 1063-71.
21. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nature genetics 2011; 43(9): 838-46.
22. Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. The American Journal of Human Genetics 2014; 94(5): 677-94.
23. Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic acids research 2013; 41(Web Server issue): W77-83.
24. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 2000; 25(1): 25-9.
25. Kohler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Ayme S, et al. The Human Phenotype Ontology in 2017. Nucleic acids research 2017; 45(D1): D865-d76.
26. Pinero J, Bravo A, Queralt-Rosinach N, Gutierrez-Sacristan A, Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic acids research 2017; 45(D1): D833-d9.
27. McFadden K, Minshew N. Evidence for dysregulation of axonal growth and guidance in the etiology of ASD. Frontiers in human neuroscience 2013; 7: 671.
28. Kaminsky EB, Kaul V, Paschall J, Church DM, Bunke B, Kunig D, et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genetics in medicine 2011; 13(9): 777.
29. Adamo A, Atashpaz S, Germain PL, Zanella M, D'Agostino G, Albertin V, et al. 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nature genetics 2015; 47(2): 132-41.
30. Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nature reviews Neuroscience 2014; 15(4): 209-16.
31. Scott MM, Deneris ES. Making and breaking serotonin neurons and autism. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 2005; 23(2-3): 277-85.
32. Williams E, Manuel C, Andrew S, Hong L, Mengsheng Q. Transposable elements occur more frequently in autism-risk genes: implications for the role of genomic instability in autism. Translational Neuroscience 2013; 4(2): 172-202.
33. Glancy M, Barnicoat A, Vijeratnam R, de Souza S, Gilmore J, Huang S, et al. Transmitted duplication of 8 p23. 1-8p23. 2 associated with speech delay, autism and learning difficulties. European Journal of Human Genetics 2009; 17(1): 37.
34. Lukusa T, Vermeesch JR, Holvoet M, Fryns JP, Devriendt K. Deletion 2q37. 3 and autism: molecular cytogenetic mapping of the candidate region for autistic disorder. Genetic Counseling: Medical, Psychological, and Ethical Aspects 2004; 2004.
35. Mukaddes NM, Herguner S. Autistic disorder and 22q11. 2 duplication. The World Journal of Biological Psychiatry 2007; 8(2): 127-30.
36. Nucaro A, Pisano T, Chillotti I, Montaldo C, Pruna D. Chromosome 8p23. 2-pter: a critical region for mental retardation, autism and epilepsy? Clinical genetics 2011; 79(4): 394-5.
37. Lo-Castro A, Galasso C, Cerminara C, El-Malhany N, Benedetti S, Nardone AM, et al. Association of syndromic mental retardation and autism with 22q11. 2 duplication. Neuropediatrics 2009; 40(03): 137-40.
38. Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Current opinion in neurology 2013; 26(2): 146-53.
39. Nag HE, Nordgren A, Anderlid BM Nærland T. Reversed gender ratio of autism spectrum disorder in Smith-Magenis syndrome. Molecular autism 2018; 9(1):1.
40. Tropeano M, Ahn JW, Dobson RJ, Breen G, Rucker J, Dixit A, et al. Male-biased autosomal effect of 16p13. 11 copy number variation in neurodevelopmental disorders. PloS one 2013; 8(4): p.e61365.
41. Bachmann-Gagescu R, Mefford HC, Cowan C, Glew GM, Hing AV, Wallace S, et al. Recurrent 200-kb deletions of 16p11. 2 that include the SH2B1 gene are associated with developmental delay and obesity. Genetics in Medicine 2010; 12(10): 641.
42. Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, et al. Recurrent reciprocal 1q21. 1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nature genetics 2008; 40(12): 1466.
43. Kent L, Emerton J, Bhadravathi V, Weisblatt E, Pasco G, Willatt LR, et al. X linked ichthyosis (steroid sulphatase deficiency) is associated with increased risk of attention deficit hyperactivity disorder, autism and social communication deficits. Journal of medical genetics 2008; 45(8): 519-24.
44. Zufferey F, Sherr EH, Beckmann ND, Hanson E, Maillard AM, Hippolyte L, et al. A 600 kb deletion syndrome at 16 p 11.2 leads to energy imbalance and neuropsychiatric disorders. Journal of medical genetics 2012; 49(10): 660-8.
45. Chahrour MH, Timothy WY, Lim ET, Ataman B, Coulter ME, Hill RS, et al. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS genetics 2012; 8(4): e1002635.
46. Chen YZ, Matsushita M, Girirajan S, Lisowski M, Sun E, Sul Y, et al. Evidence for involvement of GNB1L in autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2012; 159(1): 61-71.
47. Vadiee AR, Gillis TP, Shannon EJ. Confirmation of a false-positive result associated with a competition inhibition assay used for detecting antibodies to a protein epitope of Mycobacterium leprae. Clinical \& Experimental Immunology 1990; 79(3): 397-402.
48. De Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nature reviews neuroscience 2005; 6(6): 463.
49. Wasserman D, Sokolowski, M, Rozanov V, Wasserman J. The CRHR1 gene: a marker for suicidality in depressed males exposed to low stress. Genes, Brain and Behavior 2008; 7(1): 14-9.
50. Zollino M, Orteschi D, Murdolo M, Lattante S, Battaglia D, Stefanini C, et al. Mutations in KANSL1 cause the 17q21. 31 microdeletion syndrome phenotype. Nature genetics 2012; 44(6): 636.
51. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, et al. Genomewide changes in IncRNA, splicing, and regional gene expression patterns in autism. Nature 2016; 540(7633): 423.
52. browser Ug. UCSC Lift Genome Annotations tools 2017 [Available from: www.genome.ucsc.edu/cgi-bin/hgLiftOver.
53. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA. The Mouse Genome Database (MGD): mouse biology and model systems. Nucleic acids research 2008; 36(Database issue): D724-8.
54. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic acids research 2017.

Author contributions

HAR and ARRF designed the study and wrote and edited the manuscript with help from JI-TH. HAR carried out all the analyses including the statistical analyses, region identification, text mining, gene prioritization, and gene ontology (with help from ARRF). JI-TH, HAR and ARRF curated the genes and regions.

HAR generated all figures and tables. All authors have read and approved of the final version of the paper.

Author information

The authors declare no competing financial interests.

Data availability

The SNATCNV source code and a sample dataset can be accessed at https://github.com/hamidrokny/SNATCNV. For more details about each parameter, please visit the github page.

Acknowledgements

This work was supported by a grant to $\mathrm{JI}-\mathrm{TH}$ and ARRF from the Telethon-Perth Children's Hospital Research Fund. ARRF and JI-TH are funded by grants from the National Health and Medical Research Council (Australia), and ARRF is supported by a Senior Cancer Research Fellowship from the Cancer Research Trust and funds raised by the Maca Ride to Conquer Cancer.

Tables:

Table 1. Brain enriched genes in the 47 recurrent CNV regions identified by SNATCNV analysis of the AutDB dataset (also see Supplementary table S9).

Locus	chromosomal coordinates (hg19)	type	\#case	\#control	P value	\#Brain-enriched / total		\#Mice neuro phenotype
						coding	lncRNA	
1p36.32	chr1:10001-10270615	Del	240	41	5.1E-06	52/155	42/152	16
1q21.1	chr1:146113643-147727385	Dup	192	12	2.6E-17	4/10	6/15	0
1q21.1	chr1:146113643-147870095	Del	244	14	6.2E-18	3/12	4/23	0
2q23.1	chr2:148669357-148995585	Del	50	1	$6.7 \mathrm{E}-06$	3/3	2/2	2
2q37.3	chr2:242930600-243007359	Del	63	1	$1.7 \mathrm{E}-07$	0	1/3	0
2p16.3	chr2:51105853-51359022	Del	160	12	$2.2 \mathrm{E}-10$	1/1	1/1	1
3q29	chr3:195745603-197355603	Del	73	3	5.9E-07	9/28	10/34	2
4q16.3	chr4:1705715-2073645	Del	75	0	2.6E-10	6/11	1/4	2
6p25.3	chr6:259528-339802	Del	91	0	$2.0 \mathrm{E}-12$	0/1	0/0	0
6 p 25.3	chr6:259528-339802	Dup	92	2	$2.1 \mathrm{E}-12$	0/1	0/0	0
7 q 11.23	chr7:72742064-74142064	Del	146	3	$1.5 \mathrm{E}-15$	8/26	8/25	6
7 q 11.23	chr7:72742064-74142064	Dup	108	5	$1.5 \mathrm{E}-11$	8/26	8/25	6
8 p 23.1	chr8:10657597-10695288	Del	45	0	2.7E-06	0/3	0/0	0
8 p 23.1	chr8:7268819-7366446*	Del	54	1	2.9E-06	0/3	0/0	0
8 p 23.1	chr8:7721060-7752586	Dup	50	0	4.5E-08	0/1	0/0	0
8 p 23.1	chr8:8650757-11629240	Dup	72	2	4.1E-09	9/21	21/41	0
9q34.3	chr9:140441351-140936261	Del	58	0	5.8E-08	2/8	2/4	1
10q23.1	chr 10:81960020-88800020	Del	118	15	$3.9 \mathrm{E}-05$	14/26	10/32	3
11p14.1	chr 11:29635361-31653568	Del	69	5	4.5E-05	8/8	9/11	1
13q34	chr13:111699708-115085141	Del	66	0	5.2E-09	15/42	14/42	3
15q11.2	chr 15:22798636-23088559	Del	245	32	4.2E-09	2/4	0/5	0
15q11-13.1	chr 15:23094431-29410239	Dup	280	23	$2.8 \mathrm{E}-21$	14/17	28/47	5
15q11-13.1	chr 15:24674739-28514614	Del	147	19	$6.6 \mathrm{E}-06$	9/10	23/35	3
15q13.3	chr 15:30938215-32510863	Del	261	24	$6.3 \mathrm{E}-14$	5/11	4/13	2
15q13.3	chr15:32452709-32509897	Dup	90	7	$7.9 \mathrm{E}-08$	1/1	0/0	1
16p13.11	chr 16:15248707-16292499	Del	171	26	$1.8 \mathrm{E}-05$	4/10	5/11	0
16p13.11	chr 16:15502499-16292499	Dup	288	64	8.6E-07	4/10	3/9	0
16p12.2	chr 16:21942499-22462224	Del	111	5	$2.58 \mathrm{E}-12$	4/8	3/6	0
16p11.2	chr 16:28822499-29052499	Del	81	2	9.4E-09	1/9	0/8	0
16p11.2	chr 16:29517499-30202499	Dup	275	28	5.8E-18	16/32	3/16	6
16p11.2	chr 16:29517499-30367499	Del	373	16	8.1E-31	16/34	3/21	6
17p13.3	chr 17:1038189-1673212	Dup	100	2	4.5E-13	6/22	2/17	4
17p11.2	chr17:16446387-18380166	Dup	87	0	8.5E-14	17/36	12/26	5
17p11.2	chr 17:16789275-18299275	Del	61	1	$2.7 \mathrm{E}-07$	13/31	6/23	5
17p13.3	chr17:2302359-3502250	Dup	85	5	1.9E-08	10/13	7/12	3
17q12	chr 17:34815887-34856055	Dup	86	6	$6.2 \mathrm{E}-08$	0/3	0/0	0
17q12	chr 17:34815887-36225887	Del	117	5	$2.4 \mathrm{E}-10$	4/17	5/12	1
17q21.31	chr 17:43704217-44164182	Del	86	0	8.9E-12	3/4	5/7	3
17p13.3	chr17:911295-2593250	Del	65	3	5.1E-06	15/39	10/39	8
22q11.21	chr22:18545000-21745000	Del	456	9	$2.3 \mathrm{E}-47$	18/54	10/37	5
22q11.21	chr22:19020000-20308799	Dup	193	25	1.6E-10	6/32	5/17	3
22q11.22	chr22:21910000-23650000	Del	89	9	$6.3 \mathrm{E}-05$	10/64	6/22	3
22q11.22	chr22:23046186-23134119	Dup	46	0	1.2E-07	0/7	0/5	0
22q13.2-33	chr22:43000056-51224208	Del	259	40	1.6E-07	45/113	31/109	8
Xq28	chrX:152561384-154917042	Dup	127	14	$2.5 \mathrm{E}-08$	17/70	4/19	6
Xp22.33	chrX:619146-2700156	Dup	146	22	$6.0 \mathrm{E}-07$	6/15	7/11	0
Xp22.31	chrX:6490000-7885155	Del	80	7	3.8E-05	1/4	1/4	0

[^0]Table 2. Sex bias of recurrent ASD associated CNV regions. Blue = male enriched, red $=$ female enriched. Only regions that explain at least 0.6% of male or female cases and with at least 2 fold sex bias are shown. Extended statistics for all 47 regions are provided in Supplementary table S10.

CNV region	male			female			```log2 (male enrich/ female enrich)```
	$\begin{gathered} \hline \% \text { of } \\ 6274 \\ \text { cases } \end{gathered}$	\% of 1289 cont.	\% cases /\% cont.	$\begin{gathered} \text { \% of } 1812 \\ \text { cases } \end{gathered}$	\% of 1452 cont.	\% cases /\% cont.	
chr16:15248707-16292499 (Del)	0.64	0.31	2.05	0.39	0.69	0.56	1.9
chr10:81960020-88800020 (Del)	0.96	1.63	0.59	0.55	1.86	0.30	1.0
chr2:51105853-51359022 (Del)	1.02	0.16	6.57	1.82	0.14	13.22	-1.0
chr16:29517499-30367499 (Del)	1.26	0.31	4.06	1.71	0.21	8.28	-1.0
chr15:23094431-29410239 (Dup)	0.86	0.16	5.55	1.60	0.14	11.62	-1.1
chr22:43000056-51224208 (Del)	1.08	1.24	0.87	2.43	1.17	2.07	-1.2
chr11:29635361-31653568 (Del)	0.49	0.23	2.12	1.49	0.28	5.41	-1.3
chr15:24674739-28514614 (Del)	0.41	0.93	0.45	0.66	0.48	1.37	-1.6
chrX:6490000-7885155 (Del)	0.26	0.31	0.82	1.10	0.41	2.67	-1.7
chr17:1038189-1673212 (Dup)	0.64	0.16	4.11	0.94	0.07	13.62	-1.7
chr2:148669357-148995585 (Del)	0.18	0.08	2.26	0.72	0.07	10.42	-2.2
chr17:2302359-3502250 (Dup)	0.46	0.31	1.49	0.99	0.14	7.21	-2.3
chr17:34815887-36225887 (Del)	0.35	0.16	2.26	0.83	0.07	12.02	-2.4
chr15:22798636-23088559 (Del)	0.64	0.85	0.75	0.66	0.14	4.81	-2.7
chr13:111699708-115085141 (Del)	0.37	0.23	1.58	1.60	0.14	11.62	-2.9

Figure legends:

Figure 1. Identification of ASD associated regions using SNATCNV. Distributions of $\log 10 \quad P$ values found in ASD by SNATCNV comparing a) duplications and b) deletions on chromosome 17. Black dashed lines indicate our threshold for significant regions at two confidence intervals. X-axis indicates genomic loci and y-axis indicates logarithm $10 P$ value. P value calculated through Fisher's exact test. Find more figures in Supplementary figure S3. Right panels (c-g) compare the signals obtained by SNATCNV (green) and PLINK (blank). c) Plot shows the fraction of case samples covered by SNATCNV's or PLINK's regions as a function of combined region size. d) As in c, except showing the fraction of controls covered. e) Shows the ratio of fraction of ASD samples vs fraction of control samples from c and d. Validation of the regions identified above using an independent cohort of f) 1441 ASD individuals from the 2018 AutDB update and g) 549 ASD individuals from DECIPHER.

Figure 2. ASD associated CNVs identified by SNATCNV contain proportionally more nervous system enriched genes than expected. a) Hierarchical clustering of 1,952 coding and IncRNA genes from the highly significant regions based on their average expression across 347 sample ontologies (using the FANTOM CAT expression atlas (19)). Intensity represents the average level of gene expression across all samples annotated with the same sample ontology. b) Fraction of coding genes with brain enrichment found in the recurrently deleted and duplicated regions identified in the AutDB cohort using SNATCNV and PLINK at their highest thresholds. The dashed red line indicates the fraction of all genes in the genome with brain-enriched expression c) as in b, except for brain-enriched long non-coding RNA genes. d) as in bexcept plotting the fraction of mouse protein coding homologs in the regions that are associated with nervous system phenotypes in MGI.

Figure 3. Association of specific patient phenotypes recorded in the DECIPHER database for 34 of the 47 super regions (indicated on the X -axis). Overrepresented human phenotype ontology terms are indicated by red shaded boxes. Here, we only report region-phenotype term pairs that are at least 2 fold overrepresented, present in at least 5 patients, seen in at least 5\% of patients in the region and at 95\% C.I. (also see Supplementary table S11). Regions associated with known syndromes are indicated by descriptions in brackets.

Supplementary figure legends:

Figure S1. Contingency table for Fisher's exact test to calculate P value for each genomic position. P value for deleted and duplicated regions are calculated separately.

Figure S2. Permutation thresholds to identify significant regions at 95\% and 99.9999\% C.I. Blue colour indicates CNV signals from original data and red colour indicates CNV signals from permutated data. a) Duplication threshold at 95\% C.I. b) Deletion threshold at 95% C.I. c) Duplication threshold at 99.9999% C.I. d) Deletion
threshold at 99.9999% C.I. X-axis indicates number of individuals with observed CNV and y-axis indicates logarithm $10 P$ value. P value calculated through one-tailed Fisher exact test.

FigureS3. ASD copy number variation signals on human chromosomes. a) Autistic duplication vs control duplication copy number variation signals on chromosome 1; blue colour indicates autistic signals and green colour indicates control signals. b) Autistic deletion vs control deletion copy number variation signals on chromosome 1; red colour indicates autistic signals and green colour indicates control signals. Black dashed line indicates our threshold for significant regions (better P value than 99.9999 percentile of 500,000 permutations). X-axis indicates genomic loci and y-axis indicates logarithm $10 P$ value. P value calculated through one-tailed Fisher exact test. c-h) as in a, b but for the remaining chromosomes.

Figure S4. SNATCNV versus PLINK and ParseCNV on a PennCNV dataset. The plot shows the fraction of samples covered by SNATCNV's regions versus PLINK and ParseCNV regions on a PennCNV dataset (http://parsecnv.sourceforge.net). Vertical axis is the fraction of ASD individuals and horizontal axis is region size. a) The plot shows the fraction of case samples covered by SNATCNV's regions (green) versus those found by PLINK (black) and ParseCNV (red) b) The plot shows control samples covered by SNATCNV's regions versus PLINK and ParseCNV regions. c) This plot shows the ratio of the fraction of ASD samples covered by the regions divided by fraction of control samples covered by the regions for SNATCNV, PLINK and ParseCNV.

Figure S5. An overview of significant regions (chrX: 6,500,000-7,920,000) identified by SNATCNV split by control CNVs. Green colour indicates significant regions identified by SNATCNV; red colour indicates CNVs from autistic individuals; and black colour indicates CNV from healthy individuals. CNVs have different breakpoints.

Figure S6. Heatmap matrix of deleted regions after removal. Here, we checked independency/dependency for each region by first removing all case and control samples that overlap the region and then recalculating the P value (using one-tailed Fisher exact test) for the remaining 55 regions. This is repeated for all 56 regions. Values in the matrix indicate the natural logarithm of the P value after removing all cases and controls that overlap a given region and the y-axis indicates the region selected for removal.

Figure S7. Heatmap matrix of duplicated regions after removal. Here, we checked independency/dependency for each region by first removing all case and control samples that overlap the region and then recalculating the P value (using one-tailed Fisher exact test) for the remaining 61 regions. This is repeated for all 62 regions. Values in the matrix indicate the natural logarithm of the P value after removing all cases and controls that overlap a given region and the y-axis indicates the region selected for removal.

Figure S8. Dependent/independent region scenarios considered. To test independency/dependency of each region we defined three scenarios. a) In the first scenario, region A is still significant after removing all case and control samples that overlap with region B, but, region B is not significant after removing all case and control samples that overlap with region A. Here, we keep region A as an independent region and remove region B as a dependent region. b) In the second scenario, removal of all case and control samples from region A or region B led to reciprocal lost significance. We call these regions co-dependent regions. For these co-dependent regions, we merged them into a super region. c) In the last scenario, removal of case and control samples that overlap with region A or region B still keep another region as a significant region (< 0.002); we refer these regions as independent regions and keep both regions.

Figure S9. Hierarchical clustering of 1,649 coding and IncRNA genes from the 47 regions based on their average expression across 347 sample ontologies (using
the FANTOM CAT expression atlas (19)). Intensity represents the average level of gene expression across all samples annotated with the same sample ontology.

Figure S10. Example of a deleted non-coding region (chr2:242930600243007359) containing a brain-enriched IncRNA. There is no brain-enriched protein coding gene in this significant regions, indicating the IncRNA is most likely to be responsible against phenotypes associated with this region.

Figure S11. An overview of significant regions (chr16: 21,500,000-30,500,000) identified by SNATCNV and their overlap with breakpoints BP1-BP5. As can be seen the first region chr16:21942499-22462224 is not covered by the regions associated with breakpoints 1 through 5. The second region chr16:2882249929052499 corresponds to BP2-BP3 and the third region chr16:29517499-30367499 corresponds to BP4-BP5. BP2-BP3 and BP4-BP5 have been previously associated with Autism (44). The image also shows the over-represented human phenotype ontology terms identified from analysis of the phenotypes recorded in DECIPHER.

Supplementary table legends:

Table S1. List of significant deleted and duplicated regions. To identify significant regions, we calculated P values for 500,000 random permutations of case/control labels to estimate the significant threshold. Here, we reported regions identified at the 99.9999\% confidence intervals.

Table S2. Tools comparison between SNATCNV and existing CNV association tools. All comparison performed on the same machine with the same number of CPU and the same amount of memory.

Table S3. Protein coding and noncoding genes in the significant CNV regions identified by SNATCNV (at the confidence interval 99.9999\%). Tissue enrichment P value and the best P value from permutation analysis provided for each gene in
tissues nervous system, nervous system sub-regions, T-cell, muscle cells, mesodermal cell and hematopoietic cell. Induced pluripotent stem cell model of neuron differentiation from FANTOMCAT expression atlas also provided for each gene if any.

Table S4. Enrichment analysis of genes in the significant regions. Fraction of genes in recurrent CNV regions with enriched expression in the nervous system, subregions of the brain and non-nervous system samples. We also report enrichment analysis of genes in the significant regions identified by PLINK at its most stringent threshold, in the significant regions identified by Coe et al. and in the significant regions identified by Cooper et al.

Table S5. Gene ontology, disease ontology and human phenotype ontology analyses for candidate genes. Gene ontology, disease ontology, and human phenotype ontology terms with significant enrichment P value within candidate genes in both deleted and duplicated regions. We used the gene ontology analysis tool WebGestalt to identify over-representation of ontology terms associated with our genes in the significant regions. We used default values for WebGestalt parameters. Only those ontology terms with more than 5 genes in our regions are shown

Table S6. Identify independent and dependent regions. Here, we checked independency/dependency for each region by first removing all case and control samples that overlap the region and then recalculating the P value (using one-tailed Fisher exact test) for the remaining 117 regions. For 37 of 118 regions, removal of cases and controls samples found in any other region still had a significant P value (<0.002); we refer to these regions as independent regions. For the remaining 82 regions, 51 lost significance after removal of cases and controls samples from the independent regions; we refer to these regions as dependent regions and removed them from the future analyses. 31 of 118 regions corresponded to co-deleted/coduplicated scenarios, which means that removal of all cases and controls samples from one region or another led to reciprocal lost significance. For these codependent regions, we merged them into 9 super regions. Collectively, after removal
process, we identified 47 super regions including 37 independent regions and 9 regions after merging co-dependent regions.

Table S7. Population analysis for the significant regions. Here we choose eight top cohorts, which have more than 1000 CNVs in the AutDB database to test if the significant regions are from a specific cohort. We first remove a cohort and then calculate P value with one-tailed Fisher exact test for significant regions with the remainder of case and control samples. We repeat this analysis for each of the eight cohort separately.

Table S8. Literature search for genes within the 47 super regions. We systematically mined google scholar, SFARI, AutDB, MSSNG and DECIPHER databases to identify known ASD genes. In total, we identified 34 known ASD genes (in 19 different super regions) within significant regions. We also mined the FANTOM-CAT expression atlas and observed that 642 coding genes and 252 IncRNAs in the significant regions are induced in an induced pluripotent stem cell model of neuron differentiation. We also mined the MGI mouse genome informatics database and annotated 186 coding genes that cause nervous system phenotypes when mutated in the mouse.

Table S9. Literature search for novelty of the 47 super regions. We systematically mined SFARI, AutDB, MSSNG and DECIPHER databases to annotate 47 super regions as known or novel CNV regions for ASD. In total, 35 regions overlapped with previously identified syndromic/pathogenic regions with ASD related neurodevelopmental phenotypes. For each region, we also provided the number of brain-enriched coding and IncRNA genes, number of brain-enriched coding genes with mice mutant phenotypes that affect the nervous system, and the number of brain-enriched IncRNAs that are induced in an induced pluripotent stem cell model of neuron differentiation.

Table S10: Sex analysis in the 47 super regions. Male fold enrichment was calculated by dividing the male fraction by the female fraction for each region. Female fold enrichment calculated through dividing female fraction on male fraction in the region. We note, three of these super regions have been previously reported as a sex bias region.

Table S11. Phenotypic analysis on the 47 super regions discovered in our study. To identify significant region-phenotype associations, we only considered those region-phenotype associations that had more than five overlapping patients with a region; we then only counted those associations that a) emerged in at least 5% of patients with an overlapping CNV with the region; b) was 1.5 fold overrepresented in samples with CNV overlapped with a super region than DECIPHER patients; c) had a significant fold enrichment more than permutation-specific fold enrichment at 95% C.I. Samples with no phenotype information have been excluded from this analysis.

TableS12. Brain-enriched genes across the entire genome. A table of all brainenriched coding and IncRNA genes identified in the human genome by the one-tailed Fisher exact test and permutation analysis using the FANTOM5 expression data.

TableS13. List of the 96 known causal protein-coding genes from MSSNG [5] and SFARI [4, 15]. Here, we combined ASD known coding genes from MSSNG consortia with SFARI genes (those genes that had gene score 1 or 2).

Fig. 1

b

h

	SNATCNV	both	PLINK
Deleted regions			
length (Mb)	62.5	22.4	274.6
coding genes	462	316	1816
IncRNAs			
Duplicated regions			
length (Mb)	469	285	1837
coding genes	35.8	25.7	139.6
IncRNAs	81	343	1071

AutDB cases 95\%
95\%
019. The copyright holder for this preprint fowicleovas not play the preprint in perpetuity. It is mave available under

d

e

Fig. 2 a
bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 Internalional license.

Fig. 3

HP-0bioBxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not HP:00815ic obesity HP:0001513 obesity HP:0000750 delayed speech and language HP:0100543 cognitive impairment HP:0001250 seizures HP:0001252 muscular hypotonia HP:0000252 microcephaly HP:0004322 short stature HP:0001263 global developmental delay HP:0000582 upslanted palpebral fissure HP:0000286 epicanthus HP:0000717 autism HP:0000486 strabismus HP:0000369 low-set ears HP:0000316 hypertelorism HP:0001629 ventricular septal defect HP:0003508 proportionate short stature HP:0000238 hydrocephalus HP:0002079 hypoplasia of the corpus HP:0001328 specific learning disability HP:0004209 clinodactyly of the 5th finger HP:0005772 aplasia/hypoplasia of the tibia HP:0001171 split hand HP:0001839 split foot HP:0001636 tetralogy of fallot HP:0000256 macrocephaly HP:0000494 downslanted palpebral fissures HP:0008872 feeding difficulties in infancy HP:0001290 generalized hypotonia HP:0000271 abnormality of the face HP:0001642 pulmonic stenosis HP:0001631 atria septal defect HP:0000708 behavioral abnormality HP:0000718 aggressive behavior HP:0000490 deeply set eye HP:0000365 hearing impairment HP:0000347 micrognathia HP:0008064 ichthyosis HP:0000107 renal cyst HP:0001999 abnormal facial shape
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \geq 10\end{array}$
Fold enrichment of cases with phenotype/expectation

bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

네ำ
duplicated/deleted CNVs that overlapped with position

\# case samples that overlapped with position	\# case samples that did not overlap with position
\# control samples that overlapped with position	\# control samples that did not overlap with position

Fig. $\mathbf{S 2}$
a) duibligxion preprint doi: https://doi.org/10.1101/539817; this version posted FebR)deletion 2019 . The copyright holder for this preprint (which was not 0 certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

Fig. S3-part1
bio - partiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Fig. S3. - part2
bio -part2 preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Fig. S3-part3
bio -part3 preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

chromosome 11

Fig. S3- part4
bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
chromosome 13

Fig. S3-part5
bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

chromosome 17 duplication

Fig. S3- part6
bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

dener
chromosome 22

bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Fig. S5

 regions (green)
case CNVs (red)
control CNVs (black)

bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 네TTㅁ aCC-BY-NC 4.0 International license.

region A is independent and region B is dependent - remove region B

codeleted/coduplicated regions - merge regions

Fig. $\mathbf{S 9}$
bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1,649 genes within the 47 super regions

Fig. S10
bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not
 deleted CNVs from case (red) and control (black) individuals that overlapped with regin \mid significant noncoding region

[FANTOM CAT], expression profile for IncRNA AC093642.3, dark green bars correspond to nervous system samples	
- neuroectodermal tumor cell line:FU-RPNT-1 : CNhs 11744 ctss [rle]	040.177
Omedial temporal gyrus, adult, donor10258, tech rep2 : CNhs14552 ctss [rle]	23.627
- neuroblastoma cell line:NH-12: CNhs11811 ctss [rie]	0.328 11.03
Oparietal lobe, fetal, donor1: CNhs11782 ctss [rle]	10.939
- breast carcinoma cell line:MDA-MB-453 : CNhs 10736 ctss [rle]	09.271
-small cell gastrointestinal carcinoma cell line:ECC10 : CNhs11736 ctss [rle]	$0 \quad 5.372$
Otemporal lobe, fetal, donor1, tech rep1 : CNhs 11772 ctss [rle]	5.236
- anaplastic squamous cell carcinoma cell line:RPMI 2650 : CNhs 11889 ctss [rle]	05.007
- acute lymphoblastic leukemia (T-ALL) cell line:HPB-ALL : CNhs10746 ctss [rle]	04.624
- non T non B acute lymphoblastic leukemia (ALL) cell line:P30/OHK : CNhs10747 ctss [rle]	0.2374 .495
-rhabdomyosarcoma cell line:KYM-1 : CNhs11877 ctss [rle]	0.349 4.068
- neuroectodermal tumor cell line:FU-RPNT-2 : CNhs 11753 ctss [rte]	$0.744 \quad 3.718$
- acute myeloid leukemia (FAB M1) cell line:HYT-1 : CNhs13054 ctss [rle]	$0 \quad 3.387$
Ooccipital lobe, fetal, donor1: CNhs11784 ctss [rle]	3.2
Onucleus accumbens, adult, pool1 : CNhs10644 ctss [rle]	3.1
Otemporal lobe, fetal, donor1, tech rep2 : CNhs 12996 ctss [rle]	2.
- thymus, fetal, pool1 : CNhs 10650 ctss [rle]	1.3042297
Oinsula, adult, pool1 : CNhs10646 ctss [rle]	
Opituitary gland, adult, donor10252 : CNhs 12229 ctss [rle]	
- retinoblastoma cell line:Y79 : CNhs11267 ctss [rle]	$0 \quad 1.422$
Ohippocampus, adult, donor10252 : CNhs12312 ctss [rle] -	
Omedial frontal gyrus, adult, donor10252 : CNhs12310 ctss [rle]	
Oparietal lobe, adult, donor10252 : CNhs 12317 ctss [rle]	
-H9 Embryoid body cells, melanocytic induction, day21, biol rep1 (H9EB-1 d21) : CNhs12900 ctss [rle]	00.905
Ofrontal lobe, adult, pool1 : CNhs10647 ctss [rle]	
Omedial frontal gyrus, adult, donor10258: CNhs14221 ctss [rle]	
- Burkitt's lymphoma cell line:RAJI : CNhs11268 ctss [rie]	00.853
-CD4+CD25+CD45RA- memory regulatory T cells, donor3 : CNhs13538 ctss [rle]	00.812
-uterus, adult, pool1: CNhs11676 ctss [rle]	00.733
- acute myeloid leukemia (FAB M2) cell line:NKM-1 : CNhs11864 ctss [rie]	00.685
Othalamus, adult, donor10258, tech rep2 : CNhs14551 ctss [rle]	
Omedial temporal gyrus - adult, donor10196 : CNhs13809 ctss [rie]	
-tonsil, adult, pooli : CNhs 10654 ctss [rle]	0.2690 .606
- acute myeloid leukemia (FAB M0) cell line:KG-1 : CNhs13053 ctss [rle]	$0 \quad 0.599$
Odura mater, adult, donor1 : CNhs 10648 ctss [rle]	
Ocaudate nucleus, adult, donor10252 : CNhs 12321 ctss [rle]	
Oputamen, adult, donor10196: CNhs12324 ctss [rle]	
Oparietal lobe, adult, pool1 : CNhs10641 ctss [rle]	
Ocerebellum, adult, donor10252 : CNhs 12323 ctss [rle]	
Oamygdala, adult, donor10252 : CNhs12311 ctss [rle]	
- medulloblastoma cell line:D283 Med : CNhs 12805 ctss [rle]	00.415
Omedial temporal gyrus, adult, donor10252 : CNhs12316 ctss [rle]	
Omedulla oblongata, adult, pool1 : CNhs10645 ctss [rle]	
- kidney, fetal, pool1 : CNhs10652 ctss [rle]	0 0.367
-small cell lung carcinoma cell line:NCI-H82 : CNhs12809 ctss [rle]	$0 \quad 0.33$
OiPS differentiation to neuron, down-syndrome donor C18-CCL54, day18, rep2 : CNhs 13922 ctss [rle] \|	
- Smooth Muscle Cells - Esophageal, donor2: CNhs12727 ctss [rie]	$\begin{array}{lll}0 & 0.257\end{array}$
- Burkitt's lymphoma cell line:DAUDI : CNhs10739 ctss [rle]	00.232
- cervix, adult, pool1: CNhs10618 ctss [rle]	$0 \quad 0.231$
Otemporal lobe, adult, pool1 : CNhs 10637 ctss [rle]	
Oparacentral gyrus, adult, pool1 : CNhs10642 ctss [re]	

Fig. 511
bioRxiv preprint doi: https://doi.org/10.1101/539817; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

[^0]: * chr8:7268819-7366446 is only significant when cohort (28) is kept.

