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Measuring neuronal tuning curves has been instrumental for many discoveries in 1	
neuroscience but requires a-priori assumptions regarding the identity of the 2	
encoded variables. We applied unsupervised learning to large-scale neuronal 3	
recordings in behaving mice from circuits involved in spatial cognition, and 4	
uncovered a highly-organized internal structure of ensemble activity patterns. This 5	
emergent structure allowed defining for each neuron an ‘internal tuning-curve’ that 6	
characterizes its activity relative to the network activity, rather than relative to any 7	
pre-defined external variable – revealing place-tuning in the hippocampus and 8	
head-direction tuning in the thalamus and postsubiculum, without relying on 9	
measurements of place or head-direction. Similar investigation in prefrontal cortex 10	
revealed schematic representations of distances and actions, and exposed a 11	
previously unknown variable, the ‘trajectory-phase’. The structure of ensemble 12	
activity patterns was conserved across mice, allowing using one animal’s data to 13	
decode another animal’s behavior. Thus, the internal structure of neuronal activity 14	
itself enables reconstructing internal representations and discovering new 15	
behavioral variables hidden within a neural code. 16	

	17	

Most neurons in the brain do not receive direct inputs from the external world; rather, 18	
their activity is governed by their interactions with other neurons within and across brain 19	
circuits. Despite this fact, studies in neuroscience typically focus on neuronal 20	
responsiveness to an examined external variable (i.e., a neuronal tuning curve). Rooted 21	
in the emergence in the 1950’s of electrophysiological techniques for recording from 22	
single neurons in vivo, this ‘neural correlate’ approach opened the door to studying how 23	
specific brain circuits form internal representations, and has led to seminal 24	
breakthroughs. Examples of such breakthroughs include the discoveries of orientation 25	
tuning in the visual cortex1, hippocampal place cells2, and entorhinal grid cells3,4. 26	
However, while such analyses remain invaluable for many neuroscientific studies, they 27	
are limited to a-priori defined external variables, overlooking other variables that were not 28	
measured, considered relevant, or observable5–7. With traditional electrophysiological 29	
techniques that permitted recordings from only small numbers of neurons, no feasible 30	
alternatives to this approach existed. Recent advances in multi-electrode and optical 31	
imaging technologies enable simultaneous readout of activity from large neuronal 32	
populations, permitting a qualitatively different approach to study the neural code—via 33	
the attributes of neuronal activity itself.  34	

We hypothesized that the relationships between neuronal population activity patterns 35	
would give rise to a structure within the neuronal activity space that differs across brain 36	
circuits according to their distinct computational roles. Thus, studying the internal 37	
structure of neuronal activity itself could reveal key properties of the neural code that are 38	
specific to a given brain circuit, without relying on measurements of the behavior or the 39	
stimulus. We further hypothesized that characterizing the activity of single neurons with 40	
respect to this structure (rather than relative to any pre-selected external variable), could 41	
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yield internal tuning curves, which capture the properties of classically-computed tuning 1	
curves. Realization of such an approach could enable the investigation of neural coding 2	
in brain circuits for which little is known about the identity of the variables they encode, 3	
and circumvent biases associated with the naïve application of the neural correlate 4	
approach. 5	

 6	

Results 7	

Internal representation of space in the hippocampus 8	

First, we sought to study a brain circuit that is known to encode a canonical variable, and 9	
test whether its coding properties could be extracted from the internal structure of 10	
neuronal activity. Thus, we focused on the dorsal CA1 of the hippocampus, a circuit in 11	
which many neurons are tuned to spatial position2. We used miniaturized head-mounted 12	
microscopes8 to image Ca2+ dynamics in GCaMP6 expressing hippocampal CA1 13	
neurons in freely behaving mice. During imaging, mice ran back and forth along a linear 14	
track to collect water rewards9 (Fig. 1a). After detecting cells and Ca2+ events in the 15	
imaging data9,10, we constructed neuronal ensemble activity vectors of instantaneous 16	
neuronal activity sampled at fixed time bins. To explore the relationships between the 17	
ensemble activity patterns we applied a non-linear dimensionality reduction algorithm 18	
(Laplacian Eigenmaps11; LEM; Supplementary Fig. 1) to the activity vectors (Fig. 1b 19	
and Supplementary Movie 1). This analysis revealed a structure in the reduced 20	
dimensional neuronal activity space, with a high density of data points within a small 21	
number of clusters (clusters A, B, C, D, and E in Fig. 1b), suggesting that throughout the 22	
imaging session, the network leaped between discrete states. Temporally segmenting 23	
the data points into time intervals during which the network remained within a given state, 24	
revealed a recurring cyclic pattern of transitions between network states (Fig. 1c). Within 25	
a cycle, each state appeared only once, except for state C, which appeared twice, in two 26	
different phases. Further analysis revealed that the set of segments of state C consisted 27	
of two separate state subtypes (C1 and C2; Fig. 1d), each corresponding to one of the 28	
two different phases (red and blue segments in Fig. 1c). These analyses allowed us to 29	
portray the intricate structure of network states and their pattern of transitions (Fig. 1e-f). 	30	

By sorting the behavioral data according to the specific network states, we found that 31	
each state corresponded to a different behavior and location along the linear track 32	
(Supplementary Movie 2). Specifically, states A and E, which were symmetrically 33	
located within the internal structure (Fig. 1b), corresponded to drinking at the left and 34	
right sides of the track, respectively. Similarly, the symmetric states B and D 35	
corresponded to turning at the two sides of the track. States C1 and C2 corresponded to 36	
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epochs of running in different directions along the linear track, consistent with the 1	
characteristics expected for spatial coding in one-dimensional environments12,13. Thus, 2	
the internal structure of neuronal activity exposed discrete sets of network states that 3	
corresponded to different combinations of locations and behaviors, without needing to a-4	
priori hypothesize that these specific behavioral states are encoded by hippocampal 5	
neurons. 6	

We next attempted to use the structure of the neuronal activity to characterize the 7	
internal representation of space at a finer resolution, and focused our analysis on states 8	
C1 and C2. We applied the dimensionality reduction procedure separately for the data 9	
within C1 and C2. Then, we estimated the internal dimension of the data14 10	
(Supplementary Fig. 2) of each state subtype and found that both C1 and C2 were one-11	
dimensional (Fig. 1g). By sub-clustering the data points within C1 and C2, we found an 12	
ordered pattern of transitions between the sub-clusters throughout each segment (Fig. 13	
1h), which monotonically covered a one-dimensional continuum of network states. 14	
Consistent with these observations, the trajectory of the network within the internal 15	
structure of neuronal activity reflected the trajectory of the mouse along the track, 16	
permitting accurate reconstruction of position (Fig. 1i; permutation test, p<0.001 for each 17	
mouse, N=4). Note that because the reconstructed trajectory is not calibrated to the 18	
internal symmetry of the encoded variable nor to its identity, we set the reflection degree 19	
of freedom of the internal representation to match the position of the mouse. We then 20	
calculated the internal tuning curves of individual neurons: i.e., the activity of single 21	
neurons with respect to the different network states. The internal tuning curves had 22	
similar properties to those of their corresponding external tuning curves (i.e., place fields) 23	
(Fig. 1j-k and Supplementary Fig. 3a; permutation test, p<0.001 for each mouse, N=4). 24	
These results demonstrate that the relationships among neuronal activity patterns 25	
themselves are sufficient to reconstruct the hippocampal representation of space.  26	
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Fig. 1: Hippocampal internal representation of position obtained without relying on 1	
behavioral data. (a) Ca2+ imaging using miniaturized head-mounted microscopes in the 2	
hippocampal CA1 of freely behaving mice. Mice ran back and forth to collect rewards at the two 3	
ends of a linear track. (b) The distribution of data points in the reduced dimensional space of 4	
neuronal activity forms a small number of dense clusters. (c) The temporal structure of segmented 5	
data reveals a cyclic pattern of transitions between network states. Each state type appeared once 6	
per cycle except for state C which appeared in two different phases. (d) Principal component 7	
analysis applied separately to the segment-level activity patterns of each state indicated that only 8	
state C consists of two completely separate clusters (red and blue, subtypes C1 and C2, 9	
respectively). Histogram of the projections on the first principle component is presented for each 10	
state. Note that the two subtypes consistently appear in two different phases in the cyclic temporal 11	
pattern, as shown in c. (e) The segment-level transition matrix (i.e., the probability of a segment to 12	
be in cluster i, given that the preceding segment is in cluster j) shows a stereotypical pattern of 13	
transitions between the different network states. (f) Illustration of the structure of network states 14	
and the stereotypic pattern of transitions between them. (g) Estimation of internal dimension 15	
calculated separately for data taken from segment subtypes C1 (red) and C2 (blue): Cumulative 16	
number of neighboring data points as a function of the radius in the reduced dimensionality space, 17	
plotted on a log-log scale. The slope of the data is close to one (black lines), indicating a 18	
dimension of one. (h) Sub-clusters within segments of subtype C1 (top) and C2 (bottom) exhibited 19	
a stereotypic temporal structure. Different trajectories within segments of subtype C1 and C2 are 20	
separated by black vertical lines indicate (i) The reconstructed internal position (magenta) and the 21	
actual position (black) of the mouse while freely exploring the linear track. Inset, distribution of the 22	
error in the reconstruction of position (black) versus shuffled data (green). (j-k) For each neuron, 23	
we calculated its internal tuning curve, relative to the internal state of the network (left), and the 24	
external tuning curve, relative to the position of the animal, namely place fields (right). Neuronal 25	
activity within segment subtype C1 is presented next to the activity of the same cells during 26	
leftward running (j), and activity within segment subtype C2 is presented next to the activity of the 27	
same cells during rightward running (k).  28	

 29	
Internal representations in the medial prefrontal cortex 30	
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Thus far, our analysis focused on data recorded from the hippocampus, a brain region in 1	
which the encoding of a known variable (place) is dominant. We next examined whether 2	
a similar analysis can reveal internal representations using recordings from brain circuits 3	
that have not been associated with a canonical encoded variable. To this end, we 4	
focused on the anterior cingulate cortex (ACC), a sub-region within the medial prefrontal 5	
cortex (mPFC) that is involved in multiple high-order cognitive processes15–18. We 6	
conducted Ca2+ imaging in the ACC of freely behaving mice performing the same linear 7	
track exploration task described above for hippocampal imaging (Fig. 2a). Dimensionality 8	
reduction of the neuronal activity revealed a high density of data points within a small 9	
number of clusters (Fig. 2b), similar to our observations in the hippocampus. Next, we 10	
clustered the data points into different network states and calculated their transition 11	
matrix (Fig. 2c), which exhibited a recurring cyclic pattern (Fig. 2c-d). In contrast to our 12	
observations from the hippocampal data, in the ACC the representation of behaviors on 13	
both sides of the track converged onto the same network states (Fig. 2d). Consistent 14	
with this observation, the distribution of the animal's position along the linear track was 15	
symmetrical for each of the identified network states (Fig. 2e). Furthermore, by sorting 16	
the behavioral data according to the network states, we found that each state 17	
corresponded to a distinct behavior, irrespective of the position of the mouse. We termed 18	
these behaviors ‘Rearing’, ‘Turning’, ‘Start run’, ‘End run’, and ‘Drinking’ (Supplementary 19	
Movie 3). We confirmed this clustering-based classification using manual labeling of the 20	
mouse behavior (Fig. 2f).  21	

To study the structure of the neuronal activity in the ACC at a finer resolution, we focused 22	
on the network states that were linked to running (‘Start run’ and ‘End run’). We found 23	
that neuronal activity represented the position of the mouse relative to the start and end 24	
points of each track traversal, regardless of the running direction (i.e. the trajectory 25	
phase; Fig. 2g). Consistent with this observation, constructing internal tuning curves 26	
revealed individual neurons that were tuned to a specific phase, namely, trajectory-phase 27	
cells (Fig. 2h and Supplementary Fig. 4a-b). The internal tuning captured the external 28	
tuning of the same neurons to the trajectory phase (Fig. 2h and Supplementary Fig. 3b; 29	
permutation test, p<0.001 for each mouse, N=3). The observed encoding of trajectory 30	
phase could not be accounted for by velocity or acceleration (Supplementary Fig. 5). 31	
Thus, even in a brain circuit in which less is known about the identity of the encoded 32	
variables, our analysis exposed key properties of the internal representation, and the 33	
encoding of a previously unknown variable.  34	
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Fig. 2: ACC activity reveals a schematic representation of behavior along the linear track. 1	
(a) Ca2+ imaging using miniaturized head-mounted microscopes in the ACC of freely behaving 2	
mice. Mice ran back and forth to collect rewards at the two ends of a linear track. (b) The 3	
distribution of data points in the reduced dimensional space of neuronal activity. The data are 4	
clustered and colored to indicate each of the different clusters. (c) The segment-level transition 5	
matrix shows a stereotypical pattern of transitions between the different network states. (d) A 6	
stereotypic temporal structure of network states (marked by different colors) is observed during 7	
exploration of the linear track (animal position is shown in black). A full running cycle (bounded 8	
between vertical gray lines) corresponds to two cycles of transitions between network states. Inset, 9	
hippocampal data, in which a full running cycle (bounded between vertical gray lines) corresponds 10	
to a single cycle of transitions between network states. (e) The distribution of mouse position along 11	
the linear track is symmetrical for each of the network states. (f) The same distribution presented 12	
in a, with data points colored according to behavioral labeling. (g) Distribution of data points in the 13	
reduced dimensional space of neuronal activity for the two clusters corresponding to running. Data 14	
points are colored according to trajectory phase, i.e., the distance of the mouse from the start of 15	
the track (opposite end for each running direction). (h) For each neuron, we calculated its internal 16	
tuning curve, relative to the internal state of the network (left), and the external tuning curve, 17	
relative to the trajectory phase of the animal (right).  18	

 19	
Different internal structures of neuronal activity in the ACC and the hippocampus 20	
reflect different types of representations of locations and actions 21	

Having found different structures of neuronal activity in the ACC and hippocampus under 22	
the same behavioral task, we sought to further characterize the differences between their 23	
internal representations of locations and actions. Neuronal activity in the ACC, but not in 24	
the hippocampus, was similar during epochs of the same behavioral state at opposite 25	
sides of the track (Fig. 3a, and Supplementary Fig. 6; one sample t-test, p>0.05 and 26	
p<0.05 for each behavioral state for CA1 and ACC, respectively). This distinction 27	
between the neuronal coding in the hippocampus and ACC was also evident when 28	
examining the tuning of individual cells (Fig. 3b and Supplementary Fig. 4). To further 29	
substantiate the differences between the encoding of trajectory phase and position, we 30	
devised a “phase decoder”, and found that in the ACC we could accurately infer the 31	
trajectory phase in a given direction, when the decoder was trained on the relationship 32	
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between neuronal activity and the trajectory phase in the opposite direction (Fig. 3c; 1	
permutation test, p<0.001 for each mouse, N=3). Notably, we could not predict the 2	
trajectory phase when applying the same analysis to hippocampal data (Fig. 3c; 3	
permutation test, p>0.05 for each mouse, N=4). Consistent with these findings, 4	
population activity in the ACC was correlated between symmetrical spatial locations for 5	
opposite running directions along the linear track (Fig. 3d-e). In contrast, in the 6	
hippocampus, neuronal representations differed considerably between the two sides of 7	
the track, and were more sharply tuned to position than in the ACC (Fig. 3f). Overall, we 8	
found that ACC neurons are spatially tuned, but the nature of their spatial representation 9	
is markedly different from the classical spatial tuning properties of hippocampal neurons. 10	

 11	

Fig. 3: The different internal structures in the ACC and the hippocampus reflect different 12	
representations of locations and actions. (a) Pearson correlation between ensemble activity 13	
patterns from the two sides of the linear track, for each behavioral state, for data recorded in the 14	
ACC (left), and the hippocampus (right). Ensemble activity patterns consist of concatenated 15	
epochs from a given behavioral state on the same side of the track. Data show means for N=3 16	
mice in the ACC (left), and N=4 mice in the hippocampus (right). (b) An example trajectory-phase 17	
cell recorded in the ACC (left), and an example place cell recorded in the hippocampus (right). 18	
Black lines show the positions of the animals, and the green and red dots show activity of the 19	
neurons during rightward and leftward running, respectively. (c) Distribution of decoding error of 20	
trajectory phase for data recorded in the ACC (left), and the hippocampus (right). The decoder was 21	
trained on data from running in one direction and tested on data from running in the other 22	
direction. (d) Pearson correlation between ensemble activity patterns from different spatial 23	
locations on the linear track, for data recorded in the ACC (left; averaged over N=3 mice), and the 24	
hippocampus (right; averaged over N=4 mice). Ensemble activity patterns consist of concatenated 25	
epochs from a given location, separated according to the two running directions. (e) Pearson 26	
correlation between ensemble activity patterns from the two sides of the linear track, given the 27	
same trajectory phase, for data recorded in the ACC (blue), and the hippocampus (red). Ensemble 28	
activity patterns are defined as the mean event rate for each neuron given a spatial bin and 29	
running direction. (f) Pearson correlation between ensemble activity patterns for different spatial 30	
displacements on the linear track, for data recorded in the ACC (blue), and the hippocampus (red). 31	
Correlations are averaged over mice and over the two running directions. Data in e-f show means 32	
± SEM, for N=3 mice in the ACC (blue), and N=4 mice in the Hippocampus (red).  33	
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Internal representation of head direction during wake and REM sleep periods 1	

Since our approach does not rely on behavioral measurements, we next asked if we can 2	
use it to expose internal representations even when there is no correspondence between 3	
neuronal activity and the external stimulus or behavior. It has been shown that pairwise 4	
correlations between head direction neurons in the anterior dorsal nucleus of the 5	
thalamus (ADn) and the postsubiculum (PoS) are preserved during sleep19. Therefore, 6	
we analyzed published electrophysiological recordings from the ADn and the PoS19,20 in 7	
mice foraging for food in open environments (Fig. 4a), and sought to compare the 8	
internal structure of neuronal activity during wake and sleep periods. We constructed 9	
neuronal ensemble activity vectors as described above for the Ca2+ imaging data, and 10	
applied dimensionality reduction to the activity vectors, separately for wake periods and 11	
periods of REM sleep. This analysis exposed a ring structure in the reduced dimensional 12	
space of neuronal activity21,22 for both wake and REM data (Fig. 4b-c and 13	
Supplementary Fig. 1c-j). By quantifying the internal dimension14 and topology23–26 of 14	
the data (Supplementary Fig. 7a-d), we found a one-dimensional structure 15	
(Supplementary Fig. 8h), with one component, one hole, and no spaces 16	
(Supplementary Fig. 7e, and Supplementary Fig. 9i), providing an additional indication 17	
that the encoded variable is indeed characterized by a ring topology both during wake 18	
and REM sleep periods. These properties are consistent with the encoding of head 19	
direction previously observed in the ADnand PoS19,27,28. 20	

Based on the temporal contiguity of the network states (Supplementary Fig. 8a-b), we 21	
reconstructed the trajectory of the network within the neuronal activity space and 22	
validated it against the head direction of the mouse. This analysis confirmed that the 23	
reconstructed trajectory reflected the actual head direction, up to the internal symmetries 24	
of a ring to reflection and rotation (Fig. 4d, Supplementary Fig. 8c-d, and 25	
Supplementary Movie 4). By accounting for the activity of each neuron relative to the 26	
network activity states of the entire recorded population, we calculated the internal tuning 27	
curves, and found that they were similar to the external tuning curves (Fig. 4e, 28	
Supplementary Fig. 8e-g). By applying a similar analysis to the data recorded during 29	
REM sleep, we found that the internal tuning curves obtained exclusively during REM 30	
matched the head direction tuning curves during wake periods (Fig. 4e, Supplementary 31	
Fig. 9c-g, and Supplementary Movie 5). Remarkably, based on the internal tuning 32	
curves that were obtained during REM sleep, we were able to accurately decode the 33	
head direction (up to the ring’s internal symmetry) while the mouse was awake and freely 34	
behaving (Fig. 4f). These observations suggest that in certain brain circuits the internal 35	
structure of neuronal activity is conserved irrespective of the animal’s behavior. 36	
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Fig. 4: Internal representation of head direction during wake and REM sleep periods. (a) 1	
Data were obtained from dense electrophysiological recordings in the ADn and PoS, in mice 2	
foraging for food in open environments. (b-c) The distribution of data points in the reduced 3	
dimensional space of neuronal activity is characterized by a ring topology, during wake periods (b) 4	
and during periods of REM sleep (c). Each data point corresponds to the neuronal activity within a 5	
single time frame. (d) The reconstructed internal direction (red) and the actual head direction 6	
(black). Inset, distribution of the error in the reconstruction of head direction (black), versus 7	
shuffled data (green). (e) Internal tuning curve, relative to the state of the network (left, red), 8	
external head direction tuning curve, relative to mouse behavior (center, black), and the internal 9	
tuning curves during periods of REM sleep (right, blue) for four representative cells. (f) The 10	
decoded head direction (red) and the actual head direction (black). Inset, distribution of the 11	
decoding error (black) versus shuffled data (green). The decoder is based on internal tuning 12	
curves obtained exclusively from sleep. 13	
 14	

Conservation of the internal structure of neuronal activity over days and across 15	
individuals 16	

If the internal structure of neuronal activity reflects the computational processes 17	
undertaken by the network, then this structure should be an invariant property. To test 18	
this, we imaged neuronal activity in the hippocampus of mice that visited the same linear 19	
track on multiple days and found that the structure of neuronal activity remained similar 20	
over time (Fig. 5a), despite the substantial turnover of the active cells9,29 (41-64% 21	
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overlap across days). The internal structure of neuronal activity in the hippocampus (Fig. 1	
5b) and in the ADn and PoS (Fig. 5c) was also similar across different mice. To assess 2	
the similarity of the internal structures between mice and over time, we sought to identify 3	
analogous activity patterns across data sets (from different mice or different days), and 4	
test whether these patterns are also associated with similar behaviors. We devised an 5	
across-mice or across-days decoder (Fig. 5d), and found that we could accurately infer 6	
the position (Fig. 5e-f and Supplementary Movie 6) or head direction (Fig. 5g) of a 7	
mouse, based on the mapping between the behavior and activity patterns in another 8	
mouse or another day. Overall, these results demonstrate the conservation of internal 9	
structures of neuronal activity over time and across mice.   10	
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 1	
 2	
Fig. 5: The internal structure of neuronal activity is maintained across days and across 3	
mice. (a) The distribution of data points in the reduced dimensional space of neuronal activity for 4	
hippocampal data from eight different days of the experiment. Note that the distribution of data 5	
points maintains a similar structure across days. (b-c) The distribution of points in the reduced 6	
dimensional space of neuronal activity for hippocampal data (b), and ADn/PoS data (c) from two 7	
different mice. (d) Workflow for the across-mice decoder. Neuronal activity in mouse 1 is 8	
associated with a specific network state within its internal structure of neuronal activity. Based on 9	
the similarity between internal structures, an analogous network state is found in mouse 2. This 10	
network state of mouse 2 is associated with a known external state. The decoded external state of 11	
mouse 1 is set as the same associated external state of mouse 2. (e-g) Distribution of decoding 12	
error for the across-days decoder for hippocampal data (e), the across-mice decoder for 13	
hippocampal data (f), and the across-mice decoder for ADn/PoS data (g).   14	
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Discussion 1	
Here, we introduced a new approach for studying the neural code based on the attributes 2	
of neuronal activity itself. By applying dimensionality reduction to large-scale neuronal 3	
data, we show that the internal structure of neuronal activity allows revealing key 4	
properties of the neural code in a given brain circuit. Previous studies have used 5	
dimensionality reduction methods to explore population-level coding of variables of 6	
interest in high dimensional neural data5,30–36. Unlike previous applications of 7	
dimensionality reduction in neuroscience, we demonstrate that internal representations 8	
and tuning curves can be reconstructed from the internal structure of neuronal activity, 9	
and that such reconstructions can be achieved even in brain circuits where the encoded 10	
variable is unknown. While in this work we used LEM for dimensionality reduction, it is 11	
likely that the approach we introduced here could accommodate other dimensionality 12	
reduction methods as well. Our analysis suggests, however, that non-linear 13	
dimensionality reduction methods are more suitable for studying the internal structure of 14	
neuronal activity, as they allow extracting a structure that accurately reflects internal 15	
representations in cases that linear methods fail (Supplementary Fig. 1).  16	

Since our approach relies on minimal prior assumptions, and is applied irrespective of the 17	
specific identity of the encoded variables, it could circumvent biases and limitations that 18	
are inherent to the standard method of calculating neuronal tuning curves. Furthermore, 19	
calculating internal tuning curves could alleviate the need to set non-adaptive and 20	
arbitrary boundaries between different behavioral states when calculating (external) 21	
tuning curves. For example, place fields are typically calculated after applying position 22	
and velocity thresholds to define periods of locomotion29,37, and only neuronal activity 23	
during those periods is considered in the analysis. Our results demonstrate that neuronal 24	
activity itself can be used to identify behavioral states and the boundaries between them, 25	
enabling analysis that is derived explicitly from the neuronal activity data.  26	

We used our approach to study internal representations in the hippocampus and the 27	
ACC while mice were performing the same behavioral task. Although both brain circuits 28	
exhibited a discrete set of network states that corresponded to different locations and 29	
behaviors, their internal structures of neuronal activity differed, reflecting different types 30	
of internal representations. The hippocampus represented a combination of locations and 31	
actions, and these representations were different between opposite sides of the track. In 32	
contrast, our analysis of recordings from the ACC exposed schema-like representations 33	
of distances and actions that are similar across the opposite sides of the track, including 34	
the encoding of a previously unknown variable – the trajectory phase. Previous work 35	
demonstrated that the mPFC is important for the assimilation of newly acquired 36	
information against prior knowledge, suggesting an underlying schematic organization of 37	
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information38. Our findings are consistent with this notion, and specify how such schemas 1	
can be realized at the neural code level.  2	

By studying internal representations of head direction in the ADn and PoS, we 3	
demonstrated that the internal structure of neuronal activity can reveal internal 4	
representations even when there is no correspondence between neuronal activity and 5	
the external stimulus or behavior (e.g., during sleep). A common practice is to train a 6	
decoder based on neuronal activity patterns that were defined during awake periods, to 7	
identify similar ‘virtual trajectories’ during sleep19,39,40. In contrast to this approach, we 8	
used activity patterns defined during sleep to decipher the behavior of awake animals, 9	
which allows decoding performance to be validated against an actual observed behavior. 10	
Overall, these results demonstrate that the internal structure of neuronal activity reflects 11	
computational properties inherent to a given neural circuit. 12	

Recent studies have shown that different visits to the same familiar environment are 13	
encoded by different subsets of hippocampal neurons9,29. Consequently, it has been hard 14	
to reconcile how memories can be stably stored over the long term in a circuit that yields 15	
an ever-changing neural code. Our findings that the internal structure of neuronal activity 16	
remains stable over time raises the possibility that stability of the neural code is achieved, 17	
in part, through a stable relationship between neuronal population activity patterns. Such 18	
a stable relationship may also support the encoding of new information via its integration 19	
into a pre-existing structured code. We also demonstrated the conservation of the 20	
internal structures of neuronal activity between mice. This conservation allowed us to 21	
infer the position or head direction of a mouse, based on the mapping between the 22	
behavior and activity patterns in another mouse. Thus, the analogy between the internal 23	
structures allows the meaning of network states to be exported from one animal to 24	
another (up to the symmetry of the internal structure). 25	

The internal structure of neuronal activity highlights general features of the computational 26	
task executed by a brain circuit. Consistent with this idea, recent studies have shown that 27	
the same neural circuit may similarly encode different external variables in different 28	
behavioral tasks41–43. For instance, non-spatial representations in the entorhinal cortex 29	
form a hexagonal grid-like pattern42,43, similar to the known spatial tuning of grid 30	
cells3,4,44. Since analogous tuning properties were observed in both cases, it is predicted 31	
that they would have the same internal structure of neuronal activity—a torus45,46. Thus, 32	
the internal structure of neuronal activity serves as a fingerprint of the computations 33	
carried out by different neural circuits, enabling to investigate their function, and even 34	
redefine their identity.   35	
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Supplementary materials: 1	

Materials and methods 2	

Animals and surgical procedures 3	

All procedures were approved by the Weizmann Institute IACUC. We used male mice, 4	
aged 8-12 weeks at the beginning of the study. Mice designated for calcium imaging in 5	
the hippocampal CA1 were housed with 1-4 cage-mates, while mice used for imaging in 6	
the ACC were single housed. All cages contained running wheels. All surgical 7	
procedures were conducted under isoflurane anesthesia (1.5-2% volume). For 8	
hippocampal imaging, we used C57BL/6 wild type mice, which underwent two surgical 9	
procedures: virus injection and glass tube implantation. We injected 400 nL of the viral 10	
vector AAV2/5-CaMKIIa-GCaMP6f47 (~2 X 1013 particles per ml, packed by University of 11	
North Carolina Vector Core) to the CA1 at stereotactic coordinates: -1.9 mm anterio-12	
posterior, -1.4 mm mediolateral, -1.6 mm dorsoventral relative to the Bregma. The 13	
injected mice were allowed to recover in their home-cages for at least 1 week before the 14	
subsequent surgical procedure. We next implanted a glass guide tube directly above the 15	
CA1, as previously described9,29. For ACC imaging, we used CaMKII-tTA and TRE-16	
GCaMP6s double transgenic mice (Jackson stock no 003010 &	024742; referred to as 17	
CaMKII-GCaMP6), bred on a C57BL/6 background. They were implanted directly with a 18	
micro-prism lens (800μm diameter) in the ACC. Stereotactic coordinates of the 19	
implantation were: 1 mm anterior-posterior, 0 mm mediolateral (measured relative to the 20	
medial side of the prism), -1.8 mm dorsoventral from bregma. 21	

 22	

Ca2+ imaging and behavioral setup  23	

Preparatory process 24	

For time-lapse imaging in freely behaving mice using an integrated miniature 25	
fluorescence microscope (nVistaHD, Inscopix), we followed a previously established 26	
protocol9,29. Briefly, at least 3 weeks after the surgical implantation procedure, we 27	
examined Ca2+ indicator expression and tissue health by imaging mice under isoflurane 28	
anesthesia using a two-photon microscope (Ultima IV, Bruker, Germany), equipped with 29	
a tunable Ti: Sapphire laser (Insight, Spectra Physics, Santa Clara, CA). For the CA1 30	
implanted mice, we inserted into the guide tube a ‘microendoscope’ consisting of a single 31	
gradient refractive index lens (0.44 pitch length, 0.47 NA, GRINtech GmbH, Germany). 32	
We selected for further imaging only those mice that exhibited homogenous GCaMP6 33	
expression and healthy appearance of the tissue. For the selected CA1 implanted mice, 34	
we affixed the microendoscope within the guide tube using ultraviolet-curing adhesive 35	
(Norland, NOA81, Edmund Optics, Barrington, NJ). Next, we attached the microscope’s 36	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/540195doi: bioRxiv preprint 

https://doi.org/10.1101/540195


19	

base plate to the dental acrylic cap using light cured acrylic (Flow-It ALC, Pentron, 1	
Orange, CA). All mice were returned to their home cages for several days following the 2	
aforementioned procedure. 3	

 4	

Calcium imaging in freely behaving mice 5	

We trained the mice to run back and forth on an elevated 96cm linear track9. To record 6	
mouse behavior, we used an overhead camera (DFK 33G445, The Imaging Source, 7	
Germany), which was synchronized with the integrated microscope. Before initiating Ca2+ 8	
imaging, we trained the mice for 3–11 days. Training and imaging sessions consisted of 9	
five to seven 3-min-long trials, with an inter-trial interval of 3 minutes. Ca2+ imaging was 10	
performed at 20Hz or 10Hz in CA1 or ACC, respectively. 11	

 12	

Processing of Ca2+ imaging data 13	

We processed imaging data using commercial software (Mosaic, version 1.1.1b, 14	
Inscopix) and custom MATLAB routines as previously described9,29. To increase 15	
computation speed, we spatially down-sampled the data by a factor of two in each 16	
dimension (final pixel size of 2.3 X 2.3μm). To correct for non-uniform illumination both in 17	
space and time, we normalized the images by dividing each pixel by the corresponding 18	
value from a smoothed image. The smoothed image was obtained by applying a 19	
Gaussian filter with a radius of 100μm to the movies. Normalization also enhanced the 20	
appearance of the blood vessels, which were later used as stationary fiducial markers for 21	
image registration. We used a rigid-body registration to correct for lateral displacements 22	
of the brain. This procedure was performed on a high contrast subregion of the 23	
normalized movies at which the blood vessels were most prominent. The movies were 24	

transformed to relative changes in fluorescence, ∆"($)
"&

= (F(t) − F+)/F+, where F0 is the 25	

value for each pixel averaged over time. For cell detection, the movies were down-26	
sampled in time by a factor of five. We detected spatial footprints corresponding to 27	
individual cells using an established cell detection algorithm that applies principal and 28	
independent component analyses (PCA and ICA). For each spatial footprint, we used a 29	
threshold of 50% of the footprint’s maximum intensity, and each pixel that did not cross 30	
the threshold was set to zero. After the cells were detected, further cell sorting was 31	
performed to identify the spatial footprints that follow a typical cellular structure. This was 32	
done by measuring the footprint area and circularity, and discarding those whose radius 33	
was smaller than 5μm or larger than 15μm, or which had a circularity smaller than 0.8. In 34	
some cases, the output of the PCA/ICA algorithm included more than one component 35	
that corresponded to a single cell. To eliminate such occurrences, we examined all pairs 36	
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of cells with centroid distances < 18μm and whenever their traces had a correlation > 0.9, 1	
the cell with the lower average event peak amplitude was discarded. To identify the same 2	
neurons across multiple imaging sessions, we used a probabilistic method for cell 3	
registration48, which estimates the probability of correct registration for each cell in the 4	
data set, and the overall rates of registration errors. 5	

 6	

Detection of Ca2+ events 7	

Ca2+ activity was extracted by applying the thresholded spatial footprints to movies at full 8	
temporal resolution (20Hz) ∆F(t)/F+. Baseline fluctuations were removed by subtracting 9	
the median trace (20 sec sliding window). The Ca2+ traces were smoothed with a low-10	
pass filter with a cutoff frequency of 2Hz. Ca2+ candidate events were detected whenever 11	
the amplitude crossed a threshold of 4 or 5 median absolute deviations (MAD), for 12	
GCaMP6s or GCaMP6f, respectively. We considered for further analysis only candidate 13	
Ca2+ events with indicator decay time for GCaMP6s or GCaMP6f equal to or longer than 14	
600msec or 200msec, respectively. In order to avoid the detection of several peaks 15	
corresponding to a single Ca2+ event, only peaks that were 4 or 5 MAD higher than the 16	
previous peak (within the same candidate event) and 2 or 2.5 MAD higher than the next 17	
peak, for GCaMP6s or GCaMP6f, respectively, were regarded as true events. We set the 18	
Ca2+ event occurrence to the time of the peak fluorescence. To mitigate the effects of 19	
crosstalk (i.e., spillover of Ca2+ fluorescence from neighboring cells), we adopted a 20	
conservative approach, allowing only one cell from a group of neighbors (pairs of cells 21	
with centroid distances < 18μm) to register a Ca2+ event in any 200msec time window. If 22	
multiple Ca2+ events occurred within ~200msec in neighboring cells, we retained only the 23	
event with highest peak ∆F(t)/F+value. If two neighboring cells had a correlation > 0.9 in 24	
their events, the cell with the lower average peak amplitude was discarded. After the 25	
events were identified, further event sorting was performed to find the cells with sufficient 26	
signal-to-noise ratios. This was done by measuring the event rate and the average event 27	
peak amplitude for each cell and discarding those whose event rate was smaller than 28	
0.01Hz or which had an average event amplitude smaller than 1% (∆F(t)/F+). We 29	
considered each neuron to be active for two consecutive frames at the peak of each 30	
detected Ca2+ transient (to account for the typical Ca2+ indicator rise time). 31	

 32	

Electrophysiology in the subiculum and thalamus 33	

We obtained published electrophysiology recordings20 from multiple anterior thalamic 34	
nuclei, mainly the anterodorsal nucleus (ADn), and subicular areas, mainly the post-35	
subiculum (PoS), in freely moving mice foraging for food in an open environment (53 x 46 36	
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cm). The authors recorded at 20kHz, simultaneously from 64 to 96 channels, and 1	
processed the raw data to extract the LFPs and detect spikes. 2	

 3	

Obtaining the data points 4	

For Ca2+ imaging data, we constructed a binary activity matrix of size NxK, where N is 5	
the number of neurons and K is the number of frames in the movies tracking Ca2+ 6	
dynamics. The ith by jth element of the matrix was set to 1 if the ith neuron was active in 7	
the jth frame, and was otherwise set to 0. We then defined each data point as a frame-8	
level binary activity vector of length N, namely, a row of the activity matrix. For further 9	
analysis of the data, we used only frame-level activity vectors with >1 active neurons 10	
(non-zero elements). 11	

For electrophysiology data, we first binned the activity of the neurons using a 100msec 12	
time bin. We then constructed a binary activity matrix of size NxK, where N is the number 13	
of neurons and K is the number of time bins. The ith by jth element of the matrix was set to 14	
1 if the ith neuron fired at least one time during the jth time bin, and was otherwise set to 0. 15	
We then defined each data point as a bin-level binary activity vector of length N, namely, 16	
a row of the activity matrix. For dimensionality reduction and further analysis of the data, 17	
we discarded activity vectors with <15 active neurons. 18	

 19	

Dimensionality reduction 20	

Non-linear dimensionality reduction techniques enable identification of sets of activity 21	
patterns which lay in a low dimension manifold, within the high dimension of the data (N, 22	
number of neurons), even if this manifold is non-linear (Supplementary Fig. 1). To this 23	
end, we used Laplacian Eigenmaps (LEM) for non-linear dimensionality reduction as 24	
previously described11. In general, such techniques utilize the local relationships between 25	
proximal data points to reconstruct a global distance metric. Given K data points x1,…, xK 26	
(number of frames) lying in an N-dimensional space of neuronal activity, we constructed 27	
a weighted graph with K nodes, one for each point, and a set of edges connecting 28	
neighboring data points. We considered nodes i and j to be connected by an edge if i is 29	
among p of the nearest neighbors of j, or j is among p of the nearest neighbors of i 30	
(p=0.25-0.5% for all data sets). We used the parameter free (“simple minded”) method 31	
for choosing the weights, i.e.,	W/0 =1 if nodes i and j are connected, and 0 otherwise 11. 32	

We then computed the eigenvalues and eigenvectors for the generalized eigenvector 33	
problem: Lf = λDf, where D is the diagonal weight matrix, and its entries are column 34	
sums of W, and L = D−W is the Laplacian matrix. We left out the leading eigenvector 35	
(as previously described11) and used the next 10 eigenvectors for embedding in a 10-36	
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dimensional Euclidean space. The LEM was performed twice. For the second iteration, 1	
performed on the reduced dimensional data, we defined nodes i and j as connected if i is 2	
among p of the nearest neighbors of j, or j is among p of the nearest neighbors of i 3	
(p=7.5-15% for all data sets). For further analysis, we used the three leading 4	
eigenvectors (after leaving out the first eigenvector).  5	

 6	

Estimation of data internal dimensionality and topology 7	

To estimate the internal dimension of the data, for any given data point in the reduced 8	
space, we calculated the number of neighbors within a sphere surrounding it, as a 9	
function of the sphere’s radius. We used the slope of the number of neighboring data 10	
points within a given radius on a log-log scale to estimate the dimension of the data14. A 11	
simulation illustrating this procedure is presented in Supplementary Fig. 2. 12	

To estimate the topology of the data, we calculated the numbers of components (β0), 13	
holes (β1), and spaces (β2), as a function of the radius threshold, using a previously 14	
established algorithm23 (Javaplex: A research software package for persistent (co) 15	
homology, https://github.com/appliedtopology/javaplex). We then searched for 16	
components, holes, and spaces that were stable across a wide range of radii. A 17	
simulation illustrating this procedure is presented in Supplementary Fig. 7. Since the 18	
algorithm is computationally demanding and is not scalable to large data sets, we applied 19	
the algorithm to a representative set of data points. To obtain this representative set, we 20	
applied a clustering procedure (K-means) on the reduced dimensional data and extracted 21	
the centroids of the clusters. To overcome sensitivity to noise, we discarded sparse 22	
clusters (<50 data points). To ensure a final number of cluster centroids >50, we used 23	
K=70 for the K-means procedure. 24	

 25	

K-means clustering	26	

In cases in which the data points are continuously distributed, there is no natural 27	
separation of the data points into discrete clusters. Therefore, for parameterization of the 28	
encoded variable, we used K-means, which yielded segmentation of the data into a 29	
discrete set of compact subsets. For electrophysiology data, we used K-means (K=8) to 30	
segment the data into different clusters.  31	

	32	

Topological clustering and sub-clustering	33	

In cases in which the distribution of data points consists of a discrete set of dense 34	
clusters, these clusters can be considered as components in terms of data-topology, and 35	
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the same algorithm that estimates the number of components (β0, see estimation of data 1	
internal topology) naturally yields a topological-based clustering of the data points. To 2	
utilize the topological approach for data clustering, we focused on large components 3	
(>250 data points for clustering and >50 data points for sub-clustering), and chose a 4	
radius that captures the maximal number of stable components (see estimation of data 5	
internal topology). To assign data points that do not belong to one of the defined 6	
components, we associated each unassigned data point with the cluster that contains its 7	
nearest assigned neighbor. This procedure was performed by gradually increasing the 8	
radius threshold, while not changing the assignment of previously assigned data points.  9	

 10	

Temporal segmentation of the data 11	

For the Ca2+ imaging data from the CA1 and ACC, we used the temporal sequence of 12	
clusters to temporally segment the data. Applying a segmentation procedure to the data 13	
points allowed us to define the beginning and end of each time segment, and at the 14	
same time, reduce the number of short deviations from a given cluster that could result 15	
from noise and sparse neuronal activity. To segment the data points, we defined two 16	
thresholds: (1) maximal interval between consecutive data points that belong to the same 17	
cluster; (2) minimal number of data points within a segment. To optimize the 18	
segmentation procedure, we systematically tested different values of the maximal interval 19	
threshold and examined the obtained distribution of segment lengths. A suitable 20	
threshold should result in a robust distribution (not sensitive to small changes of 21	
threshold value) of segment lengths. The distribution of number of data points in a 22	
candidate segment was clearly bimodal, which allowed valid segments to be 23	
distinguished from noise. We performed segmentation independently for each cluster 24	
enabling data points to belong to a single cluster, multiple clusters, or none of the 25	
clusters. In practice, the majority of data points belonged to a segment of only one 26	
cluster. After segmenting the data, we constructed an average activity vector by 27	
measuring the average activity of each neuron during a given time segment. For each set 28	
of segments from the same cluster, we applied principal component analysis (PCA) to 29	
the obtained average activity vectors to expose intra-cluster heterogeneity, 30	
corresponding to different segment subtypes within a given cluster. 31	

 32	

Calculating the transition matrix 33	

To capture the temporal relationship between the different network states, we calculated 34	
the transition matrix, i.e., the probability of a data point to belong to cluster i at time t+1 35	
given that the preceding point belongs to cluster j at time t. Similar analysis was 36	
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performed at the segment level where the transition matrix was defined by the probability 1	
of a segment to belong to cluster i given that the preceding segment belongs to cluster j. 2	

 3	

Temporal ordering of clusters and sub-clusters	4	

For the Ca2+ imaging data from the CA1 and ACC, we examined the internal structure of 5	
the data within a given cluster or segment subtype. We sub-clustered the reduced 6	
dimensional data points using topological clustering as described above. To evaluate the 7	
temporal ordering of the sub-clusters, for each possible ordering (i.e. permutation), we 8	
calculated the sum of probabilities of moving from each sub-cluster to its consecutive 9	

sub-cluster. The ordering 𝐼6 of the M sub-clusters was set as the order that maximized the 10	

sum of probabilities out of the M! possible permutations.  11	

I6 = argmax
=

>? P=A,=ACD

EFG

/HG

I 12	

Since examining all possible permutations is computationally demanding, we first 13	
calculated the number of times that each sub-cluster appeared at the beginning and at 14	
the end of a segment. The analysis revealed that one sub-cluster was prominent at the 15	
start of a segment and another sub-cluster was prominent at the end of the segment, 16	
implying a specific directionality for the ordering of the sub-clusters. This allowed us to 17	
constrain the first and last sub-clusters among the M sub-clusters, and consequently we 18	
had to examine only (M-2)! possible permutations rather than M!.  19	

For electrophysiology data from the ADn and PoS, due to the observed ring topology of 20	
the reduced dimensional data (Supplementary Fig. 7) and the trajectory within it 21	
(Supplementary Fig. 8a-b), we sought to cyclically order the obtained M clusters. To this 22	
end, for each ordering, we calculated the sum of probabilities for moving from a cluster to 23	
its neighboring clusters from both directions. The cyclical ordering of sub-clusters was set 24	
to maximize the sum of these probabilities, out of the (M-1)!/2 possible orders (due to 25	
rotation and reflection symmetry). The ordered states of neuronal activity allowed us to 26	
reconstruct the encoded variables and calculate the internal tuning curve for each cell.  27	

 28	

Reconstruction of the encoded variables 29	

To reconstruct the variables encoded within the network activity, we parameterized the 30	
network states.  For Ca2+ imaging data from the CA1, we focused on the reconstruction 31	
of an internal position within clusters associated with locomotion. We used the obtained 32	
sub-clusters and their ordering, and assigned evenly spaced internal positions to the 33	
different sub-clusters. For comparison with the external position, we set the reflection 34	
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degree of freedom (out of the two possible orientations of the linear track due to its 1	
symmetry) by minimizing the mean squared error between the internal reconstruction and 2	
the external variable (performed globally for the entire data set). The error (mismatch) 3	
between the estimated position (or phase) based on the reconstructed internal 4	

representation	𝑥K, and the actual position (or phase)𝑥, was defined as 𝑥K − 𝑥. 5	

For electrophysiology data from the ADn and PoS, we reconstructed the internal angle 6	
based on the clustering of the entire data set, and the obtained cyclical ordering of the 7	

clusters. Data points that belong to cluster k were assigned an internal angle of 	MNO
E

, 8	

where M is the number of clusters. We then used a truncated Gaussian kernel W (σ = 2 9	
frames, size = 5 frames) to temporally smooth the data. For comparison with the head 10	
direction, we set the rotation and reflection degrees of freedom (due to the symmetries of 11	
a ring) by minimizing the mean squared error between the internal reconstruction and the 12	
external variable (performed globally for the entire data set). The mismatch between the 13	

estimated head direction based on the reconstructed internal representation	𝜃R, and the 14	

actual head direction 𝜃, (or the decoded head direction during sleep; see REM sleep 15	

decoder) was defined as 𝑚𝑜𝑑V𝜃R − 𝜃 + 𝜋, 2𝜋Z − 𝜋. 16	

 17	

Calculation of internal tuning curves 18	

We sought to calculate the tuning curve for each cell relative to the state of the network, 19	
rather than relative to any external variable (e.g., position). For this calculation, we first 20	
measured the time the network spent (occupancy) at any given state and the number of 21	
neuronal activity events within each network state (Ca2+ event number or number of 22	
spikes). We then divided the number of neuronal activity events by the occupancy, 23	
obtaining the activity rate as a function of the internal state of the network – hence the 24	
internal tuning curve. 25	

For Ca2+ imaging data from the CA1 and ACC, we focused on the reconstruction of 26	
internal tuning curves within clusters associated with locomotion. Internal tuning curves 27	
were calculated for cells that displayed >5 Ca2+ events within the relevant clusters. For 28	
comparison with external tuning curves, after we calculated the occupancy and Ca2+ 29	
event number vectors, we interpolated the Ca2+ event number and the occupancy at the 30	
ordered network states (sub-clusters) to increase the number of states so it will match the 31	
number of spatial bins. We then used a truncated Gaussian kernel (σ = 1.5 bins, size = 5 32	
bins, as used for calculation of external tuning curves) to smooth the two functions. 33	
Finally, we computed the internal tuning curve for each neuron by dividing the smoothed 34	
map of Ca2+ event numbers by the smoothed map of occupancy. 35	
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For electrophysiology data from ADn and PoS, the internal tuning curves were calculated 1	
based on the clustering of the entire data set, and the obtained cyclical ordering of the 2	
clusters. Data points were smoothed as described above (see Reconstruction of the 3	
encoded variables). We then binned the internal angle into 40 bins of 9o and calculated 4	
the occupancy at any given angular bin and the neuron’s number of spikes within each 5	
bin. Finally, we computed the internal tuning curve for each neuron by dividing the 6	
number of spikes by the occupancy. 7	

 8	

Calculation of external tuning curves 9	

For Ca2+ imaging data from the CA1 and ACC, we calculated the tuning of cells to 10	
location. We considered periods wherein the mouse ran > 1cm/sec. We divided the track 11	
into 24 bins (4cm each), and excluded the last 2 bins at both ends of the tracks where the 12	
mouse was generally stationary. We computed the occupancy and the number of Ca2+ 13	
events in each bin, and then smoothed these two maps (occupancy and Ca2+ event 14	
number) using a truncated Gaussian kernel (σ = 1.5 bins, size = 5 bins)9,29. We then 15	
computed the activity map (event rate per bin) for each neuron by dividing the smoothed 16	
map of Ca2+ event numbers by the smoothed map of occupancy. For hippocampal data 17	
we separately considered place fields for each of the two running directions on the linear 18	
track. For data recorded from the ACC, we pooled the data from both running directions 19	
on the linear track while taking into account the running phase rather than the absolute 20	
location. The pooling was performed by flipping the positional indexing of the linear track 21	
while the mouse was running in a given direction (this way, a given position on the track 22	
while the mouse was running to the right corresponded to the mirror location while the 23	
mouse was running to the left). 24	

For the electrophysiology data from the ADn and PoS, we computed the tuning to head 25	
direction. We first binned head directions into 40 bins of 9o. We then calculated for each 26	
neuron the average firing rate given an angular bin, by dividing the number of spikes in 27	
each bin by the occupancy within that bin.  28	

 29	

Comparison between internal and external tuning curves 30	

For Ca2+ imaging data from the CA1 and ACC, we measured the mismatch between the 31	
internal and external tuning curves. For CA1 data the mismatch was defined as the 32	
difference between the internal and external preferred position, and for the ACC it was 33	
defined as the difference between the internal and external phase. To test the 34	
significance of the similarity in the coding properties, we compared the average absolute 35	
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mismatch to that obtained for 1,000 shuffled data sets. For each of the 1,000 shuffled 1	
sets, we shuffled between the identities of the cells. 2	

For the electrophysiology data from the ADn and PoS, we quantified the angular tuning 3	
of each neuron and compared between the internal and external tuning curves. To 4	
quantify the angular tuning, we calculated for each angular tuning curve (either to internal 5	

angle or to head direction) the Rayleigh vector: ∑ r(θO)eF/^_/`
OHG ∑ r(θO)`

OHG , where N is 6	

the number of evenly spaced angular bins, θO =
MNO
`

, and	r(θ) is the firing rate of the 7	

neuron given the angle θ. The preferred direction of a neuron was estimated by the angle 8	

of the Rayleigh vector of its tuning curve, and the directionality (the degree of its tuning to 9	
a single direction) was estimated by the absolute value (length) of the Rayleigh vector. 10	
For both preferred direction and directionality (Rayleigh vector length) we compared the 11	
values obtained for each neuron from the internal and external tuning curves. To further 12	
compare the internal and external tuning curves of each neuron, we calculated the 13	
Pearson correlation between the two tuning curves. For the visualization of the data in 14	
Supplementary Fig. 8e-g, we labeled cells as head-directions cells if they had Rayleigh 15	
vector length of >0.5 and peak firing rate >5Hz.  16	

In both cases, in order to compare the internal tuning curves to the external tuning 17	
curves, we used the same degrees of freedom obtained in the Reconstruction of the 18	
encoded variables (described above). 19	

 20	

REM sleep decoder 21	

For the electrophysiology data from the ADn and PoS, we calculated the ‘virtual 22	
trajectory’ of the internal angle during REM sleep periods as described above (see 23	
Reconstruction of the encoded variables). Since the actual head direction is constant 24	
during sleep, the internal angle was compared to the ‘virtual trajectory’ of head direction 25	
obtained by a maximum likelihood decoder. The maximum likelihood decoder for virtual 26	
head direction during REM sleep was based on the external tuning curves during wake 27	
periods, using only head direction cells (>0.5 Rayleigh vector length and >5Hz peak firing 28	
rate). For comparison between the internal angle and the decoded head direction, we 29	
sought the rotation and reflection degrees of freedom (due to the symmetries of a ring) 30	
that minimize the decoding mean squared error. 31	
 32	
REM sleep to wake decoder 33	

We trained a decoder during periods of REM sleep and tested it during periods of awake 34	
behavior. The internal angle and internal tuning curves were first calculated for REM 35	
sleep data, as described above (see Calculation of internal tuning curves), and were then 36	
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used to train a maximum likelihood decoder (Fig. 4f). Next, the decoder was tested on 1	
neuronal activity form awake periods. For comparison of the decoded head direction with 2	
the actual head direction, we sought the rotation and reflection degrees of freedom (due 3	
to the symmetries of a ring) that minimize the decoding mean squared error (inset of Fig. 4	
4f). The decoding error was compared to that obtained for shuffled data (see Shuffle 5	
test). 6	

 7	

Across-mice decoder  8	

Across-mice decoders rely on the analogy between the internal structures of neuronal 9	
activity across different mice (or different days of the experiment) for the same brain 10	
region. These decoders were used to infer the external state (position or head direction) 11	
of one mouse based on the relations between internal state (neuronal activity patterns) 12	
and external state of another mouse (or of the same mouse at another day of the 13	
experiment). We used the neuronal activity within the reduced dimensional space to 14	
parametrize data points within the internal state. Specifically, for the Ca2+ imaging data, 15	
clusters and ordered sub-clusters therein were translated into position on a 1D segment. 16	
For electrophysiology data, we used the circular order of the clusters to assign an angle 17	
to each data point. Based on this parametrization, we defined mapping across network 18	
states within internal structures obtained for different mice (or different days for the same 19	
mouse). In all cases, the mapping was defined up to the internal symmetry of the internal 20	
structure: rotation and reflection for PoS and ADn data and reflection for the CA1 data. 21	
For mouse 1, neuronal activity at each time frame was associated with a specific network 22	
state. Based on the similarity between internal structures, an analogous network state is 23	
found in mouse 2. This network state of mouse 2 is associated with a known external 24	
state. The decoded external state of mouse 1 was set as the same associated external 25	
state of mouse 2. The external state decoding error was calculated and compared to that 26	
obtained for shuffled data (see Shuffle test). 27	

 28	

Phase decoder 29	

For Ca2+ imaging data recorded from the ACC, we tested the similarity between neuronal 30	
activity during running in one direction of the linear track and the neuronal activity during 31	
running in the other direction. We first defined the trajectory phase as the distance of the 32	
mouse from the starting point, namely, the distance from the left edge when running 33	
rightward and the distance from the right edge when running leftward. We then 34	
constructed a decoder that estimates the trajectory phase in a given direction (test data) 35	
based on the relations between neuronal activity pattern and trajectory phase in the other 36	
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direction (training data). Specifically, for each data point obtained during running in a 1	
given direction, we found its nearest neighbor in the reduced space of neuronal activity 2	
among all data points obtained during running in the opposite direction. The decoded 3	
phase was set as the animal’s trajectory phase at the time of the nearest neighbor data 4	
point. The trajectory phase decoding error was calculated and compared to that obtained 5	
for shuffled data (see Shuffle test). 6	

 7	

Shuffle test 8	

To test the significance of decoding accuracy, we measured the difference between the 9	
decoded values and the measured behavior at each time bin. We then compared the 10	
performance of each of the decoders described above to the performance obtained for 11	
1,000 shuffled data sets. For each of the 1,000 shuffled sets, we shuffled the decoded 12	
values across the different time bins, and set the degrees of freedom (rotation and 13	
reflection for angle, and reflection for position) to those that minimized the decoding 14	
mean squared error (done separately for each shuffle).  15	

 16	

Labeling of behavioral states 17	

For Ca2+ imaging data from the CA1 and ACC, we manually labeled the behavior of the 18	
mouse. To identify periods corresponding to behavioral states of “Running”, “Drinking”, 19	
“Turning”, and “Rearing”, we analyzed the movies from the overhead camera that tracked 20	
animal behavior using video tracking software (EthoVision XT 11.5). We manually tagged 21	
the beginnings and ends of each behavioral state throughout each movie. Further 22	
separation of the running state to the start and end of running was done based on animal 23	
position along the linear track: “Start run” and “End run” were defined from the starting 24	
point to the center of the linear track, and from the center to the end point of the track, 25	
respectively. This behavioral labeling was used both for the comparison with neuronal 26	
clustering (Fig. 2f), and for the calculation of correlations between representations of 27	
behavioral states (Supplementary Fig. 6). 28	

 29	
Statistical analysis 30	

Statistical analysis was conducted using MATLAB 2016b software. One-tailed unpaired t-31	
test with Holm–Bonferroni correction for multiple comparisons was conducted for 32	
between-regions comparisons of activity correlation level.   33	
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Supplementary Fig. 1: Non-linear dimensionality reduction enables more accurate 1	
estimation of internal structure than linear methods. (a-b) Ca2+ imaging data: the distribution of 2	
data points in the reduced dimensional space of neuronal activity, using PCA and (a) and LEM (b). 3	
(c-d) Electrophysiological data: the distribution of data points in the reduced dimensional space of 4	
neuronal activity, using PCA and (c) and LEM (d). (e and h) We simulated neuronal responses for 5	
20 conditionally independent neurons which follow Poisson statistics. The centers of the tuning 6	
curves were equally spaced on a one-dimensional circular variable, and were either widely tuned 7	
(e) or narrowly tuned (h). (f-g) The distribution of data points in the reduced space of neuronal 8	
activity, using PCA (f), and LEM (g), for widely tuned neurons. Both methods captured the ring 9	
topology of the data. (i-j) The distribution of data points in the reduced space of neuronal activity, 10	
using PCA (i), and LEM (j), for narrowly tuned neurons. LEM exposed the ring topology more 11	
successfully compared to PCA.  12	
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Supplementary Fig. 2: Estimation of the internal dimension of the data. (a-b) Simulated data 1	
points, for 1-dimensional data (a) and for 2-dimensional data (b). The red circles indicate different 2	
distances (radii) from a given data point. (c-d) The average number of neighboring data points 3	
increases with the radius obeying a power law. The power is indicative of the internal dimension of 4	
the data. The number of neighboring data points increases linearly (c) or quadratically (d) with the 5	
radius, for 1-dimensional and 2-dimensional data, respectively.   6	
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Supplementary Fig. 3: Internal tuning curves of the hippocampal CA1 and ACC reveal 1	
similar coding properties to those of their corresponding external tuning curves. (a-b) The 2	
distribution of differences in the preferred position (a) and preferred phase (b) between the 3	
calculated internal and external tuning curves of the same neurons, for data recorded from the 4	
hippocampal CA1 (a) and from the ACC (b). Data are represented in gray, and shuffled data in 5	
green. Data in a pooled from N=4 mice, and in b from N=3 mice.  6	
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Supplementary Fig. 4: Neurons in the ACC, but not in the CA1, encode the trajectory phase 1	
for mice running on a linear track. For each neuron, we calculated its event rate as a function of 2	
the animal's position (spatial tuning curves) when running in a given direction. (a) Spatial tuning 3	
curves for ACC neurons ordered according to their preferred position along the track. (b) Spatial 4	
tuning curves for the same neurons with the same order as in a, calculated for the opposite 5	
running direction. (c) Spatial tuning curves for hippocampal neurons, ordered according to their 6	
preferred position along the track. (d) Spatial tuning curves for the same neurons with the same 7	
order as in c, calculated for the opposite running direction. Note that while in the hippocampus 8	
there is no clear relationship between the preferred positions of the same neurons in the two 9	
different running directions, the neurons in the ACC tend to have a symmetrical preferred position 10	
for the two directions, hence coding the trajectory phase.  11	
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Supplementary Fig. 5: The encoding of trajectory phase in the ACC could not be accounted 1	
for by velocity or acceleration. (a) A simulated trajectory along a linear track. (b) The 2	
acceleration versus the velocity for the trajectory in a. (c) The activity of a simulated place cell 3	
(blue dots) which is responsive at a particular location in one running direction, overlaid on the 4	
velocity-acceleration plot in b. (d) The activity of an example place cell from the hippocampal data 5	
(blue dots), overlaid on the velocity-acceleration of the mouse (black dots). (e-h) The activity of a 6	
simulated cell overlaid on velocity-acceleration plot, for a cell that is responsive to a given speed 7	
(e), acceleration (f), position (g), or trajectory phase (h). (i) The activity of four example cells from 8	
the ACC data (red dots), overlaid on the velocity-acceleration of the mouse (black dots). The 9	
activity matches the simulated trajectory phase cells. (j-m) Pearson correlation between simulated 10	
ensemble activity patterns from different spatial locations on the linear track, for cells that are 11	
encoding speed (j), acceleration (k), position (l), or trajectory phase (m). The ensemble activity (as 12	
shown in Fig. 2m) matches the simulated trajectory phase ensemble.  13	
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Supplementary Fig. 6: Neuronal activity during epochs of a given behavioral state are 1	
similar across opposite sides of the track, for data recorded from the ACC, but not from the 2	
hippocampus. (a-b) Pearson correlation between ensemble activity patterns given the behavioral 3	
state and side of the linear track, for the ACC (a) and hippocampal CA1 (b). Ensemble activity 4	
patterns are defined as the mean event rate for each neuron given a behavioral state on the same 5	
side of the track or the same running direction. L – left side or leftward epochs, R – right side or 6	
rightward epochs. Data averaged over N=3 mice in the ACC, and N=4 mice in the hippocampus.  7	
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Supplementary Fig. 7: Measuring the internal topology of the data based on the estimation 1	
of the numbers of components, holes, and spaces. (a-b) Simulated data with a ring topology. 2	
(a) Simulated data points (red dots) and an increasing radius (from left to right) represented by 3	
filled green circles around each data point. (b) The connections (black lines) between data points 4	
with overlapping surrounding spheres for different radii of the sphere (increasing from left to right). 5	
Triplets (cliques of three data points that are all interconnected) are marked by yellow areas. (c-d) 6	
Head direction data. (c) Representative data points (centers of mass of clustered data, red dots) 7	
and an increasing radius (from left to right) represented by filled green circles around each data 8	
point. (d) The connections (black lines) between data points with overlapping surrounding spheres 9	
for different radii of the sphere (increasing from left to right). Triplets (cliques of three data points 10	
that are all interconnected) are marked by yellow areas. (e) Quantifying the internal topology of the 11	
electrophysiological data by estimating the number of separate components (β0), number of holes 12	
(β1), and number of spaces (β2). We observed one component, one hole, and zero spaces for a 13	
wide range of radii, as expected for a ring topology.  14	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 5, 2019. ; https://doi.org/10.1101/540195doi: bioRxiv preprint 

https://doi.org/10.1101/540195


37	

Supplementary Fig. 8: Internal representation of head direction obtained without relying on 1	
behavioral data. (a) Clustering of the data in Fig. 4b. The centers of masses of each cluster 2	
(colored dots) are overlaid on the data points in Fig. 4b (gray shaded dots). (b) The transition 3	
matrix (i.e., the probability of a data point appearing in cluster i, given that the preceding data point 4	
was in cluster j) shows that consecutive data points are more likely to be in the same or adjacent 5	
clusters. (c-d) The distribution of data points in the reduced dimensional space of neuronal activity, 6	
color coded according to the reconstructed internal direction (c), and the actual head direction (d). 7	
(e-f) The preferred direction (e), and Rayleigh vector length (f) calculated for the internal tuning 8	
curves (x-axis) and for the external tuning curves (y-axis). Filled circles indicate cells significantly 9	
tuned to head direction. (g) Distribution of correlations between internal and external tuning 10	
curves. Cells significantly tuned to head direction are shown in black. (h) Estimation of internal 11	
dimension: Cumulative number of neighboring data points as a function of the radius in the 12	
reduced dimensionality space, plotted on a log-log scale. The slope of the data (red) is 13	
approximately one (black lines), indicating one-dimensional data.  14	
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Supplementary Fig. 9: Internal representation of head direction during REM sleep. (a) 1	
Clustering of the data in Fig. 4C. The centers of mass of the clusters (colored dots) are overlaid on 2	
the data points in Fig. 4C (shaded gray). (b) The transition matrix (i.e., the probability of a data 3	
point to be in cluster i given that the preceding data points was in cluster j) shows that consecutive 4	
data points are more likely to be in the same or adjacent clusters. (c-d) The distribution of data 5	
points in the reduced dimensional space of neuronal activity color coded according to the 6	
reconstructed internal direction (c) and to the estimated head direction (d). (e-f) The preferred 7	
direction (e) and Rayleigh vector length (f) calculated for the internal tuning curves during REM 8	
sleep (x-axis) and for the external tuning curves during wake periods (y-axis). Filled circles indicate 9	
significantly tuned head direction cells. (g) Distribution of correlation between internal (during 10	
REM) and external (during wake) tuning curves. Significantly tuned head direction cells are shown 11	
in black. (h) Estimation of internal dimension: Cumulative number of neighboring data points as a 12	
function of the radius in the reduced dimensionality space, plotted on a log-log scale. The slope of 13	
the data (red) is approximately one (black), indicating one-dimensional data. (i) Measuring the 14	
internal topology of the data based on the estimation of the numbers of components (β0), holes 15	
(β1), and spaces (β2). Even during REM sleep we obtain one component, one hole, and zero 16	
spaces, for a wide range of radii. Overall these results indicate that the relationships between the 17	
neuronal activity patterns are preserved even in the absence of sensory input, reflecting inherent 18	
computational properties of these circuits.  19	
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Supplementary Movie Legends 1	
 2	
Supplementary Movie 1: Neuronal activity in the hippocampal CA1 reveals a high density 3	

of data points within a small number of clusters. The distribution of data points in the 4	
reduced dimensional space of neuronal activity from different view angles is shown. 5	

 6	
Supplementary Movie 2: Different states of neuronal activity in the hippocampal CA1 7	

correspond to different behavioral states depending on their side of the linear track. 8	
Concatenated epochs of mouse behavior, which correspond to a given neuronal activity 9	
state are shown, and the neuronal activity state and index of the epoch are specified.   10	

 11	
Supplementary Movie 3: Different states of neuronal activity in the ACC correspond to 12	

different behavioral states regardless of the side of the linear track. Concatenated 13	
epochs of mouse behavior correspond to a given neuronal activity state. The neuronal 14	
activity state and index of the epoch are specified.  15	

 16	
Supplementary Movie 4: Neuronal activity in the ADn and PoS forms a ring topology in a 17	

reduced dimensional space, with a non-periodic continuous trajectory. Top left: the 18	
trajectory of neuronal activity (moving dot) overlaid on the distribution of data points in the 19	
reduced dimensional space of neuronal activity. Bottom right: the actual head direction of 20	
the mouse, represented by the angle of the clock hand. Data points colored according to 21	
head direction. 22	

 23	
Supplementary Movie 5: Neuronal activity in the ADn and PoS forms a ring topology in a 24	

reduced dimensional space during periods of REM sleep. The trajectory of neuronal 25	
activity (moving dot) overlaid on the distribution of data points in the reduced dimensional 26	
space of neuronal activity. The internal structure and the trajectory within it are maintained 27	
during REM sleep, when the head direction is mostly constant. Color represents the head 28	
direction as reconstructed by a maximum likelihood decoder that was trained on data from 29	
wake periods. 30	

 31	
Supplementary Movie 6: Across-mice decoder infers the behavioral state and position of 32	

the animal, based on the mapping between the behavior and activity patterns in the 33	
hippocampus of another animal. Top left: The trajectory of neuronal activity (moving dot) 34	
for mouse 1 overlaid on the distribution of data points in the dimensionality reduced space 35	
of neuronal activity in mouse 1 (first two components). Top left: the corresponding 36	
trajectory of neuronal activity (moving dot) for mouse 1 overlaid on the distribution of data 37	
points in the dimensionality reduced space of neuronal activity in mouse 2 (first two 38	
components). Bottom left: Behavioral data from mouse 1. Bottom right: Reconstructed 39	
behavioral data of mouse 1 based on the mapping between the behavior and activity 40	
patterns. 41	
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