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Abstract

Background: Single cell RNA sequencing (scRNA-seq) brings unprecedented opportunities for mapping the
heterogeneity of complex cellular environments such as bone marrow, and provides insight into many cellular
processes. Single cell RNA-seq, however, has a far larger fraction of missing data reported as zeros (dropouts)
than traditional bulk RNA-seq. This makes difficult not only the clustering of cells, but also the assignment of
the resulting clusters into predefined cell types based on known molecular signatures, such as the expression of
characteristic cell surface markers.

Results: We present a computational tool for processing single cell RNA-seq data that uses a voting algorithm
to identify cells based on approval votes received by known molecular markers. Using a stochastic procedure
that accounts for biases due to dropout errors and imbalances in the number of known molecular signatures for
different cell types, the method computes the statistical significance of the final approval score and
automatically assigns a cell type to clusters without an expert curator. We demonstrate the utility of the tool
in the analysis of eight samples of bone marrow from the Human Cell Atlas. The tool provides a systematic
identification of cell types in bone marrow based on a recently-published manually-curated cell marker
database [1], and incorporates a suite of visualization tools that can be overlaid on a t-SNE representation.
The software is freely available as a python package at https://github.com/sdomanskyi/DigitalCellSorter

Conclusions: This methodology assures that extensive marker to cell type matching information is taken into
account in a systematic way when assigning cell clusters to cell types. Moreover, the method allows for a high
throughput processing of multiple scRNA-seq datasets, since it does not involve an expert curator, and it can
be applied recursively to obtain cell sub-types. The software is designed to allow the user to substitute the
marker to cell type matching information and apply the methodology to different cellular environments.
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Background
Bulk RNA-sequencing has provided the bioinformatics
community with a large volume of high quality data
over the past decade. However, bulk measurements
make studying the transcriptomics of heterogeneous
cell populations difficult and provides limited insight
on complex systems composed of interacting cell types.
Single cell RNA-seq (scRNA-seq) techniques promise
to provide the field of bioinformatics with samples suf-
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ficiently large to resolve the subtleties of heterogeneous

cell populations. [2, 3]

The identification of cell types based on specific

molecular signatures is challenging. This is particu-

larly true in samples obtained from ex vivo bone mar-

row or periferal blood samples, where different types of

hematological cells coexist and interact. scRNA-seq of

periferal blood mono-nuclear cells (PBMC) and bone

marrow mono-nuclear cells (BMMC) is nowadays pos-

sible with high level of sensitivity (see e.g. [4]). Mon-

itoring different cell types and their heterogeneity in

these hematological tissues has important applications

in precision immunology, and it could help in deter-
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mining the optimal therapeutic solutions in different
hematological cancers.

The classification of the hematopoietic and immune
system is predominantly based on a group of cell sur-
face molecular markers named Clusters of Differenti-
ation (CD), which are widely used in clinical research
for diagnosis and for monitoring disease [5]. These CD
markers can play a central role in the mediation of sig-
nals between the cells and their environment. The pres-
ence of different CD markers may therefore be associ-
ated with different biological functions and with differ-
ent cell types. More recently, these CD markers have
been integrated in comprehensive databases that also
include intra-cellular markers. An example is provided
by CellMarker [1], which will be used here. This com-
prehensive database was created by a curated search
through PubMed and numerous companies’ marker
handbooks including R&D Systems, BioLegend (Cell
Markers), BD Biosciences (CD Marker Handbook),
Abcam (Guide to Human CD antigens), Invitrogen
ThermoFisher Scientific (Immune Cell Guide), and
eBioscience ThermoFisher Scientific (Cytokine Atlas).
However, using these markers on each single cell RNA-
seq data for a one-by-one identification would not work
for most of the cells. This is fundamentally due to two
reasons: (1) The presence of a marker on the cell sur-
face is only loosely associated to the mRNA expres-
sion of the associated gene, and (2) single cell RNA-
sequencing is particularly prone to dropout errors (i.e.
genes are not detected even if they are actually ex-
pressed).

The first step to address these limitations is unsuper-
vised clustering. After clustering, one can look at the
average expression of markers to identify the clusters.
Several clustering methods have been recently used
for clustering single cell data (for recent reviews see
[6, 7]). Some new methods are able to distinguish be-
tween dropout zeros from true zeros (due to the fact
that a marker or its mRNA is not present) [8], which
has been shown to improve the biological significance
of the clustering. However, once the clusters are ob-
tained, the cell type identification is typically assigned
manually by an expert using a few known markers
[9, 4]. While in some cases a single marker is sufficient
to identify a cell type, in most cases human experts
have to consider the expression of multiple markers
and the final call is based on their personal empirical
judgment.

An example where a correct cell type assignment re-
quires the analysis of multiple markers is shown in
Fig. 1, where we analyzed single cell data from the
bone marrow of the first donor from the HCA (Human
Cell Atlas) preview dataset [10] using t-distributed

Stochastic Neighbor Embedding (t-SNE) layouts. Af-
ter clustering (Fig. 1 (a)), the pattern of CD4 expres-
sion (Fig. 1 (b)) suggests that cluster 1 (red) and clus-
ter 2 (light green) are both highly enriched for CD4+,
potentially indicating T helper cells. In these cells, the
expression of CD4 is crucial for sending signals to other
types of cells and they are often just called CD4 cells.
However, a more careful analysis of cluster 2 shows a
significant expression of CD14, CD33 and CD52 (Fig. 1
(c-e)) that indicates that this cluster consists more
likely of Macrophages/Monocyte cells.

In this paper we present a methodology that, after
unsupervised clustering, automatically assigns clusters
to cell type based on a systematic, unbiased, voting
algorithm. Our method does not rely on a human ex-
pert empirically selecting a set of markers to interpret
the results, but uses all the information available in a
large markers database to predict cell types. While cell
type identification by manual interpretation can pro-
vide good results, the proposed methodology assures
that all the available information is taken into account
in an unbiased way, and it allows for the identification
of many datasets in parallel. From an algorithmic point
of view, voting algorithms are among the simplest and
most successful approaches to implement fault toler-
ance and obtain reliable data from multiple unreliable
channels [11]. The idea can be traced back to von Neu-
mann [12], and since then it has been practically used
in many error correction computational architectures.
The voting algorithm employed here belongs to the
class of approval voting algorithms. For a given clus-
ter, each participant (a cell marker) votes for a subset
of candidates (cell types) that meet the participant
criteria (significant RNA expression) for the position
rather than picking just one candidate. The approval
vote tally determines the score that we use to assign
the cluster to a cell type.

Methods
Overview
Our p-DCS consists of two main modules: (a) clus-
tering and (b) cell type assignment, which are both
based on an unsupervised approach. We demonstrate
our methodology using public bone marrow scRNA-
seq data from eight donors [10], that will be referred
to as BM1-BM8. In this section, we will illustrate the
methodology using the first dataset BM1. The remain-
ing bone marrow data along with a large scRNA-seq
PBMC dataset, obtained from a different study [4], are
analyzed in sec. Results and discussion. In sec. Re-
sults and discussion we also show how the proposed
methodology can be used recursively, so that for each
major cell type one can find the corresponding sub-
types. Fig. 2 shows the workflow of the methodology.
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Figure 1 Markers analysis. (a) t-SNE layout of clusters
obtained from the first donor of the HCA preview dataset [10].
(b) CD4 marker expression displayed on a t-SNE layout: cells
where CD4 is expressed are shown as stars colored according
to the expression level from blue (lowest expression) to red
(highest expression), large black circles infer the cluster sizes.
Cells in which the marker is not expressed are shown as circles.
(c-e) Expression of CD14, a myeloid marker, CD33 and CD52
shown as in (b).

The two main modules are identified by the “Cluster-
ing” and “Cell type assignment” labels. The clustering
module is preceded by data pre-processing, and a set
of visualization tools is included in the software.

Initial gene/cell filtering and normalization

The expression matrix, Xij , the expression of gene i
in cell j where i = 1, . . . , N and j = 1, . . . , p is nor-
malized following the steps outlined in [4]. The gene
expression matrix is first filtered to keep only genes i
that are expressed in at least one cell (

∑
j Xij > 0).

The expression in all cells must then be mapped to the
same range of total expression to account for differing
yields from PCR amplification. Each cell’s expression
vector is thus divided by the sum of all its expression
values so that

Xij ← Xij

/∑
i′

Xi′j , (1)

Figure 2 Algorithm schematic. Illustration of the
methodology with the two main modules highlighted. The
novel polling algorithm for cell identification is implemented in
the second highlighted module.

where the left arrow indicates reassignment of the ma-

trix values. Because gene expression values in RNA-seq

measurements tend to span many orders of magnitude,

it is helpful to apply a standard log2 transformation,

which is done either to get “fold changes” when com-

paring groups in differential expression analysis, or to

get a “normal” looking statistical distribution. How-

ever, the many zeros inherent in single cell RNA-seq

data requires the zeros to be replaced with positive val-

ues. We choose to replace all zeros with m, the smallest
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nonzero value in Xij , so that

Xij ←

{
log2Xij if Xij > 0

log2m otherwise
. (2)

Finally, we keep only those genes exhibiting sufficiently
high variation as parameterized by a threshold θ,

σi
〈σ〉
≥ θ (3)

where σi is the standard deviation of gene i’s expres-
sion across all cells and 〈σ〉 = N−1

∑
i σi. For this

analysis, we chose θ = 0.3.

Clustering
The clustering algorithms used in p-DCS require to
specify the number of clusters n. The first step is
therefore to find a good value for the parameter n.
We used the Adjusted Rand Index (ARI) [13] between
pairs of clusterings obtained from the same set using a
stochastic algorithm (Mini-batch K-Means) and aver-
aging the results to obtain the ARI curve as a function
of n. The optimal n corresponds then to the first peak
coming from the n = ∞ side of the ARI curve (see
Fig. 5 below for an example). To remove noisy compo-
nents and accelerate the procedure, clustering is con-
ducted on a smaller array X̃ij defined by projecting

Xij onto its first 100 principal components (i.e. X̃ij

has i = 1 . . . 100). The cells in X̃ij can be clustered
using any method available in scikit-learn [14] or
any custom clustering object with matching syntax.
For this application, agglomerative clustering was se-
lected. Clustering diagrams such as Fig. 1(a) are gen-
erated by running scikit-learn’s t-SNE routine on
X̃ij , projecting from 100 to two dimensions (simply
for the sake of generating a figure). Cells are colored
according to their cluster index.

Cell type assignment
The cell type assignment is based on our voting al-
gorithm idea that uses a database of marker genes.
Since this application focuses on bone marrow data, we
used Human Cell Markers [1] as our marker/cell type
database, D. The latter is used to create a marker/cell
type table, specific to a gene expression dataset of
interest, e.g. the matrix X of BM1. The table for a
given dataset is created after the initial gene filter-
ing and normalization discussed above. For each cell
type in D we keep the top Nmax = 20 most ex-
pressed genes according to an average across all cells
in the dataset, thus ensuring that each cell type has
at most Nmax markers. Additionally, cell types with

less that Nmin = 4 markers are discarded. The ap-
proval votes for each candidate cell type are there-
fore bounded between Nmin and Nmax. In this way we
build a marker/cell type matrix Mkm where k is the
cell type (e.g. T cell), m is the marker gene (e.g. CD4).
The element Mkm = 1 if m is a top-Nmax most ex-
pressed marker of cell type k and 0 otherwise.

Building the matrix Mkm represents the first step
of the voting algorithm. This is equivalent to defining
“ballots” in which each qualified voter, i.e. the Nmax

(or fewer) markers chosen, has a list of candidate cell
types they can approve. For each cluster c, the voting
algorithm is then implemented as follows:

(i) We build the marker/centroid matrix Ymc, where
Ymc is the mean expression of marker m across all
cells in cluster c. For each marker m, we use Ymc

to compute all cluster centroids’ z-scores Zmc.
Then we build the matrix Z̃mc = 1 if Zmc ≥ ζ
and Z̃mc = 0 otherwise for a given threshold ζ.
For this application, we chose ζ = 0.3, which
provides a reasonable number of markers for
all cell types. and This procedure is needed to
identify markers that are significantly expressed
in one cluster compared to the other clusters.
Fig. 3 (a) shows Ymc, calculated for HCA BM1
dataset: darker blue color corresponds to higher
expression of markers, and the stars correspond
Z̃mc = 1, i.e. statistically significant markers
with z-score larger than ζ among all markers as
tested across clusters.

(ii) We compute the vote matrix according to Vkc =∑
m M̃kmZ̃mc. This is when each voter (the

markers) matches a given cluster to a single or
more possible cell types. This matrix contains an
approval score for each type-cluster pair (k, c).

(iii) To quantify the statistical significance of the ap-
proval scores and make the final assignment, we
use a stochastic method to quantify the statis-
tical uncertainty associated to each type-cluster
pair (k, c). We create copies of the cells clusters
and repeat steps (i) and (ii) n = 104 times, each
time randomly shuffling cells across clusters. This
method accounts for cluster sizes, the overall
gene expression distribution of the markers, and
imbalances in the number of markers per cell type
in estimating the uncertainty. The procedure pro-
vides distributions of voting results Pkc(Vkc) for
a null model of random clusters. Fig. 4 (a) shows
histograms of the distributions Pkc(Vkc) calcu-
lated for the same dataset of Fig. 3. The figure
shows each cell type as a separate plot, and each
plot contains the distributions of each cluster in
a different color. Note that the distributions do
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not show a strong dependence on the cluster in-
dex c, but they can be very different for different
cell types k.

(iv) Finally, we determine the z-scores, Λkc, of the
voting results Vkc in (ii), given the null distri-
bution Pkc(Vkc) calculated in (iii) and assign the
cell type according to Tc = argmaxk Λkc. All cells
belonging to cluster c are thus identified as cell
type Tc. Fig. 4 (b) is a visual representation of
Λkc, shown only for positive values, where the in-
dices k, c are along the x- and y-axis, respectively.
After the cell types are determined, the panel (b)
of Fig. 3 is produced, with all the markers sup-
porting the assigned identification marked as red
stars.

Note that this marker/cell type table is only one of
many possible reasonable choices. The software was
designed to allow the user to easily substitute this ta-
ble with a custom table relevant to the particular cell
population under investigation. Likewise, the voting
scheme outlined above can be replaced with any cus-
tom function with the same inputs and outputs. See
the documentation for details and examples. [15]

Results and discussion
In this section, we first present the results obtained
with our methodology using recently-published data
from normal bone marrow samples (the data identi-
fied above as BM1-BM8, containing a total of 378k
cells). Additionally, we compare our cell type assign-
ment to an existing identification of cell types from a
large scRNA-seq ∼68.6k cells PBMC dataset.

Results on the HCA BM data

Number of clusters

We first calculated the Adjusted Rand Index (ARI) [13]
curves for BM1-BM8. For each n between 4 and
16, Mini-batch K-Means clustering was performed 12
times leading to 12 different partitions of the data.
The ARI between all the possible 66 pairs of partitions
was then calculated and averaged. The procedure was
repeated in N = 200 independent runs to obtain er-
ror bars. The ARI curves are shown in Fig. 5. Note
that the ARI curves often have a maximum at or near
n = 1. This maximum does not provide useful infor-
mation, and the optimal n is therefore associated to
the first peak observed coming from the right side of
the plot. In addition to the ARI for each of the BM1-
BM8 sets, Fig. 5 displays their average in black. The
latter has a peak at n = 8, and we therefore select that
value for clustering all the datasets.

Figure 3 Marker expression for scRNA-seq HCA
BM dataset, subset BM1. (a) Mean expression of marker
genes in clusters of yet unidentified cell types. Stars denote
genes expressed above a certain z-score threshold. (b) Mean
expression of marker genes in clusters with inferred cell type
with cluster index in parentheses. Red stars highlight the
supporting markers in assigning the cluster cell type.

Clustering and identification in BM1-BM8 datasets

The BM samples were analyzed individually and their
cluster plots were combined to demonstrate the sim-
ilarity between the 8 datasets of bone marrow, see
Fig. 6. We restricted the candidate cell types to the
ones that have more than three markers expressed in
each dataset after pre-processing. The color coding is
uniform for the cell types across the 8 datasets, i.e.
all Stromal cells are colored orange, B cells – dark
blue, etc. As some of the clusters overlap on the t-
SNE plot [16, 17], it is useful to calculate the relative
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Figure 4 Voting results visualization. Exemplified on HCA BM1 dataset. (a) Pkc(Vkc) distributions shown in separate plots for
each cell type k, different cluster c are shown in different color. (b) Visualization of the matrix Λkc, where columns are the possible
cell types and rows are the assigned cell types Tc, with cluster indices 0,1,...,7 in parentheses. The negative z-scores are not shown.
The barplot on the right shows relative (%) and absolute (cell count) cluster sizes. Cell clusters that have 3 or less supporting
markers are marked with ”*”, see Figure 2 for supporting markers.

fractions of cells of various cell types. The latter pro-
vide a snapshot of the cellular composition of the 8
bone marrow samples, see Fig. 7.

Clustering of T and B cells sub-types
We applied the methodology illustrated above to iden-
tify sub-types of major hematological B and T cells.
Additional marker/cell subtype tables Mkm were pre-
pared for this analysis. Columns of these new matri-
ces indicates sub-types only and rows are the mark-
ers/genes that are known to be expressed the these
sub-types. We used the same Human Cell Markers [1]

database to build the Mkm matrices for B and T cells.

As above, these matrices Mkm are created ensuring

that only the top Nmax = 20 most expressed makers

are included for each sub-type. Cell sub-types with no

expressed makers after pre-proceessing are discarded.

Clustering with n = 5 for T cell subtypes from BM1

is shown in Fig. 8 (a), revealing Nave T cell and Helper

T subtypes. In the same way, B cells of BM1 were pro-

cessed into 5 clusters in Fig. 8 (b), showing populations

of Transitional T1 and T2 B cells and a small group

of Plasma cells.
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Figure 5 HCA BM dataset analysis. Adjusted Rand
Index (ARI) curves for each dataset BM1-BM8. Clustering was
done using Mini-Batch K-Means from scikit-learn. The black
line represents the average of the 8 datasets, and the peak at
n = 8 was used to select the optimal number of clusters.

Note that the simultaneous identification of major
cell types and their relative sub-types is problematic.
The best approach consists in first identifying major
cell types and then separately analyzing each of them
as shown in this section. We have tried to include ma-
jor cell types and their subtypes in the matrices Mkm

and have attempted their identification with a larger
number of clusters. Such an approach leads often to
incorrect results with relative cell frequencies that are
incompatible with normal physiological ranges.

Congruence with expert annotation on PBMC
dataset
In a recent work, Sinha et al. [9] presented their
dropClust algorithm to cluster ultra-large scRNA-seq
datasets. To illustrate their algorithm, they used data
from 68k PBMC from Zheng et al. [4]. Their cluster
annotation, obtained from a manual assessment using
a few selected markers, is of interest here and can be
used to compare the annotation obtained by our au-
tomated methodology with one obtained manually by
an expert. By pre-processing the whole 68k PBMC
dataset, we determined that the optimal number of
clusters was 8. The result of the analysis is shown in
Fig. 9. The clustering and cell type inference from the
automated p-DCS procedure are shown in Fig. 9 (a),
indicating that T cells constitute the major cell type
in this sample. Fig. 9 (b) shows a graphical compari-
son of cell types fractions obtained by p-DCS and by
Sinha et al. [9]. The frequencies of various cell types
are expected to vary from individual to individual, and
the fractions that we determined are within the normal

Figure 6 HCA BM preview dataset analysis.
Clustering illustrated with t-SNE plots for each patient in the
dataset. The cell type identification is assigned based on the
voting algorithm discussed in Methods.

ranges [18]. The main difference in cell type frequen-
cies, Fig. 9 (b), determined using two approaches is
in p-DCS NK cell cluster (yellow) which in Sinha et
al. is split into NK (yellow) and NK T (light blue)
cells. The latter cell type expresses a combination of T
cell and NK cell attributes and markers and therefore
categorizing NK and NK T cells is challenging. Fig. 9
(c) displays the cell types used in voting and z-scores
of the voting scores. The quantitative comparison is
also available in Table 1. In addition to comparison of
sizes of cluster between the two methods, p-DCS and
dropClust, we individually analyzed all cells, i.e. their
barcodes in the scRNA-seq data, to check if they were
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Figure 7 HCA BM dataset summary. Cell type relative
fractions for each BM sample. The cell types are sorted by
average (across samples) fraction size, with the exception of
the ”Unknown” which is moved to the bottom. Color coding
for cell types is identical to Fig. 6.

assigned to matching cell types. For each cell type an-
notated by p-DCS we counted how many cells were
annotated by Sinha et al. [9] into each of their cate-
gories (Table 2). Overall the agreement is strong, with
the exception of Dendritic cells and Macrophages for
which we observed a significant mismatch.

Sub-clustering of T cells was also done to compare
the two approaches. T-cells from clusters 1, 4 and 6
(see Fig. 9) were processed with a new list of mark-
ers/cell sub-types. The results of cell sub-types anno-
tation are presented in Fig. 10, and the detailed com-
parison to the results by Sinha et al. [9] are in Table 3.

Alternative cell marker input lists
We have used the cell marker database CellMarker [1],
which is the most recent database available. There is
another database created by the Human Cell Differ-
entiation Molecules (HCDM) organization [19], which
is sponsored by a number of large companies. This
database contains detailed information about each
CD molecule, including structure, function, and cel-
lular expression. The HCDM would be an alterna-
tive to CellMarker, that could be used to create a
marker/cell type table to employ with p-DCS. We
have observed that the overlap between these two
databases is very strong, therefore we do not expect
significant differences in the cell cluster assignments.
Finally, several deconvolution algorithms have been
developed in the past for estimating the relative com-
position of complex tissues from bulk transcriptomics

Figure 8 Subclustering of HCA BM1. Application of
p-DCS on (a) T cells, and (b) B cells, revealing subtype
composition.

data. [20, 21, 22, 23, 24, 25, 26, 27] These methodolo-
gies are usually based on predefined signature matri-
ces that contain the relative expression of markers, not
just the presence/absence of a marker, for different cell
types. Regression methods are then typically used to
infer the relative proportions in a mixture. These sig-
nature matrices have been validated on bulk data and
their robustness to the characteristic scRNA-seq noise
has not been tested. However, in principle they contain
additional information that could be integrated in our
p-DCS to identify single cells.

Conclusions
We have presented a methodology that, after unsu-
pervised clustering of scRNA-seq data, automatically
assigns clusters to cell types based on a voting algo-
rithm without manual interpretation by an expert cu-
rator. The method provides the classification of indi-
vidual cells into predefined classes based on a com-
prehensive database of known molecular signatures,
i.e. cell surface (extracellular) and intracellular mark-
ers [1]. The proposed methodology assures that exten-
sive marker/cell type information is taken into account
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Figure 9 PBMC dataset processing. (a) Clustering with inferred cell types. (b) Fractions of various cell types obtained by
p-DCS in comparison with DropClust manual clusters’ annotations [9]. (c) Visualization of the voting results of all possible cell types
(columns) and identified clusters (rows), generated from the input marker cell/type table.

in a systematic way when assigning clusters to cell
types. Moreover, the method allows for a high through-
put processing of multiple scRNA-seq datasets since it
does not involve an expert curator.

In addition to determining major cell types, we have
shown how this methodology can be applied recur-
sively to obtain cell sub-types. We have performed a
congruence analysis of cluster identification obtained
by our method with those obtained by expert curators
on the same dataset, showing that the automatic as-
signment is consistent with expert assignment both of
major cell types and cell sub-types. While we have fo-
cused on the identification of hematological cell types,
the software is designed to allow the user to substitute
the marker table to apply the methodology to different
tissues.
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https://github.com/sdomanskyi/DigitalCellSorter.
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Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D.,

Wichers, H. (eds.) Peripheral Blood Mononuclear Cells, pp. 161–167.

Springer, Cham (2015). doi:10.1007/978-3-319-16104-415.

https://doi.org/10.1007/978-3-319-16104-415

19. About HCDM. http://www.hcdm.org/index.php/about-hcdm

Accessed 2018-09-05

20. Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu,

Y., Hoang, C.D., Diehn, M., Alizadeh, A.A.: Robust enumeration of

cell subsets from tissue expression profiles 12(5), 453–457.

doi:10.1038/nmeth.3337. Accessed 2018-11-14

21. Shen-Orr, S.S., Gaujoux, R.: Computational deconvolution: extracting

cell type-specific information from heterogeneous samples. Current

opinion in immunology 25(5), 571–578 (2013)

22. Abbas, A.R., Wolslegel, K., Seshasayee, D., Modrusan, Z., Clark, H.F.:

Deconvolution of blood microarray data identifies cellular activation

patterns in systemic lupus erythematosus. PloS one 4(7), 6098 (2009)

23. Gong, T., Hartmann, N., Kohane, I.S., Brinkmann, V., Staedtler, F.,

Letzkus, M., Bongiovanni, S., Szustakowski, J.D.: Optimal

deconvolution of transcriptional profiling data using quadratic

programming with application to complex clinical blood samples. PloS

one 6(11), 27156 (2011)

24. Qiao, W., Quon, G., Csaszar, E., Yu, M., Morris, Q., Zandstra, P.W.:

Pert: a method for expression deconvolution of human blood samples

from varied microenvironmental and developmental conditions. PLoS

computational biology 8(12), 1002838 (2012)

25. Liebner, D.A., Huang, K., Parvin, J.D.: Mmad: microarray

microdissection with analysis of differences is a computational tool for

deconvoluting cell type-specific contributions from tissue samples.

Bioinformatics 30(5), 682–689 (2013)

26. Zhong, Y., Wan, Y.-W., Pang, K., Chow, L.M., Liu, Z.: Digital sorting

of complex tissues for cell type-specific gene expression profiles. BMC

bioinformatics 14(1), 89 (2013)

27. Zuckerman, N.S., Noam, Y., Goldsmith, A.J., Lee, P.P.: A self-directed

method for cell-type identification and separation of gene expression

microarrays. PLoS computational biology 9(8), 1003189 (2013)

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 4, 2019. ; https://doi.org/10.1101/539833doi: bioRxiv preprint 

http://dx.doi.org/10.1093/nar/gky900
http://dx.doi.org/10.1016/j.mam.2017.07.002
http://dx.doi.org/10.1038/s41576-018-0088-9
http://dx.doi.org/10.1186/s12859-018-2226-y
http://dx.doi.org/10.1093/nar/gky007
https://preview.data.humancellatlas.org/
http://dx.doi.org/10.5281/zenodo.2533378
https://zenodo.org/record/2533378#.XDOzDFU3mUk
http://dx.doi.org/10.1038/nbt.2594
http://dx.doi.org/10.1007/978-3-319-16104-4_15
http://www.hcdm.org/index.php/about-hcdm
http://dx.doi.org/10.1038/nmeth.3337
https://doi.org/10.1101/539833


Domanskyi et al. Page 11 of 12

Tables
Additional Files
Not applicable
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Table 1 Comparison of p-DCS and DropClust on PBMC scRNA-seq ∼68.6k cells dataset.

Cell type p-DCS DropClust

T cell Cluster #1, 4, 6: 72.2% Cluster #1, 2, 5 ,7, 10: 73.2%
NK T cell Cluster #3: 9.0%

NK cell Cluster #0: 14.4% Cluster #6, 13: 5.0%
B cell Cluster #3: 5.7% Cluster #4: 5.8%

Dendritic cell Cluster #5: 3.0% Cluster #11, 14: 1.8%
Macrophage Cluster #2: 4.4%

Monocyte Cluster #8, 9: 4.9%
Megakaryocyte Cluster #7: 0.2%

Circulating Megakaryocyte Progenitors Cluster #12: 0.2%

Table 2 Cell counts from cell-by-cell validation of p-DCS and dropClust on PBMC scRNA-seq ∼68.6k cells dataset.

p-DCS cell type (count) dropClust cell type
T cell NK T cell NK cell B cell Monocyte Dendritic cell CMP*

T cell (49559) 48951 494 69 42 1 2
NK cell (9894) 914 5681 3298 1
B cell (3931) 84 5 1 3841

Macrophage (2990) 57 7 76 1802 1048
Dendritic cell (2042) 235 13 1 19 1537 237
Megakaryocyte (163) 163

*CMP–Circulating Megakaryocyte Progenitor

Table 3 Sub-clustering of ∼49.6k T cells subset of ∼68.6k cells dataset. Comparison of p-DCS and DropClust subtypes assignment.

T cell subtype p-DCS DropClust

Naive T cell Cluster #0, 6, 7: 41.7% Cluster #1: 46.0%
Cytotoxic T cell (CD8+ T cell) Cluster #2.5: 13.7% Cluster #5,7: 11.8%

T helper cell Cluster #1: 12.0%
Unknown Cluster #3: 4.3%

Memory T cell Cluster #2: 14.9%
Regulatory T (Treg) cell Cluster #4: 1.6% Cluster #10: 0.5%
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