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Abstract: 62 

Background & Aims 63 

Pancreatic ductal adenocarcinoma (PDA) is a major cause of cancer-related death with limited 64 

therapeutic options available. This highlights the need for improved understanding of the biology 65 

of PDA progression. The progression of PDA is a highly complex and dynamic process featuring 66 

changes in cancer cells and stromal cells; however, a comprehensive characterization of PDA 67 

cancer cell and stromal cell heterogeneity during disease progression is lacking. In this study, 68 

we aimed to profile cell populations and understand their phenotypic changes during PDA 69 

progression.   70 

 71 

Methods 72 

We employed single-cell RNA sequencing technology to agnostically profile cell heterogeneity 73 

during different stages of PDA progression in genetically engineered mouse models.   74 

 75 

Results 76 

Our data indicate that an epithelial-to-mesenchymal transition of cancer cells accompanies 77 

tumor progression. We also found distinct populations of macrophages with increasing 78 

inflammatory features during PDA progression. In addition, we noted the existence of three 79 

distinct molecular subtypes of fibroblasts in the normal mouse pancreas, which ultimately gave 80 

rise to two distinct populations of fibroblasts in advanced PDA, supporting recent reports on 81 

intratumoral fibroblast heterogeneity. Our data also suggest that cancer cells and fibroblasts are 82 

dynamically regulated by epigenetic mechanisms.  83 

 84 

Conclusion 85 

This study systematically outlines the landscape of cellular heterogeneity during the progression 86 

of PDA. It strongly improves our understanding of the PDA biology and has the potential to aid 87 

in the development of therapeutic strategies against specific cell populations of the disease. 88 

 89 

Key words: single-cell RNA sequencing; pancreatic cancer; cellular heterogeneity; fibroblasts; 90 

macrophages 91 
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Introduction 93 

Pancreatic ductal adenocarcinoma (PDA) carries the highest mortality rate of all major 94 

malignancies in industrialized countries, with a 5-year survival of 8.5%. Patients are faced with 95 

limited treatment options that achieve poor durable response rates, highlighting the need for an 96 

improved understanding of PDA disease biology [1]. PDA progression is a complex and 97 

dynamic process that requires interaction between cancer cells and stromal cells [2]. It is 98 

characterized by the formation of a unique microenvironment consisting of heterogeneous 99 

stromal cell populations that include fibroblasts, macrophages, lymphocytes, and endothelial 100 

cells. These stromal compartments are critical in driving PDA biology [3]. 101 

 102 

The dynamic phenotypic changes in different cell populations during PDA progression is not 103 

fully understood. Gene expression profiling of bulk tissues provides a limited picture of the 104 

cellular complexity of the heterogeneous cell populations in PDA. In contrast, single-cell RNA 105 

sequencing (scRNA-seq) has the potential to enable gene expression profiling at the level of the 106 

individual cell [4] and provides a powerful tool to understand the cellular heterogeneity of PDA. 107 

We applied scRNA-seq to investigate gene expression changes of cancer cells and stromal 108 

cells during PDA progression in genetically engineered mouse models (GEMMs). This unbiased 109 

approach provided evidence of considerable intratumoral cellular heterogeneity, including 110 

molecular insights into epithelial and mesenchymal populations of cancer cells and distinct 111 

molecular subtypes of macrophages and cancer-associated fibroblasts (CAFs).  112 

 113 

Methods 114 

Animal studies 115 

KIC, KPC and KPfC mice were generated as previously described [5-7]. Mice were sacrificed 116 

when they were moribund: 60 days old for the KIC (n = 3, late PDA) and KPfC (n = 1) or 6 117 

months old for the KPC (n = 1). The 2 KIC mice were sacrificed at 40 days old (early PDA) and 118 

“normal pancreas” mice (n = 2) were sacrificed at 60 days old. In experiments using more than 119 

one mouse, tissues were pooled prior to enzymatic digestion. The KPfC mouse had a pure 120 

C57BL/6 genetic background and all others had a mixed background (C57BL/6 with FVB). 121 

Ultrasound imaging was carried out under general anesthesia with isoflurane. Mice were 122 

euthanized by cervical dislocation under anesthesia. AVMA Guidelines for the Euthanasia of 123 

Animals were strictly followed. Tissues were either fixed in 10% formalin for 124 

immunohistochemistry or enzymatically digested for single-cell analysis.     125 

 126 
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Tissue digestion 127 

A 10x digestion buffer was prepared in PBS: collagenase type I (450 units/ml, Worthington 128 

Biochemical, Lakewood, NJ), collagenase type II (150 units/ml, Worthington), collagenase type 129 

III (450 units/ml, Worthington), collagenase type IV (450 units/ml, Gibco/Thermo Fisher, 130 

Waltham, MA), elastase (0.8 units/ml, Worthington), hyaluronidase (300 units/ml, Sigma-Aldrich, 131 

St. Louis, MO), and DNase type I (250 units/ml, Sigma-Aldrich). Tumors and pancreas were 132 

enzymatically digested into a single-cell suspension. Briefly, freshly dissected tissue was placed 133 

into a 10-cm tissue culture dish and a sterile razor blade was used to cut the tissue into fine 134 

pieces. Samples were resuspended in PBS and washed twice by centrifuge at 2000 rpm for 3 135 

minutes and added to a 50 ml tube containing 1x digestion buffer containing 1% FBS. The tube 136 

was incubated on a shaker at 37°C for 60 minutes. Then 35 ml of PBS was added and cells 137 

were washed three times prior to filtering out debris using a 70 μm mesh filter. Single cells were 138 

resuspended in 100 μl of PBS in preparation for single-cell library creation. Cell viability was 139 

measured by trypan blue. Viability was 80% for the normal pancreas and late KIC samples, 75% 140 

for the early KIC and KPfC, and 90% for the KPC.    141 

 142 

Single-cell cDNA library preparation and sequencing 143 

Library generation was performed using the 10x Chromium System (10X Genomics Inc., 144 

Pleasanton, CA). Single-cell suspensions were washed in 1x PBS (calcium- and magnesium-145 

free) containing 0.04% weight/volume bovine serum albumin (400 μg/ml) and brought to a 146 

concentration of 200-700 cells/μl. The appropriate volume of cells was loaded with Single Cell 3’ 147 

gel beads into a Single Cell A Chip and run on the Chromium Controller. Gel bead in emulsion 148 

(GEM) was incubated and then broken. Silane magnetic beads were used to clean up the GEM 149 

reaction mixture. Read 1 primer sequence was added during incubation and full-length, 150 

barcoded cDNA was amplified by PCR after cleanup. Sample size was checked on an Agilent 151 

Tapestation 4200 (Agilent, Santa Clara, CA) using DNAHS 5000 tape and concentration 152 

determined by a Qubit 4 Fluorometer (Thermo Fisher) using the DNA HS assay. Samples were 153 

enzymatically fragmented and underwent size selection before proceeding to library 154 

construction. During library preparation, Read 2 primer sequence, sample index, and both 155 

Illumina adapter sequences were added. Samples were cleaned up using AMPure XP beads 156 

(Beckman Coulter, Brea, CA) and post-library preparation quality control was performed using 157 

DNA 1000 tape on the Agilent Tapestation 4200. The final concentration was ascertained using 158 

the Qubit 4 Fluorometer DNA HS assay. Samples were loaded at 1.5 pM and run on the 159 
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Illumina NextSeq500 High Output Flowcell (Illumina, San Diego, CA) using V2.5 chemistry. The 160 

run configuration was 26 x 98 x 8. 161 

 162 

Bioinformatic analyses 163 

We used Cell Ranger version 1.3.1 (10x Genomics) to process raw sequencing data and the R-164 

package Seurat version 2.0 [8] for downstream analyses. Cell clusters were identified via the 165 

FindClusters function using a resolution of 0.6 for all samples, using a graph-based clustering 166 

algorithm implemented in Seurat. Marker genes for each cluster were computed, and 167 

expression levels of several known marker genes were examined. Different clusters expressing 168 

known marker genes for a given cell type were selected and combined as one for each cell 169 

type. Gene ontology and pathway analysis were performed using the DAVID bioinformatics 170 

suite, version 6.8 [9]. 171 

 172 

Histological analysis 173 

Formalin-fixed tissues were embedded in paraffin and cut in 5 μm sections. Sections were 174 

evaluated by H&E and immunohistochemical analysis using antibodies specific for vimentin 175 

(5741, Cell Signaling Technology, Danvers, MA), BRD4 (AB128874, Abcam, Cambridge, MA), 176 

Sox9 (AB5535, EMD Millipore, Burlington, MA), CDH11 (NBP2-15661, Novus Biologicals, 177 

Centennial, CO), and H3K27ac (AB4729, Abcam). Following an initial antigen retrieval with Tris-178 

EDTA-glycerol (10%) buffer and inhibition of endogenous peroxidase activity, the slides were 179 

incubated with primary antibody overnight at 4°C. Slides were then incubated with horseradish 180 

peroxidase or alkaline phosphatase conjugated secondary antibody (Vector Laboratories, 181 

Beringame, CA) for 1 hour at 25°C. This was followed by development using the appropriate 182 

chromogenic substrate: DAB, Warp Red or Ferangi Blue (Biocare Medical, Pacheco, CA). In the 183 

case of multichannel immunohistochemistry, slides were subsequently stripped using a sodium 184 

citrate buffer and by boiling at 110°C for 3 minutes. The procedure was then repeated as above 185 

using a different-colored chromogen for development. All human PDA samples were provided 186 

by the UT Southwestern Tissue Management Shared Resource and their use was approved by 187 

the UT Southwestern institutional review board for the purpose of research. All patient samples 188 

were de-identified and interpreted by a board-certified pathologist (KP). 189 

 190 

Results 191 

Cellular heterogeneity during PDA progression 192 
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We sought to determine the composition of single pancreatic cancer cells during progression in 193 

GEMMs. Normal mouse pancreas, 40-day-old KIC (KrasLSL-G12D; Cdkn2aflox/flox; Ptf1aCre/+) mouse 194 

pancreas, termed “early KIC” (with early neoplastic changes confirmed by ultrasound; 195 

Supplementary Fig. 1), and 60-day-old KIC pancreas, termed “late KIC” (Fig. 1A) were freshly 196 

isolated and enzymatically digested followed by single-cell cDNA library generation using the 197 

10x Genomics platform [10]. Libraries were subsequently sequenced at a depth of more than 198 

105 reads per cell. We performed stringent filtering, normalization, and graph-based clustering, 199 

which identified distinct cell populations in the normal pancreas and each stage of PDA. 200 

 201 

In the normal mouse pancreas, 2354 cells were sequenced and classified into appropriate cell 202 

types based on the gene expression of known markers: acinar cells, islet cells, macrophages, T 203 

cells, and B cells, as well as three distinct populations of fibroblasts. Fibroblasts-1, fibroblasts-2, 204 

and fibroblasts-3 (Fig. 1B and E) were noted. In the early KIC pancreas (3524 cells sequenced), 205 

the emergence of a cancer cell population was observed (9.9% of cells), expressing known PDA 206 

markers such as Krt18 and Sox9 [11] (Fig. 1C and F). The acinar cell population was 207 

substantially reduced, while there was a marked increase in total macrophages and fibroblasts. 208 

Of note, the same three populations of fibroblasts seen in the normal pancreas were identified in 209 

the early KIC lesion. Additionally, endothelial cells were observed at this stage. This indicates 210 

that the expansion of fibroblasts and macrophages is an early event during PDA development, 211 

accompanying tumor initiation. We next characterized the late KIC pancreas (804 cells 212 

sequenced) and noted the absence of normal exocrine (acinar) and endocrine (islet) cells (Fig. 213 

1D and G). Instead, two distinct populations of cancer cells were present, suggesting 214 

phenotypic cancer cell heterogeneity as a late event in the course of the disease. We also 215 

observed the presence of only two distinct fibroblast populations, which had a similar 216 

percentage in relation to total cells. Noticeably, macrophages became a predominant cell 217 

population in the late KIC tumor. Moreover, we observed lymphocytes at this stage. The cellular 218 

heterogeneity in cancer cells and stromal cells in the early and late KIC lesions highlighted the 219 

dynamic cellular changes that occur during PDA progression.  220 

 221 

Mesenchymal cancer cells emerge in advanced PDA  222 

Gene expression analysis of cancer cell epithelial markers (Cdh1, Epcam, Gjb1, and Cldn3) and 223 

mesenchymal markers (Cdh2, Cd44, Axl, Vim, and S100a4) revealed that early KIC cancer cell 224 

populations assumed an epithelial expression profile (Fig. 2A and C). This is in contrast to tumor 225 

cell populations in the late KIC tumors, where we identified two distinct cancer cell populations: 226 
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one enriched for epithelial markers and the other, more abundant population, enriched for 227 

mesenchymal markers (Fig. 2B and C). These data support that tumor cell epithelial plasticity 228 

contributes to cancer cell heterogeneity during the progression of KIC tumors.   229 

 230 

The hierarchical clustering of the top significant genes in each of the three cancer cell 231 

populations (epithelial cancer cells in early KIC, epithelial and mesenchymal cancer cell 232 

populations in late KIC) was performed (Fig. 2D). In addition, gene clusters from the cancer cell 233 

populations were subjected to pathway and gene ontology (GO) analysis. First, we compared 234 

cancer cells of the early KIC population to the total cancer cells of the late KIC and found that 235 

the most downregulated genes in late KIC cancer cells were associated with normal pancreatic 236 

function such as pancreatic secretion, digestion and absorption, and insulin secretion (Fig. 2E 237 

and F). Moreover, normal pancreatic acinar genes such as Try4, Try5, Cela2a, Cela3b, Reg2, 238 

and Rnase1 were expressed at higher levels in early KIC cancer cells, while late KIC cancer 239 

cells expressed a higher level of the pancreatic ductal gene Muc1 (Fig. 2D). This is suggestive 240 

of an ongoing acinar-to-ductal metaplasia (ADM) during tumor progression in this GEMM. In 241 

contrast, the most upregulated genes in late KIC cancer cells were associated with ribosome, 242 

glycolysis/gluconeogenesis, and amino acid biosynthesis, which is highly suggestive of 243 

increased translation and metabolically active cancer cells in established KIC tumors. 244 

Interestingly, pathways previously reported to be closely associated with the stroma and 245 

progression of PDA were also highlighted, such as ECM-receptor interaction [12], TGFβ [13], 246 

and hippo signaling pathways [14]. We then compared early KIC cancer cells with the late KIC 247 

epithelial cancer cell population to understand the mechanisms that promoted the progression 248 

of PDA in the epithelial cancer cell compartment. Interestingly, similar cell functions/signaling 249 

pathways were identified by comparing the two epithelial cancer cell populations (Fig. 2G and 250 

H). Taken together, these analyses objectively demonstrate an ADM state during the 251 

progression of KIC tumors and suggest that stroma-cancer cell interaction promotes the 252 

progression of PDA and cancer cell heterogeneity.   253 

 254 

Mesenchymal cancer cells exist in advanced PDA GEMMs with different diverse mutations  255 

In addition to KRAS mutations, additional driver events are required for PDA progression [8], 256 

with TP53 and INK4A being the second- and third-most commonly mutated genes in human 257 

PDA, respectively. As such, we sought to understand the effect of different secondary driver 258 

mutations on the phenotypes and heterogeneity of cancer cells. We performed scRNA-seq in 259 

another PDA GEMM, KPfC (KrasLSL-G12D; Trp53Flox/Flox; Pdx1Cre/+) (Fig. 3A). Consistent with late 260 
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KIC tumors, two distinct cancer cell populations expressing Krt18 and Sox9 were noted in late 261 

KPfC (60-day-old) tumors (Fig. 3A and B), one marked by epithelial markers such as Gjb1, Tjb1, 262 

Ocln, and Cldn3, while the other was marked by mesenchymal markers such as Vim, Cd44, Axl, 263 

S100a4, and Fbln2 (Fig. 3C and D). Epithelial and mesenchymal cancer cell populations in 264 

KPfC mice shared many genes in common with the corresponding populations in KIC; however, 265 

they also expressed unique gene signatures (Fig. 3F).       266 

 267 

We then compared the total cancer cell gene signatures between late KIC and late KPfC mice 268 

by KEGG and Biocarta pathway analysis methods, in an attempt to identify potential differences 269 

in cancer cell signaling pathways caused by the different secondary driver mutations. As 270 

expected, the p53 signaling pathway was upregulated in the KIC model by comparison to the 271 

KPfC model (Fig. 3E). The analyses of late KIC and late KPfC mice suggests that cancer cell 272 

heterogeneity is a late-stage tumor event that occurs in the setting of multiple secondary driver 273 

mutations. However, under the same oncogenic Kras mutation, different secondary driver 274 

mutations can potentially lead to different signaling pathways that drive PDA progression.      275 

 276 

Macrophage heterogeneity during PDA progression 277 

We found a marked increase in the size of the macrophage population as PDA progressed from 278 

normal pancreas to early KIC and eventually late KIC tumors (Fig. 1B-D). We further 279 

characterized the macrophage compartment during PDA progression by subclustering 280 

macrophages in early and late KIC tumors, which revealed three transcriptionally distinct 281 

macrophage clusters in early KIC and two in late KIC (Fig. 4A and C).  282 

 283 

Macrophage population 1 in early KIC tumors was characterized by the expression of Fn1, 284 

Lyz1, Lyz2, Ear1, and Ear2 as well as Cd14 (Fig. 4B). Moreover, these macrophages 285 

specifically expressed high levels of the IL1 receptor ligands: Il1a, Il1b, and Il1rn. GO analysis 286 

suggested that this macrophage population was involved in healing during inflammation, the 287 

regulation of type I and III hypersensitivities, and antigen processing and presentation (Fig. 4E). 288 

In contrast, macrophage population 2 was noted to express an abundance of chemokines, 289 

including Ccl2, Ccl4, Ccl7, Ccl8, and Ccl12, as well as many complement-associated genes 290 

(Fig. 4B). Indeed, leukocyte activation, complement activation, and humoral response genes 291 

were the most significantly enriched GO categories in this macrophage population (Fig. 4E). 292 

The third macrophage population expressed Ccl17 and Ccr7 and was enriched in ribosomal 293 

small-unit biogenesis, translation, and antigen-processing functions (Fig. 4B and E). Importantly, 294 
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macrophages in normal mouse pancreas weakly expressed genes found in macrophage 295 

population 2 and 3 from early KIC mice, suggesting that the normal pancreas macrophages 296 

could be noncommitted macrophages residing in tissue in the normal organ that are induced to 297 

adopt a distinct phenotype upon tumor initiation (Fig. 4B).   298 

 299 

The late KIC tumor featured two macrophage subpopulations (Fig. 4C). Macrophage population 300 

1 highly expressed genes such as S100a8 and Saa3, which have been shown to be expressed 301 

in lipopolysaccharide-treated monocytes [15]. Moreover, numerous chemokines were elevated 302 

in this population such as Ccl2, Ccl7, Ccl9, Ccl6, Cxcl3, and Pf4 (Fig. 4D). GO analysis revealed 303 

this population is likely associated with Stat3 activation, leukocyte chemotaxis, and response to 304 

lipopolysaccharide and inflammatory stimuli (Fig. 4F). These data suggest that macrophage 305 

population 1 was inflammatory in nature. Macrophage population 2 of late KIC tumors was rich 306 

in MHC-II antigen presentation molecules: Cd74, H2-Aa, H1-Ab1, H2-Dma, H2-Dmb1, H2-307 

Dmb2, and H2-Eb1 (Fig. 4D), and GO analysis highlighted antigen presentation and adaptive 308 

immune response pathways as being elevated (Fig. 4F). Consistently, in late KPfC tumors, we 309 

also observed two distinct populations of macrophages with similar features (Supplementary 310 

Fig. 3). Interestingly, we did not observe a macrophage population in late tumors that correlated 311 

with macrophage population 1 from the early tumors, suggesting that this population might 312 

undergo negative selection or a differentiation into inflammatory and/or MHC-II–rich 313 

macrophages during tumor progression.   314 

 315 

We also compared the features of the total macrophage clusters between early and late KIC 316 

tumors and observed a substantially enhanced macrophage inflammatory signature as the 317 

tumor progressed (Fig. 4G). A wide variety of inflammatory genes increased, including Il1a, Il1b, 318 

Il1r2, and Il6. GO analysis of this gene list highlighted leukocyte chemotaxis and inflammatory 319 

response functions as increased in advanced KIC tumors (Fig. 4H). These data suggest that 320 

PDA progression is characterized by an increase in inflammatory features in macrophages.      321 

 322 

Fibroblast heterogeneity during PDA progression 323 

In normal pancreas and early KIC tumors, we had identified three distinct populations of 324 

fibroblasts, while in late KIC only two fibroblast populations were noted (Fig. 1B-D). To ascertain 325 

the relationship between these fibroblast populations and the dynamics of their phenotypic 326 

changes during PDA progression, we projected fibroblasts from the three analyses onto a single 327 

tSNE plot and applied a graph-based clustering algorithm (Fig. 5A) which revealed three distinct 328 
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molecular subtypes of fibroblasts in the normal pancreas, early KIC tumors, and late KIC 329 

tumors. The overlay demonstrates that the normal pancreas and early KIC tumors contained all 330 

three fibroblast subtypes while the late KIC contained only two (Fig. 5A), confirming our initial 331 

analysis (Fig. 1B-D). Specifically, this analysis demonstrated that fibroblast population 1 (FB1) 332 

and fibroblast population 3 (FB3) found in normal and early KIC pancreas were present in the 333 

late KIC tumor whereas fibroblast population 2 (FB2) was absent. 334 

 335 

In the normal pancreas, FB1, FB2, and FB3 made up 35.4%, 56.9% and 7.7% of the total 336 

fibroblasts, respectively (Supplementary Fig.4A). In early KIC tumors, although the total 337 

fibroblasts expanded (Fig. 1C), the ratios of each fibroblast population remained similar. 338 

Furthermore, in the late KIC tumors, FB1 and FB3 were present in nearly equal proportions of 339 

46.5% and 53.5%, respectively (Supplementary Fig.4A). Each fibroblast population was 340 

characterized by distinct marker genes. For example, FB1 markedly expressed Cxcl14, Ptn, and 341 

several genes mediating insulin-like growth factor signaling such as Igf1, Igfbp7, and Igfbp4. 342 

FB2 specifically expressed Nov, a member of the CCN family of secreted matricellular proteins 343 

[16] as well as Pi16, which has been shown to be expressed in fibroblast populations in various 344 

tissue types [17], in addition to Ly6a and Ly6c1. FB3 showed distinct expression of mesothelial 345 

markers such as Lrrn4, Gpm6a, Nkain4, Lgals7, and Msln [18] in addition to other genes 346 

previously shown to be expressed in fibroblasts such as Cav1, Cdh11, and Gas6 [19-21].   347 

 348 

Hierarchical clustering of the most significant genes for each fibroblast subtype confirmed the 349 

persistence of FB1 and FB3 during the progression of PDA (Fig. 5B) and that they exist across 350 

different advanced-stage PDA GEMMs (KPC and KPfC), suggesting a consistent cell of origin. 351 

Interestingly, the gene expression heatmap also indicated that the FB2 population started to 352 

move toward an FB1-like expression profile in early KIC tumors, suggesting FB1 and FB2 might 353 

converge into a single CAF population with FB1 features by late invasive disease. Of note, Il6, 354 

Ccl2, Ccl7, Cxcl12, and Pdgfra were expressed in FB1 and FB2 in the normal pancreas and 355 

early KIC tumors, and showed greater expression in FB1 of late KIC (Fig. 5C). In contrast, the 356 

myofibroblast markers Acta2 and Tagln were expressed by a portion of FB3. These data 357 

support the presence of previously described, mutually exclusive, inflammatory (FB1) and 358 

myofibroblastic (FB3) CAF subtypes [22-24]. Interestingly, FB3 also expressed numerous MHC-359 

II–associated genes (Fig. 5C). GO analysis suggested that FB1 was involved in an acute phase 360 

response and inflammatory response, FB2 was more associated with physiological functions of 361 

fibroblasts, while FB3 had antigen processing and presentation through the MHC-II pathway 362 
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and had complement activation functions (Fig. 5D). Furthermore, we analyzed genes that 363 

increased in FB1 and FB3 during PDA progression, and found that FB1 showed a progressive 364 

increase in the expression of genes associated with inflammatory response and chemotaxis 365 

(Fig. 5E and Supplementary Fig. 4B) while FB3 genes displayed increased function on 366 

translation during disease progression, possibly due to enhanced antigen processing activity. 367 

These data suggest that FB1 is an inflammatory population and the inflammatory feature 368 

increases during PDA progression, while FB3 consists of the well-studied myofibroblast 369 

population, and displays an enrichment for class 2 MHC genes.    370 

 371 

We also found that some genes essentially exclusive to FB3 in the normal and early KIC 372 

pancreas became expressed in FB1 and FB3 populations in late KIC, marking these genes as 373 

potential global fibroblast markers in advanced PDA. One such gene was Cdh11 (Fig. 5C). We 374 

validated these data by immunohistochemistry. We found in late KIC tumors, stromal staining 375 

for αSMA and PDGFRα were nearly mutually exclusive, whereas CDH11 showed uniform 376 

staining across all morphologically discernable fibroblasts (Fig. 5F). Taken together, these data 377 

provide the first in vivo description of all CAF populations during PDA progression. 378 

 379 

Mesenchymal cancer cells and CAFs show evidence of increased epigenetic regulation and 380 

super-enhancer activity in advanced PDA 381 

Unique molecular identifiers (UMI) serve to barcode each input mRNA molecule during cDNA 382 

library generation, enabling the determination of initial transcript number even after cDNA library 383 

amplification [25]. We compared UMI counts across all cell types between early and late KIC 384 

tumors (Fig. 6A and B). In early lesions, there was a marked increase in UMI in the beta islet 385 

cells (median: 2849, range: 1322-12,857), which might indicate that increased transcriptional 386 

activity is a means by which the endocrine requirements of these cells are met. No other cell 387 

population in the early KIC tumor displayed this level of UMI. The early KIC cancer cells 388 

displayed a relatively low UMI count (median: 1979, range: 1163-7735). In contrast, the 389 

mesenchymal cancer cell population in the late KIC tumor displayed a marked increase in total 390 

UMI count with a median count of 18,334 and range of 4433-50,061 (Fig. 6C). The epithelial 391 

cancer cells in the late KIC also displayed an increased UMI, albeit to a far lesser degree than 392 

the mesenchymal cancer cell population (median: 10,368, range: 4940-30,440). 393 

 394 

We reasoned that the increased transcriptional activity may be associated with increased 395 

activity of epigenetic regulation as well as super-enhancer [26]. BRD4 belongs to the 396 
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bromodomain family of transcriptional regulators and is a key regulator of super-enhancer 397 

activity [27]. Prior studies have shown that MYC activity is promoted by super-enhancer activity 398 

in PDA [28]. We found that in late KIC and KPfC tumors, Brd4 was expressed highly in epithelial 399 

and mesenchymal cancer cells while Myc was expressed mainly in the mesenchymal cancer 400 

cell population (Fig. 6C, Supplementary Fig. 6). In addition, several genes encoding high-401 

mobility group A proteins (Hmga1, Hmga1-rs, Hmga2) were markedly expressed in late KIC and 402 

KPfC mesenchymal cancer cells. HMGA proteins are chromatin-associated proteins that 403 

regulate transcriptional activity, including enhancesome formation [29]. Lastly, critical 404 

components of the SWI/SNF complex (Smarcb1, Arid1a, Arid2), which are essential in 405 

nucleosome remodeling and transcriptional regulation [30], were also expressed highly in 406 

epithelial and mesenchymal cancer cells of the late KIC, but not cancer cells in the early KIC 407 

lesion. Taken together, these data provide multiple lines of evidence to suggest that the 408 

transcript load of a more aggressive mesenchymal cancer cell population is increased relative to 409 

cancer cells in early lesions or epithelial cancer cells in advanced PDA. 410 

 411 

Interestingly, we also noted that fibroblasts in late KIC tumors also showed an increased UMI 412 

(median: 14,538, range: 4461-37,497). They also displayed an increased expression of super-413 

enhancer and other epigenetic transcriptional regulator genes in contrast to fibroblasts from 414 

normal mouse pancreas or early KIC pancreas (Fig. 6D). These data are suggestive of 415 

increased super-enhancer and transcriptional activity as normal pancreas fibroblasts become 416 

CAFs. 417 

 418 

We validated these single-cell RNA expression data using three-color immunohistochemical 419 

analysis of late KIC tumors: SOX9 was used as a pan-cancer cell marker, vimentin as a 420 

mesenchymal marker, and BRD4 was a surrogate marker for super-enhancer activity. We 421 

identified positive co-staining for vimentin and Brd4 in CAFs, positive triple-staining 422 

(vimentin+/Sox9+/Brd4+) in mesenchymal cancer cells, and single staining of Sox9 in epithelial 423 

cancer cells that localized to more differentiated, duct-like structures in the advanced tumors 424 

(Fig. 6E). Next, we performed immunohistochemical analysis on 16 whole tumor human 425 

pancreatic cancer sections using an antibody against H3K27ac, a commonly accepted marker 426 

of increased gene regulatory element activity [26, 31]. The malignant epithelium and stromal 427 

fibroblasts were scored separately. These analyses showed markedly positive 3+/3+ staining in 428 

the stromal fibroblasts of all whole tumor sections (Fig. 6F). In 6/16 cancer epithelia the score 429 

was 1+ and 10/16 scored 2+, with no samples showing a cancer epithelial scoring of 3+. Taken 430 
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together, these are the first data indicating differential super-enhancer activity in distinct tissue 431 

compartments of PDA.  432 

 433 

Discussion 434 

We have carried out an scRNA-seq of different stages of the KIC GEMM, in addition to late 435 

KPfC and KPC tumors in an effort to agnostically profile the phenotypic changes of cancer and 436 

stromal cells during PDA progression. We have established the emergence of a mesenchymal 437 

cancer cell population as a late-stage tumor event and have identified novel features of different 438 

macrophage and fibroblast populations. This significantly improves our understanding of PDA 439 

progression and lays the foundation for the development of novel therapeutic approaches. 440 

 441 

PDA pathogenesis involves metaplasia of normal acinar cells to ductal epithelium, which in turn 442 

undergo neoplastic transformation in a KRAS-driven manner [32]. Malignant ductal epithelium 443 

may then assume more aggressive, mesenchymal features as the disease progresses. In this 444 

study, mesenchymal cancer cell populations were noted in late-stage tumors. Our data support 445 

a model in which mesenchymal features of cancer cells are acquired later in the disease 446 

process, although others have argued that this can be one of the earliest events in PDA [33]. 447 

Mesenchymal cancer cell populations have been studied extensively in pancreatic cancer 448 

mouse models and has been shown to be critical to chemotherapeutic resistance while their 449 

contribution to metastasis has been more controversial [34, 35]. Mesenchymal cancer cells 450 

have previously demonstrated an increased protein anabolism and activation of the 451 

endoplasmic reticulum–stress-induced survival pathways in a PDA GEMM [36]. 452 

 453 

Indeed, in the late KIC model, ribosomal pathways were the most significantly upregulated 454 

pathways in cancer cells (Fig. 2E-H). It is likely that the demand for increased ribosomal activity 455 

stems from high transcriptional activity governed by epigenetic mechanisms in the 456 

mesenchymal cancer cells, as we also saw markedly increased UMI counts in this population 457 

(Fig. 6B). The bromodomain and extraterminal (BET) family of proteins such as BRD4, which is 458 

markedly upregulated in cancer cells and fibroblasts of late-stage PDA (Fig. 6C and D), serve to 459 

recruit regulatory complexes to acetylated histones at enhancer sites, resulting in increased 460 

transcription [37]. Previously, a combination approach using a BET protein inhibitor and a 461 

histone deacetylase inhibitor led to near-complete tumor regression and improved animal 462 

survival in a PDA GEMM [28]. Super-enhancer activation has recently been shown to be 463 

fundamental in the pathophysiology of a variety of neoplasms [38] and is intimately associated 464 
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with Hmg2a in PDA, as super-enhancer attenuation has been demonstrated to downregulate 465 

Hmg2a expression and the growth of PDA cells in a three-dimensional in vitro model [39]. Our 466 

study is the first to demonstrate that these epigenetic regulatory mechanisms in PDA are 467 

present in specific tissue compartments, namely mesenchymal cancer cells and CAFs. Future 468 

efforts to target super-enhancer activity in PDA should consider distinct tissue compartments 469 

governing the sensitivity and resistance to novel therapeutics.    470 

 471 

Our data revealed two molecular subtypes of macrophages in advanced PDA (Fig. 4). One 472 

expressed numerous chemokine and inflammation-associated genes while the other was rich in 473 

MHC-II–associated genes. In a previous study, MHC-II–positive macrophages were isolated 474 

from orthotopic breast tumors and highly expressed CCL17, consistent with our data [40]. In 475 

parallel with our study, MHC-IIlow macrophages were found to be highly enriched for numerous 476 

chemokines. Moreover, in an orthotopic hepatoma mouse model, an early MHC-II+ macrophage 477 

population appeared to suppress tumor growth but an MHC-IIlow macrophage population 478 

became the predominant macrophage population as the tumor progressed, resulting in a 479 

protumor phenotype [41]. Nonetheless, to confirm their pathophysiological significance, 480 

functional studies are required in which inducible selective ablation [42] is performed on the two 481 

late-stage PDA macrophage subpopulations using specific markers we have identified in this 482 

study. Zhu and colleagues [43] have shown that bone marrow-derived monocytes make up 483 

approximately 80% of MHC-II–positive macrophages in a PDA GEMM whereas MHC-II–484 

negative macrophages in normal pancreas and PDA were shown to be maintained 485 

independently of monocyte contributions. Monocyte-independent MHC-IIlow tissue resident 486 

macrophages expanded during tumor progression and contributed to PDA growth and survival. 487 

Conversely, Sanford and colleagues [44] have shown that monocytes can give rise to a pro-488 

inflammatory macrophage population in a PDA mouse model, which when antagonized with 489 

neutralizing antibodies against CCR2, resulted in decreased tumor growth and reduced 490 

metastases in vivo [44]. These data highlight the need for an scRNA-seq study on macrophage 491 

populations in PDA GEMMs with labelled bone marrow replacement to reconcile these 492 

discrepancies.  493 

 494 

More importantly, in the studies of tumor-associated macrophages, inflammatory chemokines 495 

are commonly used to indicate an M1 type of macrophage, which are normally associated with 496 

immune-stimulatory functions. Nevertheless, our study indicates that a distinct M1/M2 497 

macrophage phenotype is not readily discernable at the single-cell level. Instead, as PDA 498 
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progresses, an inflammatory feature is substantially increased, and this accompanies an 499 

increase of an important M2 macrophage marker, ARG1 (Fig. 4F and H). This raises questions 500 

on the M1/M2 classification system, as the inflammatory feature is associated with the 501 

progression of PDA. Future studies should focus on the function of these inflammatory 502 

macrophages in PDA in addition to validating markers for macrophage classification. 503 

  504 

While numerous studies have generally shown that CAFs are tumor-promoting in the biology of 505 

PDA and other carcinomas [45, 46], recent studies have found that the function of CAFs in PDA 506 

biology are more varied. Özdemir and colleagues [42] demonstrated that the depletion of 507 

αSMA+ cells from the microenvironment in a PDA GEMM resulted in shortened survival and 508 

poorly differentiated tumors [42], and low myofibroblast tumor content was shown to be 509 

associated with worse survival in human PDA sections. These data prompted a paradigm shift 510 

whereby certain CAFs may function to constrain, rather than promote, PDA. Moreover, until 511 

recently, the molecular heterogeneity of CAFs in PDA has not been well-appreciated. The 512 

primary attempt to characterize fibroblast heterogeneity in PDA demonstrated that mouse 513 

pancreatic stellate cells (PSCs) could be induced to express αSMA in vitro when directly co-514 

cultured with primary mouse PDA cells in an organoid co-culture system [22]. These 515 

myofibroblastic CAFs were designated as “myCAFs.” This was distinct from IL6+ fibroblasts that 516 

were produced in vitro when PSCs were indirectly co-cultured with mouse PDA organoids 517 

through a semi-permeable membrane. The IL6+ fibroblasts were also positive for PDGFRα and 518 

numerous other cytokines and therefore termed inflammatory CAFs or “iCAFs.” The 519 

immunohistochemistry of human and mouse PDA tissue showed distal IL6+ stroma as a distinct 520 

population from the peritumoral αSMA+ stroma. Subsequent studies in PDA GEMMs 521 

demonstrated that the iCAF population can mediate pro-tumorigenic properties and is a 522 

potential therapeutic target in an attempt to sensitize PDA to immunotherapeutic strategies [23, 523 

24].  524 

 525 

Our current study is the first to demonstrate the existence of three distinct molecular subtypes of 526 

fibroblasts in the normal mouse pancreas, which in turn gave rise to two distinct subtypes of 527 

CAFs that were largely conserved across three different PDA GEMMs. We noted that FB1 528 

expressed insulin-like growth factor signaling genes (Igfbp7, Igfbp4, and Igf1) in addition to 529 

Pdgfra, Cxcl12, Il6, and several other cytokines (Ccl11, Ccl7, Ccl2, and Csf1). We propose that 530 

our FB1 population is the previously described iCAF population and hence likely pro-531 

tumorigenic. Conversely, the FB3 population was positive for the myofibroblast markers Acta2 532 
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and Tagln, and therefore most closely represents the previously described myCAF population. 533 

Importantly, our agnostic approach did not identify any further putative CAF populations and so 534 

we support the two-CAF model proposed by Öhlund and colleagues [22]. 535 

 536 

In summary, this report systematically outlines the cellular landscape during the progression of 537 

PDA and highlights the cellular heterogeneity in PDA pathogenesis. As such, future targeted 538 

therapeutic strategies should be developed with their intended target subpopulation in mind.           539 

 540 
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Figure Legends 664 

 665 

Figure 1. Cellular heterogeneity during PDA progression. A) Representative H&E sections 666 

of the normal pancreas, early KIC lesion, and late KIC lesion (magnification: 20x). B) tSNE plot 667 

of normal pancreas displaying 2354 cells comprising 8 distinct cell populations. C) tSNE plot of 668 

the early KIC lesion displaying 3524 cells containing 9 cells types with the emergence of the 669 

cancer cell population. D) tSNE plot of the late KIC tumor showing 804 cells and 7 distinct 670 

populations. Stacked violin plots of representative marker gene expression for each of the cell 671 

populations seen in the E) normal pancreas, F) early KIC lesions, and G) late KIC lesions.  672 

 673 

Figure 2. Analysis of early and late KIC cancer cell populations demonstrate the 674 

emergence of the mesenchymal cancer cell population as a late event. A) tSNE plots of the 675 

early KIC lesion demonstrated the expression of known epithelial markers in the sole cancer 676 

population (black outline). Mesenchymal markers were absent in this population. B) tSNE plots 677 

demonstrating the emergence of two cancer cell populations in the late KIC tumor. One cancer 678 

cell population expressed the epithelial markers (smaller population outlined in black) and a 679 

second expressed the mesenchymal markers (larger population outlined in black). C) Violin 680 

plots showing the high expression of epithelial markers in the early KIC cancer cell population 681 

and late KIC epithelial cancer cell population but not in the mesenchymal population. 682 

Mesenchymal markers were overexpressed in the mesenchymal cancer cell population but not 683 

in the early KIC or late KIC epithelial cancer cell populations. D) Single-cell profiling heatmap of 684 

all early and late KIC cancer cells displaying differentially expressed genes between the three 685 

cell populations. Gene names are listed in the boxes on the far right of the heatmap. Each 686 

column represents an individual cell and each row is the gene expression value for a single 687 

gene. E) KEGG pathway analysis and F) gene ontology analysis comparing all early KIC cancer 688 

cells against all late KIC cancer cells. Red bars are increased categories and blue bars are 689 

decreased categories. G) KEGG and BIOCARTA pathway analysis and H) gene ontology 690 

analysis comparing all early KIC cancer cells against only the late KIC epithelial cells. Red bars 691 

are categories increased in the late KIC and blue bars are decreased in the late KIC. (****P < 692 

0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).       693 

 694 

Figure 3. Comparison between cancer cells of KIC and KPfC tumors. A) tSNE plot of the 695 

late KPfC lesion displaying 2893 cells and 8 distinct cell populations. B) Stacked violin plots 696 

showing representative marker gene expression for each of the cell populations seen in the late 697 
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KPfC lesion. C) Single-gene tSNE plots of the KPfC tumor displaying the presence of epithelial 698 

markers (Ocln, Gjb1, and Tjp1) in the epithelial cancer cell population (upper black outlined 699 

population) and mesenchymal markers in the mesenchymal cancer cell population (lower black 700 

outlined population). D) Violin plots showing the overexpression of epithelial markers in the 701 

epithelial cancer cell population and mesenchymal markers in the mesenchymal cancer cell 702 

population. E) KEGG and BIOCARTA pathway analysis comparing all late KIC to all late KPfC 703 

cancer cells. Red bars are categories increased in the late KIC and blue bars are increased in 704 

KPfC. F) Single-cell profiling heatmap comparing all cancer cells in the KIC versus all cancer 705 

cells in the KPfC. Each column represents an individual cell and each row is the gene 706 

expression value for a single gene. (****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).       707 

 708 

Figure 4. scRNA-seq analysis of KIC tumor progression reveals multiple subpopulations 709 

of macrophages. A) tSNE plot of three macrophage subpopulations in the early KIC tumor. B) 710 

Heatmap depicting the 30 top significantly overexpressed genes in each of the three early KIC 711 

macrophage subpopulations. Macrophages from the normal pancreas are displayed (far left 712 

group). Each column represents an individual cell and each row is the gene expression value for 713 

a single gene. C) tSNE plot representation of two macrophage subpopulations in the late KIC. 714 

D) Heatmap depicting the 30 top significantly overexpressed genes in each of the two late KIC 715 

macrophage subpopulations. Each column represents an individual cell and each row is the 716 

gene expression value for a single gene. E) GO analysis of biological processes in the three 717 

macrophage subpopulations seen in the early KIC. F) GO analysis of biological processes in the 718 

two macrophage subpopulations of the late KIC. G) Violin plots of the expression of 719 

inflammatory genes and Arg1 comparing the macrophages in early and late KIC. H) GO 720 

analysis of biological processes that are upregulated in the late KIC macrophages relative to 721 

early KIC macrophages. (****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).       722 

 723 

Figure 5. Analysis of fibroblasts during PDA progression reveals multiple molecular 724 

subtypes. A) All fibroblasts from the normal pancreas, early KIC tumors, and late KIC tumors 725 

were projected onto a single tSNE plot with the FB1, FB2, and FB3 populations distinguished by 726 

pink, orange, and brown, respectively (upper left panel). Normal pancreas fibroblasts were 727 

highlighted in red (upper right panel), early KIC fibroblasts in green (lower left panel) and late 728 

KIC fibroblasts in blue (lower right panel). Normal pancreas and early KIC contained fibroblasts 729 

in all three groups whereas the late KIC had only FB1 and FB3. B) Heatmap displaying the top 730 

significant genes (cutoff: P < 10-40) for each of the three fibroblast populations. Thirty random 731 
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cells from each fibroblast population are displayed. All three late-cancer GEMMs (late KIC, 732 

KPfC, and KPC) display only FB1 and FB3 fibroblast populations. C) Violin plots demonstrating 733 

representative marker genes for each fibroblast subtype: FB1 overexpressed cytokines and 734 

Pdgfra. FB3 overexpressed mesothelial markers, myofibroblast markers, MHC-II molecules and 735 

Cdh11. D) Gene ontology analysis of the top biological processes in each of the three fibroblast 736 

subtypes. E) GO analysis of genes upregulated in late FB1 and FB3 compared to early FB1 and 737 

FB3 in KIC, respectively. F) Immunohistochemical analysis of PDGFRα, αSMA, and CDH11 738 

stained serially on the same slide. Colors were deconvoluted into a single color layer. PDGFRα 739 

and αSMA staining were mutually exclusive, whereas CDH11 was a pan-CAF marker 740 

(magnification: 20x). (****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05).       741 

 742 

Figure 6. Analysis of transcriptional activity in different stages of PDA reveals differential 743 

epigenetic and super-enhancer activity in distinct tissue compartments. A) tSNE plot of 744 

UMI counts in the early and B) late KIC. C) Violin plots of epigenetic regulatory genes in the 745 

cancer cell populations of normal pancreas, early KIC, and late KIC. D) Violin plots of epigenetic 746 

regulator genes in the normal, early fibroblast, and late fibroblast populations showing their 747 

upregulation in CAFs. E) Sequential triple immunohistochemical staining on the same late KIC 748 

tumor section for cancer cells (SOX9, pink), mesenchymal cells (vimentin, brown) and super-749 

enhancer activity (BRD4, blue). Well-differentiated ductal epithelium stained solely for SOX9 750 

(green outline). Mesenchymal cancer cells (blue arrows) and CAFs (brown arrows) both show 751 

co-staining with BRD4. F) Immunohistochemical analysis of human PDA whole tissue sections 752 

using the H3K27ac antibody. These representative figures from four different human PDAs 753 

demonstrate the 3+/3+ staining in the stromal fibroblasts (red arrows) with 1-2+ staining in the 754 

cancer epithelium (magnification: 20x).   755 

 756 

  757 
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Supplementary Figure 1. Ultrasound image of early KIC mouse (39 days old), 1 day prior to 758 

sacrifice. Two-dimensional measurement of the neoplastic lesion is denoted in teal (1.10 mm x 759 

0.82 mm). V = ventral surface, D = dorsal surface, S = spleen.   760 

 761 

Supplementary Figure 2. A) tSNE plot of KPC (6 months) displaying 1007 cells making up 8 762 

distinct cell populations as indicated. B) Stacked violin plots of marker genes and UMI for each 763 

of the 8 KPC populations.  764 

 765 

Supplementary Figure 3. Heatmap depicting gene expression levels (horizontal) of single cells 766 

(vertical) in the macrophage populations of the KPfC GEMMs. Proinflammatory (Macrophage 1) 767 

and MHC-II–rich (Macrophage 2) subtypes are noted below the heatmap.  768 

 769 

Supplementary Figure 4. A) The relative proportions of FB1, FB2, and FB3 in the normal 770 

mouse pancreas, early KIC lesions, and late KIC lesions. B) Genes increased most significantly 771 

in the FB1 and FB3 populations as the normal pancreas progressed to early KIC and then to 772 

late KIC.    773 

 774 

Supplementary Figure 5. Violin plots depicting gene expression of Myc and epigenetic 775 

regulatory genes in the KPfC epithelial and mesenchymal cancer cell populations.  776 

 777 

 778 
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