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1 Abstract1

Maximising the durability of crop disease resistance genes in the face of pathogen evolution is a2

major challenge in modern agricultural epidemiology. Spatial diversification in the deployment of3

resistance genes, where susceptible and resistant fields are more closely intermixed, is predicted4

to drive lower epidemic intensities over evolutionary timescales. This is due to an increase in the5

strength of dilution effects, caused by pathogen inoculum challenging host tissue to which it is not6

well-specialised. The factors that interact with and determine the magnitude of this spatial effect are7

not currently well understood however, leading to uncertainty over the pathosystems where such a8

strategy is most likely to be cost-effective. We model the effect on landscape scale disease dynamics9

of spatial heterogeneity in the arrangement of fields planted with either susceptible or resistant10

cultivars, and the way in which this effect depends on the parameters governing the pathosystem11

of interest. Our multi-season semi-discrete epidemiological model tracks spatial spread of wild-type12

and resistance breaking pathogen strains, and incorporates a localised reservoir of inoculum, as well13

as the effects of within and between field transmission. The pathogen dispersal characteristics,14

any fitness cost(s) of the resistance breaking trait, the efficacy of host resistance, and the length15

of the timeframe of interest, all influence the strength of the spatial diversification effect. These16

interactions, which are often complex and non-linear in nature, produce substantial variation in the17

predicted yield gain from the use of a spatial diversification strategy. This in turn allows us to18

make general predictions of the types of system for which spatial diversification is most likely to be19

cost-effective, paving the way for potential economic modelling and pathosystem specific evaluation.20
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These results highlight the importance of studying the effect of genetics on landscape scale spatial21

dynamics within host-pathogen disease systems.22

Key words: Crop disease, Durable resistance, Evolutionary epidemiology, Gene-for-gene system,23

Mathematical modelling, Optimal deployment, Spatial dynamics, Spatial heterogeneity24

2 Introduction25

The evolution of pathogen populations in response to the use of resistant crop cultivars is a major26

area of concern for global food production. There is also environmental concern, as a lower efficacy27

of resistant crops generally leads to a greater reliance on chemical pesticides, with potential negative28

impacts on non-agricultural ecosystems. Increasing the durability of crop disease resistance, defined29

as the period of time that resistance remains effective with its widespread cultivation, is therefore30

an important focus for plant breeders and epidemiologists (Johnson, 1979). Resistances can break31

down in a matter of years or even months, with resistances to fungal and bacterial diseases generally32

breaking down faster than those for viruses, in part due to the often lower mutational fitness costs in33

cellular pathogens (Garcia-Arenal and McDonald, 2003). The resultant effect of this breakdown can34

be a significant reduction in crop yields, underlining the need to understand how host resistances35

can be effectively deployed.36

The interaction between plant disease resistance and corresponding pathogen virulence, defined37

here as the qualitative ability of a pathogen to infect a host, often takes the form of a gene-38

for-gene relationship (Flor, 1971). This genetic system is defined by a single R gene in the host39

that recognises, and provides qualitative resistance to, a single corresponding avirulence gene in40

the pathogen. Often this avirulence gene has an important role as an effector in the mechanism of41

infection (Cui et al., 2015). Mutations in the avirulence gene can cause it to evade the corresponding42

R gene and become ‘resistance breaking’ or ‘virulent’ (Flor, 1971). However, there is substantial43

evidence that resistance breaking traits in plant pathogens have high reproductive fitness costs, with44

examples in plant viruses (Fraile et al., 2011), and basidomycetes (Thrall and Burdon, 2003, Bruns45

et al., 2014). These costs have the potential to prevent the resistance breaking strain from completely46

dominating when a mixture of host cultivars are deployed. On a fully susceptible host, which can47

be infected by both wild-type and resistance breaking pathogen strains, the costs of the resistance48

breaking trait cause it to experience negative selective pressure. In the absence of immigration or49

new mutation, this would ultimately lead to loss of the resistance breaking strain from the pathogen50

population. Such loss of unnecessary virulence is seen in field experimental evolution studies, where51
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the lack of positive selection can result in a reduced frequency of individual resistance breaking52

pathogen strains (Bousset et al., 2018). On the other hand, mutation to virulence can occur quite53

frequently, with wild-type viruses for example becoming resistance breaking with as few as one or54

two nucleotide substitutions in the genes affecting avirulence (Harrison, 2002). This can lead to55

resistance breaking strains persisting at very low background frequencies in pathogen populations,56

even in the absence of selection from the corresponding resistant hosts (Stam and McDonald, 2018).57

As with any process which occurs over relatively long periods of time and over large spatial scales,58

mathematical modelling is a useful tool for examining the factors affecting resistance durability. In59

recent years, modelling in this area has integrated population genetics and epidemiology to consider60

durability largely in terms of the overall amount of host plant material infected in a given time61

period. van den Bosch and Gilligan (2003) introduced the number of additional uninfected host62

growth days as a measure of resistance durability, moving the focus away from simply looking63

at pathogen genotype frequencies as had often been done previously (Brown, 1995, Lannou and64

Mundt, 1996). The work by van den Bosch and Gilligan (2003) was further developed by Fabre65

et al. (2012), who represented the seasonally disturbed nature of the agricultural environment with a66

semi-discrete model (Mailleret and Lemesle, 2009). In the Fabre et al. (2012) model, disease spread67

occurs in continuous time during cropping seasons but is reset upon harvesting, with dynamics in68

subsequent years being affected by a reservoir component which allows the pathogen to overwinter69

between discrete seasons (Burdon and Thrall, 2008). Fabre et al. (2012) also implicitly characterised70

landscape spatial structure by modifying the relative contributions of within field, between field, and71

reservoir driven infection. This characterisation captures the overall degree of connectedness between72

different fields, along with the relative importance of ongoing primary infection from the reservoir73

component, but takes no account of explicit spatial effects such as dispersal distances or the scale or74

pattern of spatial heterogeneity. Results from the study by Fabre et al. (2012) highlighted the impact75

of resistance gene choice on durability, in terms of how easily it can be overcome by mutations in76

the pathogen avirulence gene, and with what associated fitness costs.77

It is known from both theoretical and experimental studies that the mixing of cultivars with78

differing resistance properties can reduce the rate of disease spread in single and multi-pathogen79

strain systems (Mundt, 2002, Zhan and McDonald, 2013). This can occur through dilution effects,80

where some of the force of infection from a given pathogen strain is wasted due to its reduced ability,81

or even inability, to infect the portions of the host population on which it is not specialised (Mundt,82

2002). It has been found in some theoretical model pathosystems that within-field cultivar mixing is83

more effective at controlling disease spread than planting some fields wholly with susceptible plants84

and others with resistant plants (Skelsey et al., 2010). There are however frequent complications85
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associated with the use of within-field mixtures, including phenotypic differences between host va-86

rieties, such as in harvest dates, along with the perceived need for product purity (Burdon et al.,87

2016). These factors, which in part explain the limited use of mixtures in agriculture in the de-88

veloped world, highlight the need to understand the effects on disease dynamics of employing host89

diversification at larger scales than within a single field, i.e. at the landscape or between field scale.90

The number of studies looking at the effects of landscape scale host diversification combined91

with long range pathogen dispersal is limited, no doubt held back by the largely field scale nature92

of empirical work in this area (Plantegenest et al., 2007). This topic has received a degree of93

attention in theoretical studies however, with Skelsey et al. (2010) finding that the clustering of94

potato cultivation reduced the spread of late blight between clusters, but increased overall epidemic95

intensity due to higher spread within clusters. It has been posited that this scenario can potentially96

create a trade-off between within and between patch dispersal, resulting in maximised dispersal at97

intermediate scales of spatial clustering (Skelsey et al., 2013). Spatial structure is also relevant over98

longer timescales, with Papäıx et al. (2013) showing, in a general theoretical metapopulation study,99

that spatial clustering of habitat patches facilitates specialisation within a population, in addition to100

driving increased evolutionary speeds.101

One component of landscape scale spatial structure that can potentially be optimised for disease102

control and resistance durability is the scale of spatial heterogeneity in the deployment of different103

host cultivars. The mechanism behind the efficacy of mixtures suggests that mixing host genotypes104

at smaller scales of spatial heterogeneity, and thereby creating smaller genotype unit areas (GUAs),105

would benefit disease control by decreasing connectivity between patches of the same host cultivar106

(Mundt, 2002). A modelling study by Papäıx et al. (2014), concerning a single pathogen strain,107

found similar benefits to mixing crop genotypes at smaller spatial scales when using major genes108

conferring complete resistance. However these authors also found that for some levels of incomplete109

resistance, small patches of partially resistant crop could act as sinks for nearby pathogen populations110

in susceptible patches, and thereby act as stepping stones to increase overall disease incidence in111

the landscape with greater field mixing.112

Some studies have looked more explicitly at resistance durability against multiple pathogen113

strains over evolutionary timescales. Sapoukhina et al. (2009) showed, using a reaction-diffusion114

model, that random mixtures in the host landscape provide greater long term disease suppression115

compared with patchy mixtures at larger scales of spatial heterogeneity. This is supported by a recent116

modelling study by Papäıx et al. (2018), who showed that low levels of spatial aggregation, in a mixed117

landscape of fields planted with either susceptible or resistant cultivars, reduced epidemic intensities118

over both short term epidemiological timescales and at the long term evolutionary equilibrium. A119
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field experimental evolution study by Bousset et al. (2018) provides a degree of empirical support for120

this general theory, with results suggesting that higher ‘genetic connectivity’ within a host population121

facilitates higher levels of infection. Arguably, a potential weakness of this study was the implicit122

representation of ‘genetic connectivity’ by greater experimental inoculation of host variety patches123

by their specialist pathogen strains, which means that it did not truly demonstrate a landscape scale124

spatial effect.125

A number of recent theoretical studies have begun comparing and contrasting the various avail-126

able strategies for the optimal deployment of resistance genes, such as using mosaics (between field127

spatial diversification), mixtures, rotations and pyramids (Fabre et al., 2015, Djidjou-Demasse et al.,128

2017, Rimbaud et al., 2018). We believe however that the specific role of spatial diversification and129

the dynamics which affect this strategy are not currently well understood. While existing studies130

consistently point to smaller scales of spatial heterogeneity being optimal for durable and effec-131

tive disease control in multi-strain systems, there is generally little investigation of the factors that132

influence the strength of this spatial effect. In order for such spatial strategies to be employed in133

commercial agriculture, they will need to be cost effective, in that the benefit to resistance durability134

of planting fields of different cultivars at smaller scales of spatial heterogeneity must offset the likely135

increased financial cost and operational difficulty of farming in this manner. The principal aim of136

this study is therefore to examine the factors interacting with, and influencing the strength of, any137

such spatial effect. These factors include the dispersal characteristics of the pathogen, the fitness138

costs associated with the resistance breaking trait, the efficacy of the host resistance gene, and the139

length of the timescale of interest.140

3 Materials and Methods141

We extend the model used by Fabre et al. (2012) to explicitly include spatial structure and different142

pathogen strains. Our SI (Susceptible, Infected) model tracks two pathogen strains, a ‘wild-type’143

(wt) and a ‘resistance breaking’ (rb) genotype (the principal variables and parameters used in this144

model are summarised in table 1). The underlying host landscape consists of a number (nf = 100)145

of cultivated fields, each with a constant number of plants/plant tissue units (np = 1000) of either146

a susceptible (S) or resistant (R) cultivar type (note that the use of continuous state variables147

combined with the method of epidemic parametrisation makes the results ultimately independent148

of np). The proportion of resistant fields (the cropping ratio) is set evenly with that of susceptible149

fields at φ = 0.5.150

Resistance acts in a gene-for-gene system where the wt strain can freely infect S fields, but151
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has reduced fitness (that may be zero) when infecting R fields. The rb strain has equal infective152

ability on both host genotypes, but may have a reproductive fitness cost (δ) (expressed on both host153

genotypes) associated with its resistance breaking trait. The focus of our model on disease spread154

at the landscape scale, driven by long range pathogen dispersal, makes it appropriate for application155

to any gene-for-gene crop disease system with a foliar wind dispersed pathogen (such as many rusts156

or powdery mildews).157

The overall number of infected plants in each field is simulated for nd = 120 days over ny seasons158

in a semi-discrete modelling approach. In this, continuous time dynamics in ordinary differential159

equations (ODEs) are used for the within season component, and discrete dynamics are used for the160

pathogen infecting and overwintering in the reservoirs (Mailleret and Lemesle, 2009). The reservoir161

components are localised to each field, and represent plants found in field margins and hedgerows, as162

well as crop volunteers, that act as alternative hosts for the pathogen. In all simulations, Iwt,x,y(0) =163

Irb,x,y(0) = 0 (i.e. the number of infected plants within fields is set to zero at the beginning of each164

season), with all epidemics started by primary infection from the reservoir of inoculum.165

The total area under the disease progress curve (AUDPC) over the ny seasons is used as the166

measure of epidemic intensity (Madden et al., 2007). As a measure of resistance durability this167

is equivalent to the number of uninfected host growth days used by van den Bosch and Gilligan168

(2003). The AUDPC is normalised to a value between 0 and 1 to obtain the average proportion of169

plants infected across the sequence of epidemic seasons (epidemic intensity = AUDPC/(nfnpnynd)).170

Healthy plants can become infected through three alternative routes: from infected plants in the171

same field at rate βF , from infected plants in other fields at rate βC , and from the reservoir of172

inoculum at rates αwt,y or αrb,y in season y for the wt and rb pathogen strains respectively. The173

pathogen population size in the reservoir is not explicitly modelled but is represented by these rate174

parameters (αwt,y and αrb,y) by scaling the baseline rate of infection from the reservoir component175

αE.176

The values of the transmission parameters βF , βC and αE were optimised by following Fabre177

et al. (2012) to calculate the relative contributions of the three infection routes to, and the overall178

intensity of, a baseline epidemic scenario (see Supporting Information Notes S1). The version of the179

model used for this optimisation uses a landscape with susceptible fields only (φ = 0). The values180

of the transmission parameters are such that in this case the three transmission routes have an181

equal contribution to maintaining the epidemic, and the mean proportion of plants infected during182

a season is 0.5.183

The fields are located within a square landscape of 10x10 arbitrary distance units, where the184

distances (d) between each pairwise combination of fields are calculated and used in a normalised185
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negative exponential dispersal kernel (of the form K = η2

2πe
−ηd with mean dispersal distance 1/η) to186

calculate each pairwise strength of spatial coupling. Each simulation was repeated 100 times, with187

different random field locations in each replicate.188

To explore the effect of the scale of spatial heterogeneity in the arrangement of S and R fields189

on epidemic intensities, the landscape area is arranged (with cropping ratio φ = 0.5) into a number190

of patches. Each patch only contains fields of a single host genotype (S or R). At the largest191

scale the landscape is split in half, with all the S fields in one half and all the R fields in the other.192

At the smallest scale the landscape is split into 64 patches with alternating host genotypes. Four193

intermediate scales are also used, for a total of six landscape templates with different patch sizes194

and scales of spatial heterogeneity (table 2). We characterise the scale of spatial heterogeneity via195

the interior edge/area (E/A) ratio of each landscape (see Supporting Information Notes S2). This196

metric captures the degree of contact between the two different host patch types, relative to the197

overall size of the landscape. It serves as an effective proxy for the overall proximity of the two host198

field types to each other, and can also be applied to landscapes with irregular patch shapes, variable199

patch sizes, and different total areas. The pattern of host genotype patches is used as a template to200

place the two types of field, using random coordinates, in alternating patches within the landscape201

(Fig. 1).202

The spread of the two pathogen strains in a given field within a season follows the general203

pseudo-equation form:204

Rate of change of
infected plants =

(
Uninfected

plants
)( Rate of

primary (reservoir)
infection

+ Rate of
between field

infection
+ Rate of

within field
infection

)
(1)

and is described by the deterministic ODE system:205

dIwt,x,y
dt = γ∗ (np − Iwt,x,y − Irb,x,y)

(
αwt,x,y + βC

( nf∑
z=1

Iwt,z,yK[z, x]
)

+ βF Iwt,x,y

)
, (2)

dIrb,x,y
dt = (1− δ) (np − Iwt,x,y − Irb,x,y)

(
αrb,x,y + βC

( nf∑
z=1

Irb,z,yK[z, x]
)

+ βF Irb,x,y

)
, (3)

in which206

γ∗ =


1 if x is of type S

γ if x is of type R
, (4)

in Eqn (2).207

In Eqns (2) and (3), x indicates variables pertaining to a particular field, K[z, x] is the dispersal208

kernel coupling field z to field x, and z 6= x. Here Iwt,x,y is the number of plants infected by the209
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wt strain while Irb,x,y is the number infected by the rb strain (both being in field x and in season210

y). The cost of the resistance breaking trait is δ, which is assumed act on the rate of sporulation211

on both the primary and reservoir host, while γ is the susceptibility of the R host to the wt strain.212

If resistance to the wt strain is complete γ = 0, meaning that the wt epidemic in an R field (Eqn213

(2) where γ∗ = γ) does not occur.214

The terms αwt,x,y and αrb,x,y represent the specific infection rates of each pathogen genotype215

from the local reservoir, where the reservoir host is assumed to be selectively neutral to both pathogen216

genotypes. These rates are subject to change between seasons from initial values of αwt,x,0 = αE217

and αrb,x,0 = θαE, where θ is the background equilibrium frequency of the rb genotype resulting218

from the mutation-selection balance in the absence of positive selection from the deployment of the219

resistant host (Fabre et al., 2012). The contributions of the reservoir components to the epidemic220

in season y are given by:221

αwt,x,y = λ
αE(Awt,x,y−1)

A0/nf
+ (1− λ)αwt,x,y−1 (5)

αrb,x,y = λ
αE(Arb,x,y−1)

A0/nf
+ (1− λ)αrb,x,y−1 (6)

Here, Awt,x,y−1 =
∫ nd

0 Iwt,x,y−1(t) dt and Arb,x,y−1 =
∫ nd

0 Irb,x,y−1(t) dt, the AUDPCs for the epidemics222

in the previous season caused by the wt and rb pathogen genotypes respectively in a given individual223

field x. The baseline landscape AUDPC A0 = ∑nf

x=1(
∫ nd

0 IS,x,y(t) dt), calculated from one season in224

the fully susceptible baseline model, is used to scale the previous season’s epidemic to measure the225

proportional reduction in epidemic intensity due to the presence of R fields.226

The parameter λ ∈ [0, 1] characterises the reservoir. High values of λ indicate a rapidly changing227

reservoir with primary infection largely depending on the intensity of the previous season’s field228

epidemics. This scenario could potentially be caused by a short reservoir host lifespan, a high rate229

of spread within the reservoir, or a small reservoir size. Low values of λ indicate a more ‘stable’230

reservoir, with a larger effect of older epidemics damping changes to αwt,x,y and αrb,x,y. A value of231

λ = 0.5, equally weighting both terms in Eqns (5) and (6), is used here.232
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Table 1: Parameters and variables used in the mathematical model

Symbol Parameter/Variable Description Constraints/Values

Iwt,x,y Number of plants in field x and season y infected by the wt strain

Irb,x,y Number of plants in field x and season y infected by the rb strain

nf Number of fields 100

np Number of plants/plant tissue units per field 1000

φ Cropping ratio (proportion of resistant fields) 0.5

nd Number of days in a season 120

ny Number of seasons 1 ≤ ny ≤ 80

θ Background equilibrium frequency of rb strain on S host 0.01

δ Fitness cost of the rb trait 0 ≤ δ ≤ 1

γ Susceptibility of the R host to the wt strain 0 ≤ γ ≤ 1

K[z, x] 2D normalised dispersal kernel coupling field z to field x z 6= x, K = η2

2πe
−ηd

η Dispersal kernel parameter 3 levels: 1, 2, 3

A0 Baseline AUDPC for one season in a fully susceptible landscape A0 = ∑nf

x=1(
∫ nd

0 IS,x,y(t) dt)

βF Within field infection rate (see text and SI)

βC Between field infection rate (see text and SI)

αE Baseline rate of infection from the reservoir (see text and SI)

αwt,y Rate of wt infection from the reservoir

αrb,y Rate of rb infection from the reservoir

Awt,x,y−1 AUDPC for the wt epidemic in field x in the previous season
∫ nd

0 Iwt,x,y−1(t) dt

Arb,x,y−1 AUDPC for the rb epidemic in field x in the previous season
∫ nd

0 Irb,x,y−1(t) dt

Table 2: The edge/area ratios of the landscapes at each of the six scales of spatial heterogeneity (see also Fig. 1
and Supporting Information Notes S2).

Number of patches Edge/area (E/A) ratio

2 10/102 = 0.1

4 20/102 = 0.2

8 40/102 = 0.4

16 60/102 = 0.6

32 100/102 = 1

64 140/102 = 1.4
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Figure 1: Example random field arrangements for two patch templates within the agricultural landscape.

4 Results233

An illustrative time series of seasonal disease progress curves for an example landscape with a high234

edge/area ratio is shown in Fig. 2. The average seasonal epidemic intensity (average proportion of235

plants infected throughout the epidemic) over a 40 season time period invariably decreases as the236

edge/area (E/A) ratio of the landscape is increased (Fig. 3). This is due to the larger dilution caused237

by greater mixing of the two host genotype field types at smaller scales of spatial heterogeneity.238

Epidemic intensity is initially measured here over a 40 season time period, to balance short term239

and long term evolutionary dynamics, although the effect of varying the time frame of interest is240

described in section 4.4. The reduction in epidemic intensities due to the planting of S and R241

fields at smaller scales of spatial heterogeneity within the landscape (higher E/A ratios) is variously242

referred to as the ‘spatial effect’, ‘spatial suppressive effect’ or ‘suppressive effect’ throughout the243

remainder of this article.244
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Figure 2: Seasonal disease progress curves for each infection class (genotype combination) in an example landscape
simulation replicate. The intensity of disease changes between seasons due to the changing contribution of primary
infection from the local reservoirs, which in turn is based on the local epidemic intensities in the previous season.
The two field types in the landscape are highly mixed (edge/area ratio = 1.4), the cost of the rb trait δ = 0.3 and
the R host is completely resistant to the wt strain γ = 0. Only 25 seasons are shown here so that the individual
disease progress curves can see clearly seen.

The wt epidemic is suppressed at higher E/A ratios (Fig. 3) due to the smaller spatial grain245

causing an increase in the proportion of dispersed wt inoculum from S fields that is wasted as it246

lands on, but is unable to infect, R fields. The rb epidemic in R fields meanwhile is suppressed by247

a corresponding process in which there is an increase in the proportion of rb inoculum that lands248

on S fields. The rb inoculum is in direct competition with wt inoculum for uninfected host tissue249

within S fields, resulting in a lower intensity rb epidemic than would take place in an R field. The250

consequent rb genotype dispersal from these S fields back onto the nearby R fields therefore has a251

lower force of infection than in R field to R field transmission over the same distance. The reduction252

in the intensity of the rb epidemic on R fields is compensated to a certain extent by the increase253

in the frequency of the rb genotype on S fields as the two field genotypes are more closely mixed254

together in space. Whether this compensation ultimately increases or decreases the intensity of the255

overall landscape rb epidemic, as the E/A ratio is increased, depends upon the genetic parameters256

(Fig. 4).257

4.1 Effect of the kernel parameter η258

The gradient of the spatial suppressive effect (the rate of change in the response of average seasonal259

epidemic intensity to E/A ratio) decreases as the E/A ratio is increased (Fig. 3). The rate of260

gradient change at low E/A ratios is faster however with a higher mean dispersal distance (flatter261

dispersal kernel). This washes out and limits the strength of the spatial effect at smaller scales of262

spatial heterogeneity, where the high mean dispersal distance of the pathogen limits the impact of263
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any further decrease in the scale of spatial heterogeneity. In general, this means that in the reverse264

direction, as the mean dispersal distance decreases, the spatial suppressive effect is relevant over a265

larger range of E/A ratios.266
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Figure 3: The effect of the kernel parameter η on the relationship between landscape edge/area ratio and
epidemic intensities. Epidemic intensities over evolutionary timescales are reduced at smaller scales of spatial
heterogeneity. The spatial scale at which a spatial strategy is effective depends on the scale of pathogen
dispersal. For all simulations presented here, the number of seasons ny = 40, the cost of the rb trait δ = 0.3 and
the R host is completely resistant to the wt strain γ = 0.

4.2 Effect of the cost of the rbrbrb trait δ267

The overall size of the spatial effect increases as the cost of the rb trait δ is increased from 0 to268

0.4 (Fig. 4). Furthermore, the extent to which the pathogen genotype frequencies on the S host269

change, as we move from larger to smaller scales of spatial heterogeneity, also depends on the cost270

of the rb trait. When δ = 0 (Fig. 4a) the rb genotype is able to take advantage of the greater271

proportion of host fields that it can infect, and the close proximity of the two field types at smaller272

spatial scales of heterogeneity, allowing it to outcompete the wt genotype. This replacement of273

pathogen genotypes at different E/A ratios is seen to a lesser extent when δ = 0.2 (Fig. 4b), and is274

almost absent when δ = 0.4 (Fig. 4c). As the fitness cost δ increases the rb genotype is unable to275

compete as effectively with the wt genotype on the S host at small scales of spatial heterogeneity.276

This is despite the close proximity of large numbers of R fields, which act as a major source of rb277

inoculum, to the S fields.278
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Figure 4: The effect of the fitness cost of the resistance breaking trait (δ) on the relationship between landscape
edge/area ratio and epidemic intensities. The strength of the spatial effect increases as the fitness cost of the
resistance breaking trait is increased from low values. The pathogen genotype frequencies depend on the
scale of spatial heterogeneity. For all simulations presented here, the number of seasons ny = 40, the R host is
completely resistant to the wt strain γ = 0 and the kernel parameter η = 2.

Plotting overall epidemic intensity against the full range of values for the fitness cost of the279

rb trait (δ), at both the low and high ends of the E/A ratio scale (i.e. for E/A= 0.1 and 1.4),280

allows these contrasting spatial scenarios to be compared (Fig. 5). For both E/A ratios, epidemic281

intensities decrease as δ is increased, up to δ = 0.6 where the rb trait is too expensive for that282

pathogen genotype to invade and there is no further effect of increasing δ (Fig. 5a). The variability283

and strength of the spatial suppressive effect can be ascertained by plotting the difference between284

the epidemic intensities for the two E/A ratio values (Fig. 5b). The strength of the suppressive285

effect increases from δ = 0 to 0.3, but decreases from δ = 0.4 to 0.6. A small suppressive effect286

is still seen at δ = 0 due to the small scale of spatial heterogeneity disrupting the transient wt287

epidemic, before the wt strain is outcompeted by the rb and reaches its near zero evolutionary288

equilibrium frequency.289

The initial increase in the strength of the suppressive effect is due to a steeper gradient of change,290

in the response of overall epidemic intensity to changes in δ, at small scales of spatial heterogeneity291

(E/A ratio = 1.4) (Fig. 5a). This steeper change with δ is in turn caused by rapidly changing rb292

dynamics on the S host, which are a larger driver of system sensitivity with greater field mixing293

(Supporting Information Fig. S2). Here, any increase in δ reduces the competitive ability of the294

rb genotype against the wt on susceptible hosts, which consequentially increases the amount of rb295

inoculum that is ‘wasted’ as it disperses onto these S hosts, thereby increasing the spatial effect296

strength.297

The subsequent fall in the strength of the suppressive effect is correspondingly due to a steeper298
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gradient of change with δ at large scales of spatial heterogeneity (E/A ratio = 0.1) (Fig. 5a). In299

this range of δ values there is an increased sensitivity to changes in δ of the rb epidemic on the R300

host, relative to that on the S host (Supporting Information Fig. S2). This is primarily because301

the rb genotype is already unable to compete effectively with the wt on the susceptible host in this302

range, and therefore does not respond to further changes in the fitness cost. These rapidly changing303

R rb dynamics are a larger driver of system sensitivity with less field mixing.304

The value of δ for which the gradient of overall epidemic intensity change with δ is equal at both305

small and large scales of spatial heterogeneity (δ = 0.3 to 0.4), is the point of maximum spatial306

suppressive effect on epidemic intensities (i.e. the maximum distance between the curves). At this307

point the combined sensitivity effects, of rb dynamics on both S and R hosts to changes in δ, have308

the same net result at high and low landscape E/A ratios.309
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Figure 5: The effect of the fitness cost of the resistance breaking trait (δ) on the reduction in epidemic intensities
from using a high compared to a low landscape edge/area ratio. The strength of the spatial effect depends
on the fitness cost of the resistance breaking trait, with a peak effect strength at an intermediate cost.
The average epidemic intensities resulting from the low and high ends of the E/A ratio scale are shown in (a), while
the absolute differences between the results for these two E/A ratio values are shown in (b). Note that using the
proportional differences in epidemic intensity produces a qualitatively similar pattern. Error bars show the 5th and
95th percentiles of the simulation replicates with stochastic landscape generation. For all simulations presented here,
the number of seasons ny = 40, the R host is completely resistant to the wt strain γ = 0 and the kernel parameter
η = 2.
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4.3 Partial resistance310

Here, we relax the assumption that the wt strain cannot infect resistant hosts (Fig. 6). As γ is311

increased above 0, the wt genotype becomes able to infect the R host, and at higher frequencies312

with smaller scales of spatial heterogeneity (high E/A ratios) (Fig. 6a,b). The reduced efficacy of313

the resistance gene allows the wt strain to compete more effectively with the rb strain on the R314

host, particularly at high E/A ratios where the field types are more greatly mixed in space. The315

strength of the spatial suppressive effect, from using a high rather than a low E/A ratio, is shown in316

Fig. 6d. For an intermediate cost of the rb trait (δ = 0.3), the strength of the spatial suppressive317

effect decreases to zero as γ is increased from 0 to 0.6. This effect is due to a reduction in the318

proportion of wt inoculum that is ‘wasted’ in its increased dispersal onto R fields at smaller scales319

of spatial heterogeneity. When γ = 1 there is no effect of the scale of spatial heterogeneity, as the320

landscape is then made up of entirely susceptible hosts, and therefore the wt genotype is able to321

fully outcompete the rb genotype.322

There is a range of γ values, from 0.6 to 0.9 for δ = 0.3 (Fig. 6d), for which the strength of323

the spatial suppressive effect dips below zero and becomes negative, indicating that smaller scales of324

spatial heterogeneity increase epidemic intensities. This increase only occurs at δ and γ combinations325

where the rb strain is not fit enough to invade, or is only present at extremely low frequencies (Fig.326

7). In addition to this, the increased epidemic intensities are only observed at medium to high327

values of γ, and are most apparent at medium γ values. This effect is due to the inability of the328

wt pathogen genotype to sustain epidemics in the R host fields without the presence of nearby S329

fields to act as a source of wt inoculum. At higher E/A ratios however, where the fields types are330

mixed at smaller scales of spatial heterogeneity, the closer proximity of S field wt sources enables331

greater infection of the R field sinks, thereby increasing the overall proportion of infected plants332

in the landscape, despite the reduction in epidemic intensities on the S fields themselves. At very333

high values of γ, the wt genotype is fit enough to better sustain epidemics at large scales of spatial334

heterogeneity (low E/A ratios), so the spatial effect is reduced in strength (and cannot occur at335

all with γ = 1). At low values of γ, spatial suppression of epidemic intensities are still observed,336

despite the non-invasion of the rb strain, due to the very low fitness of the wt genotype on the R337

host, which severely limits wt epidemics in R fields at any scale of spatial heterogeneity.338
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(d) Absolute differences

Figure 6: The effect of the susceptibility of the R host to the wt pathogen strain (γ) on the reduction in epidemic
intensities from using a high compared to a low landscape edge/area ratio. The strength of the spatial effect is
decreased at lower efficacies of the host R gene, as long as the R gene is not so weak that the resistance
breaking strain is not fit enough to invade the landscape. The average epidemic intensities resulting from
the low and high ends of the E/A ratio scale are shown in (c), while the absolute differences between the results
for these two E/A ratio values are shown in (d). Note that using the proportional differences in epidemic intensity
produces a qualitatively similar pattern. The relationship between the full range of landscape edge/area ratios and
epidemic intensity, for each host/pathogen genotype combination, is shown for two values of γ in (a) and (b), and
their corresponding positions along the x axis in (c) are marked. Error bars show the 5th and 95th percentiles of the
simulation replicates with stochastic landscape generation. For all simulations presented here, the number of seasons
ny = 40, the cost of the rb trait δ = 0.3 and the kernel parameter η = 2.
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Figure 7: The combined effects of the fitness cost of the resistance breaking trait (δ), and the susceptibility
of the R host to the wt pathogen strain (γ), on the absolute reduction in epidemic intensities from using a high
compared to a low landscape E/A ratio. The baseline epidemic intensities from using a low E/A ratio are shown
in Supporting Information Fig. S3. Note that using the proportional differences in epidemic intensity produces a
qualitatively similar pattern. The strongest spatial effect occurs with a 100% effective resistance gene that
imposes intermediate fitness costs on the resistance braking pathogen strain. The spatial effect operates
in the reverse direction if the resistance breaking strain is not fit enough to invade the landscape, so that
only the wild-type strain is present, and the R gene is of intermediate to lower efficacy. In the region where
the rb strain does not invade (defined arbitrarily as when the rb epidemic intensity < 0.01), there is no consistent
response to changes in δ on the horizontal axis (due to the absence of the rb strain). For all simulations presented
here, the number of seasons ny = 40 and the kernel parameter η = 2.

4.4 Effect of timescale339

By relaxing the assumption of a 40 season time period, we can measure the strength of the spatial340

suppressive effect, or the difference in epidemic intensities between low and high landscape E/A341

ratios, across a wide range of eco-evolutionary timescales. The average seasonal epidemic intensity342

generally increases as the number of seasons is increased (Fig. 8a,b,c). This is due to the increasing343

frequency of the rb genotype, which facilitates greater infection of R fields as the system approaches344

its long term evolutionary equilibrium. In the case where the fitness cost of the rb trait δ = 0, there345

is no significant spatial suppressive effect on epidemic intensities over 80 seasons (i.e. the red and346

blue curves converge in Fig. 8a). Here, the rb strain is able to completely outcompete the wt on347

both host genotypes at the long term evolutionary equilibrium, meaning that the scale of spatial348

heterogeneity has no effect. A transient spatial effect does however occur over a low to medium349

number of seasons, as the system has not yet reached its equilibrium state and the wt strain is still350
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present at significant frequencies.351
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(f) δ = 0.4

Figure 8: The effect of the number of seasons (ny) on the reduction in epidemic intensities from using a high
compared to a low landscape edge/area ratio, at different fitness costs of the resistance breaking trait (δ). The
strength of the spatial effect depends on the length of the time frame of interest. There is the potential
for a peak effect strength over an intermediate number of seasons, which occurs over a greater number of
seasons with a higher fitness cost of the resistance breaking trait. The average epidemic intensities resulting
from the low and high ends of the E/A ratio scale are shown in (a), (b) and (c), while the absolute differences
between the results for these two E/A ratio values are shown in (d), (e) and (f). Note that using the proportional
differences in epidemic intensity produces a qualitatively similar pattern. Error bars show the 5th and 95th percentiles
of the simulation replicates with stochastic landscape generation. For all simulations presented here, the R host is
completely resistant to the wt strain γ = 0 and the kernel parameter η = 2.

There is a specific number of seasons, for a given fitness cost of the rb trait (δ), over which352

the greatest spatial suppressive effect on epidemic intensities can be achieved (Fig. 8d,e,f). For353

δ = 0 and δ = 0.2 (Fig. 8d,e) this peak effect strength occurs over a relatively short time period,354

approximately 4 and 11 seasons respectively, whereas with δ = 0.4 the greatest spatial suppressive355

effect is observed as the system approaches its long term evolutionary equilibrium.356

The initial increase in the strength of the spatial suppressive effect, from the first season to the357

intermediate peak, is due to a faster increase in epidemic intensities at a low E/A ratio compared358
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with a high E/A ratio. This is because the newly emergent rb genotype is able to propagate rapidly359

in the highly aggregated R fields. The rb genotype initially spreads less quickly in S fields, and360

therefore at high E/A ratios, due to the high level of competition with the coexisting wt pathogen361

genotype. Beyond the peak in spatial suppression, if it is present, the strength of the suppressive362

effect declines as epidemic intensities begin to increase faster at high compared to low E/A ratios.363

This is due to the increased importance of the rb strain spread on S hosts to the sensitivity of the364

system to changes in season number. The overall rb frequency in the landscape is higher, than it365

is over a lower number of seasons, resulting in a faster growth rate on the S host as it competes366

more effectively with the wt strain. The increase in the intensity of the S rb epidemic increases367

the overall connectivity for the rb strain in landscapes with a high E/A ratio, thereby increasing the368

epidemic intensity for the R rb epidemic as well. The rb spread on the R host with a low E/A ratio369

however, is already well advanced at this stage, causing its rate of spread to decline.370

The pattern here is that of a trade-off in the relative sensitivity to change in season number of371

the rb epidemics in the S and R hosts, with the peak in the strength of spatial suppression being372

where the combined sensitivity effect of the two processes is the same at both small and large scales373

of spatial heterogeneity. This peak occurs over a higher number of seasons with larger values of δ374

because the greater trait cost means that the rb strain spreads more slowly on the R host, and takes375

longer to become competitive with the wt strain on the S host. There is no intermediate peak with376

δ = 0.4 (Fig. 8f) because the rb trait is too costly for the rb strain to spread as effectively on the377

S host (Fig. 4c).378

The variation in epidemic intensities due to the stochastic placement of fields in the landscape379

(size of the error bars), is highest at the points where the strength of the spatial suppressive effect380

is greatest (Fig. 8). This implies that the effect of the specific stochastic arrangement of fields,381

and therefore the precise degree of spatial heterogeneity, is greatest when the general sensitivity to382

spatial dynamics is maximised.383

5 Discussion384

Our model shows that planting susceptible and resistant host crop fields at smaller scales of spatial385

heterogeneity reduces epidemic intensities over a wide range of eco-evolutionary timescales. Such386

spatial strategies would therefore increase the durability of disease resistance, using a definition of387

durability analogous to the additional yield measured by the number of uninfected host growth days388

(van den Bosch and Gilligan, 2003). The underlying mechanism is similar to the dilution effect that389

has been reported to reduce short term epidemic intensities in within field cultivar mixtures (Mundt,390
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2002). Smaller scales of spatial heterogeneity reduce the local density of a given crop cultivar,391

meaning that some of a pathogen strain’s potential force of infection is wasted as its inoculum392

disperses onto other nearby cultivars on which it has a lower reproductive fitness. This ‘wasted393

inoculum’ effect generally suppresses the epidemics caused by each pathogen strain on the host394

cultivar where they are specialised and have the greatest fitness, while to a smaller extent boosting395

epidemics of that strain on their less preferred host. Whilst this study has focussed on qualitative396

plant resistance genes in a gene-for-gene system, these dynamics should be generally applicable to397

any system where multiple pathogen strains have different relative fitnesses when infecting multiple398

different host genotypes. Indeed, a similar basic spatial effect on resistance durability was observed399

by Papäıx et al. (2018), in a model in which the resistance trait gradually eroded due to progressive400

small mutations in the pathogen population.401

Our results also shed light on a number of the factors determining the strength of this spatial402

suppressive effect. This has significant implications for the potential effectiveness of any such spatial403

strategy if it were implemented by growers, as the benefit in terms of crop yield must outweigh any404

potential economic costs of farming in such a manner. Growing monoculture crops in very large405

fields, with consequentially large scales of spatial heterogeneity, is the norm in many systems of406

developed agriculture, largely for reasons of economic efficiency. It is therefore important that we407

characterise the fundamental eco-evolutionary processes that interact with host spatial structure, as408

these will ultimately play a crucial role in identifying the specific pathosystems where such spatial409

strategies are most likely to succeed.410

The scale of pathogen dispersal within the agricultural landscape must correspond in some sense411

to the scale of heterogeneity implemented in that landscape in order to maximise the effectiveness412

of a spatial diversification strategy. Given that lower mean dispersal distances lead to the spatial413

suppressive effect being relevant over a wider range of scales (Fig. 3), pathogens with more restricted414

ranges of landscape scale dispersal are more likely to be effectively controlled in this manner. The415

underlying idea of requiring different spatial diversification strategies to control pathogens with416

different dispersal characteristics is supported by Sapoukhina et al. (2010). That work, however,417

focussed on the qualitative differences between local short ranged dispersal through diffusion, and418

stratified dispersal that also included a separate long distance component, rather than looking at419

spatial heterogeneity as a continuous scale.420

The spatial suppressive effect of cropping pattern on epidemic spread is maximised at an inter-421

mediate value for the fitness cost associated with the resistance breaking trait (Fig. 5). This peak422

in effect strength is ultimately driven by landscapes with different scales of spatial heterogeneity423

generating different frequencies of interaction between the various host and pathogen genotypes424
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in the system. The epidemic intensities for these different infection classes respond at different425

rates to changes in the cost of the resistance breaking trait, depending on the current value of that426

trait (Supporting Information Fig. S2). It is these different rates of change that drive the variable427

strength of the spatial suppressive effect, and create the peak effect strength at intermediate fitness428

cost values. The exact fitness cost value for this peak in the spatial suppressive effect is lower with429

a less effective resistance gene (Fig. 7).430

A less effective resistance gene lowers the strength of the spatial effect, as long as the resistance431

breaking strain has a high enough fitness to be able to invade the agricultural landscape (Figs 6, 7).432

If this is not the case, and only the wild-type strain is present, intermediate to lower efficacy R genes433

can drive a reverse spatial suppressive effect, where epidemic intensities are higher with smaller scales434

of spatial heterogeneity. This occurs because wild-type epidemics are only able to sustain themselves435

in partially resistant fields when there are nearby susceptible fields to act as inoculum sources. The436

effect is similar to that observed by Papäıx et al. (2014), who showed in a single strain system that437

the directional effect of spatial aggregation depended on the R0 value for the disease epidemic on438

the resistant variety.439

The combined genetic context in this system is created by the combination of the fitness cost440

of the resistance breaking trait and the efficacy of the resistance gene. From this we can conclude441

that a spatial diversification strategy is most likely to be cost effective when using a 100% effective442

major resistance gene that imposes intermediate fitness costs on a resistance breaking pathogen443

strain. Despite this, a spatial strategy is still likely to be at least partially effective in any genetic444

context, as long as the resistance breaking pathogen strain is fit enough to invade and persist within445

the landscape (Fig. 7). The fact that spatial diversification can actually worsen epidemics when446

only a wild-type strain is present, and a partially effective resistance gene is used, highlights the447

necessity of understanding the state of the pathogen community and the genetic nature of the448

system before implementing such control strategies. A spatial strategy will be less effective when449

there are no fitness costs for the resistance breaking strain, however an effect is still observed due to450

the time required for this strain to fully take over the pathogen population. This naturally becomes451

particularly apparent when looking over a lower number of seasons.452

A critical factor that is generally neglected within the study of resistance durability is the length453

of the time frame of interest. If we consider any improvement in durability to be the yield gain454

achieved, this will naturally depend on the time period over which we measure such gains, which455

in practice should itself depend on factors such as the frequency with which new resistant cultivars456

are developed. This timescale will obviously vary for different crop disease systems, and will play a457

significant role in determining whether a spatial strategy has a large enough effect to be economical458
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for practical use. The strength of the spatial suppressive effect depends on the number of seasons459

over which it is measured, with the potential for a peak in spatial effect strength over an intermediate460

number of seasons (Fig. 8), i.e. in between a short term epidemiological timescale and the long461

term evolutionary equilibrium. In a similar manner to the effect of the fitness cost of the resistance462

breaking trait, this occurs because the different infection classes in the system respond at different463

and varying rates to changes in season number. The frequency of these host-pathogen genotype464

combinations, and therefore the effect they have on overall epidemic intensity, depends on the scale465

of spatial heterogeneity in the distribution of host genotypes within the landscape. The resultant466

peak spatial effect occurs over a higher number of seasons with a higher cost of the resistance467

breaking trait, due to the slower spread rate of this resistance breaking strain. Generally this means468

that a spatial strategy is most likely to be effective over short timescales for resistance breaking469

strains that carry little or no fitness costs, and over longer timescales for more costly traits.470

In the current study we have restricted the cropping ratio of the susceptible and resistant cultivars471

to 50 : 50, in order to avoid having to consider potential interactions between the effects of the scale472

of spatial heterogeneity and the amount of resistant crop deployed. The potential ways in which the473

patterns we have described might be influenced by different cropping ratios is a valid area for further474

study however, as is the way that optimal cropping ratios might in turn be influenced by spatial475

dynamics. The non-spatial model of Fabre et al. (2012) demonstrated that the optimal cropping476

ratio (i.e. the proportion of resistant fields) varied from intermediate to high values, and depended477

among other factors on the relative contributions of within field, between field and reservoir driven478

infection. Demographic stochasticity, which has been shown to bias optimal cropping ratios towards479

higher values, is another potential route for further investigation (Lo Iacono et al., 2013). The480

associated chance of pathogen strain extinction at low frequencies or under periodic perturbation481

could potentially interact with the effects of patch size and spatial heterogeneity on disease dynamics.482

In conclusion, this study has demonstrated the key effect that spatial structure can have on483

disease resistance durability. The diversification of resistance genes at small scales of spatial hetero-484

geneity is a potentially valuable strategy for improving long term crop yields, depending on whether485

the strength of the spatial effect leads to such a strategy being economical. Factors such as the486

pathogen dispersal scale, the genetic properties of the host-pathogen interaction, and the time frame487

of interest play a crucial role, and highlight the need for a thorough understanding of any disease488

system to which this strategy is applied.489
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