1 **Title:**

- 2 Comparison of muscle activity, strength and balance, before and after a 6-month training using
- 3 the FIFA11+ program (part 2)
- 4
- 5 Authors:
- 6 Takeshi Oshima, M.D. Ph.D.¹
- 7 Junsuke Nakase, M.D., Ph.D.¹
- 8 Anri Inaki, M.D., Ph.D.²
- 9 Takafumi Mochizuki, M.D., Ph.D.³
- 10 Yasushi Takata, M.D.¹
- 11 Kengo Shimozaki, M.D.¹
- 12 Seigo Kinuya, M.D., Ph.D.²
- 13 Hiroyuki Tsuchiya, M.D., Ph.D.¹
- 14
- 15 Affiliations:
- 16 1. Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa
- 17 University, 13-1 Takara-machi, Kanazawa 920-8641, Japan

- 18 2. Department of Nuclear Medicine/Biotracer Medicine, Graduate School of Medical Science
- 19 Kanazawa University, Kanazawa, Japan
- 20 3. Kanazawa Advanced Medical Center, Kanazawa, Japan
- 21
- 22 Corresponding author:
- 23 Junsuke Nakase, M.D., Ph.D.
- 24 Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University
- 25 13-1 Takara-machi, Kanazawa 920-8641, Japan
- 26 TEL: +81-76-265-2374
- 27 FAX: +81-76-234-4261
- 28 E-mail: nakase1007@yahoo.co.jp
- 29
- 30 **3176 words**

31 Abstract

47

32	Purpose: Sports injuries can significantly impact an athlete's career, as well as impose a high
33	financial burden on teams. Therefore, the prevention of sports injuries is an essential aspect of
34	sports medicine. To evaluate the effects of a 6-month training period, using part 2 of the
35	FIFA11+, on the activation and strength of core and lower limb muscles, and on static and
36	dynamic balance performance.
37	Materials and Methods: Eight college male soccer players, 20.4±0.5 years old, completed the
38	FIFA11+ program (part 2) at least 3x per week for 6 months. The following variables were
39	measured, before and after the 6-month training program: activity of more than 30 muscles
40	(with a focus on core and lower limb muscles), measured using the standardized uptake values
41	of 18F-fluorodeoxyglucose (FDG) on positron emission tomography (PET-CT); isokinetic
42	strength of the knee flexor and extensor and hip abductor muscles, measured at 60°/s; static
43	balance over a 60-s period, measured using a Gravicorder; and dynamic balance, measured
44	using the Star Excursion Balance Test.
45	Results: Training improved activity levels of core (obliquus externus abdominis and erector
46	spinae) and lower limb (tibialis anterior of the both legs) muscles (p \leq 0.03), corrected the

48 balance, with a greater training effect on the non-dominant limb ($p \le 0.02$). Training also

between-limb difference in activation of the semimembranosus and improved dynamic

- 49 improved knee flexor force of the non-dominant lower limb (p=0.02).
- 50 **Conclusion:** Routine performance of the FIFA11+ (part 2) program can improve activation of
- 51 core and lower limb muscles, with a concomitant improvement in dynamic balance.

52 Introduction

53	Sports injuries can significantly impact an athlete's career and the financial aspect [1].
54	Therefore, the prevention of sports injuries has received increasing attention in sports
55	medicine. Generally, sports injury prevention programs include some combination of
56	plyometric, balance and agility exercises, and have been reported to be effective in decreasing
57	the incidence of injuries, regardless of sport activity level, sex and age [2,3]. 'FIFA11+' is one of
58	the most effective prevention programs, which the Fédération Internationale de Football
59	Association (FIFA) Medical and Assessment Research Center (F-MARC) has developed. The
60	FIFA11+ consists of three parts: basic running (part 1); 3 levels of difficulty of 6 exercises
61	aiming to increase strength (core and lower limbs), balance, muscle control (plyometrics), and
62	core stability (part 2); and running such as straight line running, or cutting activities (part 3).
63	Improvement and evaluation of the effectiveness of an injury prevention program
64	requires assessment of not only the change in the incidence rate of injury, but also the short-
65	and long-term effects of the training on modifying muscle activity patterns and improving,
66	strength and balance.
67	To evaluate the muscle activities, electromyography (EMG) has principally been used.

68 However, EMG can only provide information on the activation of superficial muscles, and not

 $\mathbf{5}$

of deep muscles of the trunk and limbs, is limited with regard to the number of muscles that can be assessed simultaneously (namely those on which superficial sensors can be placed) and requires equipment to be attached to the body, which is difficult during performance of sports

73Previous studies have used whole-body positron emission tomography - computed 74tomography (PET-CT) to quantify the change in muscle activity after performing the FIFA11+ 75(part 2) program, with glucose uptake in skeletal muscles being used as a proxy measure of the 76 level of muscle activity [4,5]. Unlike EMG, PET-CT provides a non-invasive observation of the 77activity of muscles throughout the body, simultaneously, with the possibility of 3-dimensional (3D) image reconstruction. As active muscle cells exhibit increased glucose uptake, the use of 7879 ¹⁸F-fluorodeoxyglucose (FDG), a deoxy analog of glucose, permits the observation of glucose 80 metabolism of the skeletal muscles throughout the body. However, unlike glucose, FDG does 81 not continue along the usual glycolytic pathway but, rather, accumulates within exercising 82 muscle tissue. This metabolic trapping process forms the basis of FDG-PET. The accumulation 83 of FDG in muscle provides a parameter of glucose intake by muscles and, therefore, of the 84 intensity of muscle activity [6]. To our knowledge, FDG-PET is the only method that can 85 provide a reliable cumulative index of muscle activity for between-muscle comparison, which 86 is invaluable for the assessment of sports injuries. As such, FDG-PET would be effective to

⁷² activities.

87 measure the effects of the FIFA11+ program.

88	In recent years, various benefits of the entire FIFA11+ program have been reported,
89	including a reduction in the incidence of sports injuries and improvement in the
90	neuromuscular control and strength of flexor muscles [7,8]. A review of the studies reporting
91	on the acute or chronic effects of the FIFA11+ on performance and physiological measures
92	among football players, an intervention period of 9-10 weeks yielded positive effects [9].
93	However, the effect of a long-term, routine, performance of the FIFA11+ program on the
94	metabolism of skeletal muscles remains to be clearly defined. Therefore, the aim of our study
95	was to investigate the change in muscle activity, and muscle strength and dynamic balance,
96	after performing part 2 of the FIFA11+ for 6 months. The a priori hypothesis was that the
97	FIFA11+ (part 2) program would be effective in increasing the activity of core and lower limb
98	muscles, improve muscle strength of the lower limb and improve static and dynamic balance.

99 Materials and Methods

100	Our study group was formed of 8 collegiate male soccer players. All participants were
101	considered to be healthy, based on their medical history and physical examination, and none
102	were taking medication at the time of the study. All participants provided informed consent,
103	and the study was approved by our Institutional Ethics Review Board.
104	Participants were asked to avoid strenuous physical activity for at least one day prior
105	to testing, and to refrain from eating and drinking for at least 6 h before testing. PET-CT images
106	were obtained as per previously described methods [4,5]. After obtaining baseline
107	(pre-training) PET-CT images, participants completed the training protocol, consisting of
108	completing part 2 of the FIFA11+ program, \geq 3 times per week, for 6 consecutive months.
109	PET-CT images were obtained at the end of the training period, using the same protocol as at
110	baseline.
111	Regions of interest (ROI) on the images were manually segmented in 30 skeletal
112	muscles, located in 5 areas of the body: trunk, pelvis, thigh, lower leg, and the foot. (Table 1)
113	All ROIs were identified by one experienced nuclear medicine specialist, who was blinded from
114	all other results, from the plain CT images obtained concurrently. The standardized uptake
115	value (SUV) of FDG was calculated by overlapping the defined ROI and fusion PET-CT images to
116	outline the area of muscles, being careful to not include large vessels. The FDG uptake was

117	normalized to the unit volume of muscle as follows: {mean ROI count (counts per second/pixel)
118	× calibration factor (counts per second /Bq)}/{injected dose (Bq)/body weight (g)}. ROIs were
119	defined for the skeletal muscles previously described, bilaterally, and the mean SUV was
120	compared for the dominant and non-dominant side of the body (where the dominant side was
121	identified by asking participants which leg they used to kick a ball). The mean SUV for the trunk
122	was calculated as follows: ([left mean SUV × left muscle area] + [right mean SUV × right muscle
123	area])/(left muscle area + right muscle area). FDG accumulation was compared between the
124	pre- and post-training PET-CT examinations.
125	Balance and muscle strength testing was performed by experienced physical
126	therapists. These assessments were performed one week after the PET analysis, with balance
127	tests preceding strength tests to avoid effects of muscle fatigue.
128	Static balance was measured using a Gravicorder. Postural sway, for 60 s, at a
129	sampling rate of 20-Hz sampling, under the following conditions: two-leg stance with eyes
130	open and then with eyes closed; single leg (dominant) standing with eyes open; and single leg
131	(non-dominant) standing with eyes open. All measurements were obtained in bare feet, using
132	the center of the force platform as a reference point. Two variables of balance were measured,
133	the locus length per time (LG), providing a measure of attitude control, and the environmental
134	area (AR), providing a measure of equilibrium control [10]. These two parameters have been

135	used to assess dizziness and equilibrium disorders and, more recently, to quantify balance
136	effects on anterior cruciate ligament injury [11]. All balance measurements were repeated
137	twice, with a 1-min rest between measurements; data from the second measurement, which
138	has been reported to be more accurate [12], used for analysis.
139	Dynamic postural control was evaluated using the Star Excursion Balance Test (SEBT).
140	Participants were asked to reach as far as possible along the designated line for each of the
141	following 8 directions: anterolateral, anterior, anteromedial, medial, posteromedial, posterior,
142	posterolateral, and lateral. (Fig 1) The test was performed twice, once in a clockwise direction
143	(reaching with the right leg) and once in a counterclockwise direction (reaching with the left
144	leg). The average of the length of three reaches performed in each direction was used for
145	analysis, with the distance normalized to the length of the leg (measured from the anterior
146	superior iliac spine to the distal tip of the medial malleolus). The greater the normalized length
147	of excursion, the better the dynamic balance.
148	The maximal knee flexion and extension muscle strength and the maximal isokinetic
149	hip abductor strength were tested using an isokinetic Biodex system. After 10-min warm-up,
150	knee strength measurements were obtained in the sitting position, and the hip abductor
151	strength was obtained in a sidelying position. For the strength testing, participants were asked
152	to move the knee and hip at full force, with 3 trials performed for each direction at a speed of

153	60°/s. For all strength measurements, the average value of the 3 trials was used for analysis,
154	and values were normalized to body weight (pre- and post-training) for between-subject
155	comparisons. The ratio of the strong-to-weaker leg was calculated as an index of between-limb
156	strength imbalance, converted to a percentage difference, using a previously described
157	method based on log-transformed raw data, followed by back transformation [13].
158	All statistical analyses were performed using Stata for Mac Version 15 (Stata
159	Statistical Software 2017; Stata Corp LLC, College Station, TX, USA). All data are presented as
160	mean (SD). The Shapiro-Wilk test was used to evaluate the normality of distribution. Wilcoxon
161	signed rank test was used to evaluate differences in the mean SUV and static balance, before
162	and after training, with a paired t-test used to evaluate the differences in muscle strength and
163	dynamic balance. The minimum significance level was set at $P < 0.05$. The sample size was
164	confirmed using a power analysis of 0.8, with an α value of 0.05 and effect size of 1.0.
165	
166	Fig 1: Reaching directions on the Star Excursion Balance Test

Results

170	The relevant characteristics of the participants at pre-training are as follows: age;
171	20.4 \pm 0.5 years old, height; 175.4 \pm 6.2 cm, weight; 68.6 \pm 5.1 kg, 22.3 \pm 1.3 kg/m ² , and the leg
172	length; 89.4 ± 3.8 cm. After training, the weight was 70.1 ± 4.6 kg (p= 0.246) and the body mass
173	index was 22.8 \pm 0.8 kg/m ² (p= 0.250), and there was no significant difference pre- and
174	post-training.
175	Representative whole-body PET images, pre- and post-training, are shown in Fig 2
176	with the mean SUVs reported in Table 1. A significant pre- to post-training increase in the
177	mean SUV was identified for two core muscles, the obliquus externus abdominis (0.75 ± 0.26
178	versus 1.06±0.38, respectively, p= 0.036) and erector spinae (0.67±0.16 versus 0.80±0.31,
179	respectively, p=0.025). The pre- to post-training significant change in the mean SUVs for the
180	muscles of the dominant and non-dominant lower limbs, from the pelvis to the foot, are
181	detected. For the dominant lower limb, the mean SUV increased for the tibialis anterior
182	(1.06 \pm 0.59 versus 1.53 \pm 0.86, respectively, p=0.017) and decreased for the triceps surae
183	(1.39±0.40 versus 0.88±0.19, respectively, p=0.017). A similar result was identified for the
184	non-dominant lower limb, with an increase in the tibialis anterior (1.00±0.36 versus 1.44±0.66,
185	respectively, p=0.025) and a decrease for the triceps surae (1.24±0.25 versus 0.86±0.18,
186	respectively, p=0.025). The significant side-to-side difference of SUV was detected in

187	semimembranosus in pre-training. Pre-training, the mean SUV of the semimembranosus
188	muscle was higher for the dominant than non-dominant lower limb (0.74±0.14 versus
189	0.59±0.10, respectively, p=0.012). Of note, no significant difference in the activation of the
190	semimembranosus between the dominant and non-dominant side was observed after training.
191	The mean LG and AR values are reported in Table 2, with no significant difference
192	between pre- and post-training values. The reach distance along the 8 directions for the
193	dominant and non-dominant lower limbs are reported in the Table 3. For the dominant leg,
194	the standing reach distance increased significantly, pre- to post-training, in the anterior-lateral
195	direction (70.9 \pm 9.2 cm to 74.9 \pm 9.6 cm, p=0.023). A greater improvement in dynamic balance
196	on the non-dominant leg was observed, with an increase in the reach distance across multiple
197	directions, as follows: medial (103.6±6.0 cm to 107.9±7.6 cm, p=0.002); posterior-medial
198	(111.4±6.0 cm to 115.3±6.6 cm, p=0.030); and posterior (114.0±4.5 cm to 119.1±7.9 cm,
199	p=0.022). The pre- to post-training changes in muscle strength are reported in Table 4. For the
200	non-dominant leg, knee flexion force increased from 1.24 \pm 0.15 Nm/kg to 1.39 \pm 0.14 Nm/kg
201	(p=0.023). No effects of training on knee extensor and hip abductor strength were noted, nor
202	on the hamstring-to-quadriceps ratio or between-limb imbalance index (Table 5).
203	Fig 2: Representative whole-body positron emission tomography images acquired before (left)

and after (right) routine performance of the FIFA11+.

Table 1: Mean SUVs during pre- and post-training. SUV, standardized uptake value

Body area	Muscles	Iuscles Pre-training SUV		Post-training SUV		
		Dominant leg	Non-dominant leg	Dominant leg	Non-dominant leg	
Trunk	Rectus abdominis	0.90±0.35		1.03±0.40		
	Obliquus externus abdominis	0.75±0.26		1.06±0.38		
	Obliquus internus abdominis	0.69±0.14		0.76±0.81		
	Transversus abdominis	0.62±0.08		0.59±0.14		
	Psoas major	0.94±0.31		0.87±0.20		
	Quadratus lumborum	0.85±0.33		0.99±0.32		
	Erector spinae	0.67±0.16		0.80±0.31		
Pelvis	Gluteus maximus	1.54±0.78	1.25±0.78	1.27±0.29	1.17±0.29	
	Gluteus medius	2.18±1.17	2.29±0.82	2.79±1.93	2.46±0.31	
	Gluteus minimus	3.13±0.60	3.51±0.83	3.51±1.20	3.34±0.98	
	Piriformis	2.95±1.70	2.37±0.88	2.13±0.74	1.99±0.65	
Thigh	Quadriceps femoris	1.00±0.31	1.01±0.38	1.00±0.30	0.92±0.19	

	Sartorius	0.76±0.21	0.77±0.20	0.91±0.32	0.89±0.27
	Gracilis	1.16±0.43	1.14±0.40	1.26±0.43	1.32±0.64
	Semimembranosus	0.74±0.14	0.59±0.10	0.62±0.08	0.60±0.12
	Semitendinosus	1.19±0.31	1.09±0.30	1.41±0.48	1.23±0.52
	Biceps femoris	0.59±0.08	0.63±0.10	0.61±0.10	0.62±0.13
	Adductor complex	0.81±0.18	0.82±0.18	0.83±0.14	0.76±0.15
Lower leg	Tibialis anterior	1.06±0.59	1.00±0.36	1.53±0.86	1.44±0.66
	Flexor digitorum longus	1.28±0.26	1.20±0.35	0.90±0.35	0.96±0.35
	Tibialis posterior	1.34±0.84	1.37±0.79	1.05±0.30	1.13±0.51
	Flexor halluces longus	1.23±0.13	1.30±0.58	1.10±0.29	1.18±0.49
	Peroneus	1.50±0.89	1.32±0.36	1.13±0.61	1.21±0.52
	Triceps surae	1.39±0.40	1.24±0.25	0.88±0.19	0.86±0.18
Foot	Abductor hallucis	1.36±0.42	1.45±0.44	1.31±0.61	1.17±0.37
	Quadratus plantae	1.06±0.20	1.29±0.43	1.05±0.38	1.00±0.34
	Flexor digitorum brevis	1.43±0.42	1.61±0.58	1.68±1.49	1.49±0.67

Abductor digiti minimi	1.13±0.44	1.45±0.55	1.15±0.50	1.31±0.78
Flexor hallucis brevis	2.12±0.65	2.24±0.57	2.27±0.83	2.12±0.90
Interosseous	2.02±0.61	2.20±1.11	2.38±1.50	2.20±1.31

207 Table 2: Static balance parameter, pre- and post-training.

	conditions	pre-training	post-training	Confidence	Effect size	P value
				interval		
LG (cm/s)	Two-leg, eyes opened	0.94±0.11	1.05±0.14	[-0.04, 0.27]	0.904	0.12
	Two-leg, eyes closed	1.41±0.28	1.27±0.23	[-0.39, 0.11]	0.533	0.36
	Dominant leg, eyes opened	3.93±0.61	3.96±0.67	[-0.44, 0.51]	0.052	0.78
	Non-dominant leg, eyes opened	3.88±0.68	4.03±0.31	[-0.48, 0.79]	0.195	0.40
AR (cm ²)	Two-leg, eyes opened	1.69±0.64	1.81±0.40	[-0.44, 0.69]	0.181	0.48
	Two-leg, eyes closed	2.65±0.37	2.46±0.82	[-1.01, 0.62]	0.198	0.78
	Dominant leg, eyes opened	6.84±2.77	7.24±1.56	[-2.30, 3.11]	0.124	0.78
	Non-dominant leg, eyes opened	6.91±2.66	7.45±1.99	[-2.10, 3.18]	0.177	0.67

Table 3: Reach distance (excursion distance/leg length×100) by balance condition and direction of reach, pre- and post-training.

	Dominant le	g		Non-dominant leg				
Direction (cm)	Pre-trainin	Post-traini	Confidence	P value	Pre-trainin	Post-traini	Confidence	P value
	g	ng	interval		g	ng	interval	
anterior-lateral	70.9±9.2	74.9±9.6	[0.74, 7.2]	0.02	76.9±9.9	75.3±9.3	[-7.3, 4.0]	0.51
anterior	86.4±8.3	86.6±6.9	[-1.3, 1.7]	0.75	86.9±7.5	88.1±7.4	[-0.08, 2.5]	0.06
anterior-medial	95.5±7.3	95.0±6.6	[-3.8, 3.0]	0.77	94.8±4.7	97.3±8.0	[-0.81, 6.0]	0.11
medial	103.4±7.2	105.0±7.3	[-1.3, 4.5]	0.23	103.6±6.0	107.9±7.6	[2.2, 6.3]	<0.01
posterior-medial	112.5±6.9	113.6±7.9	[-1.5, 3.6]	0.35	111.4±6.0	115.3±6.6	[0.49, 7.3]	0.03
posterior	115.7±6.4	117.4±7.0	[-2.9, 6.4]	0.40	114.0±4.5	119.1±7.9	[1.0, 9.1]	0.02
posterior-lateral	106.4±7.3	108.9±9.0	[-5.0, 10.1]	0.45	106.1±6.6	109.9±8.9	[-2.8, 10.3]	0.22
lateral	97.7±8.7	97.1±13.3	[-8.3, 7.1]	0.86	94.8±7.8	97.5±7.8	[-2.1, 7.5]	0.22

Table 4: Pre- to post-training change in lower limb muscle strength.

		pre-training	post-training	Confidence interval	Effect size	P value	
215	Knee flexor (%)	17.0±22.3	6.5±4.9	[-28.5, 7.52]	0.487	0.22	
		1710_2210	0.02.1.0	[20:0) / 102]	0.107	0.22	
	Knee extensor (%)	12.5±8.2	12.3±8.6	[-10.7, 10.3]	0.016	0.96	
	Hip abductor (%)	9.9±7.9	6.7±5.0	[-10.5, 4.0]	0.373	0.33	
	H/Q ratio (%)	17.5±5.8	10.6±8.4	[-16.4, 2.7]	0.596	0.14	

Table 5: Between-limb muscle strength imbalance, pre- and post-training.

	Dominant leg				Non-dominant leg					
	pre-training	post-training	Confidence	Effect	P value	pre-training	post-training	Confidence	Effect	P value
			interval	size				interval	size	
Knee flexor	2.90±0.09	2.99±0.18	[-0.47,	0.134	0.72	2.78±0.17	2.98±0.13	[-0.10, 0.50]	0.550	0.16
(Nm/kg)			6.44]							
Knee extensor	1.31±0.20	1.41±0.21	[-0.15,	0.338	0.37	1.24±0.15	1.39±0.14	[0.03, 0.28]	1.026	0.02
(Nm/kg)			0.34]							
Hip abductor	2.41±0.41	2.40±0.35	[-0.41,	0.031	0.21	2.35±0.37	2.52±0.43	[-0.05, 0.39]	0.634	0.55
(Nm/kg)			0.38]							
H/Q ratio (%)	0.45±0.05	0.48±0.07	[-0.02,	0.454	0.16	0.46±0.09	0.48±0.09	[-0.05, 0.09]	0.220	0.78
			0.08]							

Discussion

222Our results indicate an increase in the activation of various skeletal muscles of the 223core and lower limbs after a 6-month training using part 2 of the FIFA 11+ program, measured 224as an increase in the uptake of glucose: obliquus externus abdominis, erector spinae and 225tibialis anterior. Of note was the decrease in the glucose uptake of the triceps surae, as glucose 226uptake increased in the tibialis anterior. We also noted an improvement in the imbalance of 227the glucose uptake in the semimembranosus, between the dominant and non-dominant, after 228training. From a functional perspective, training produced a greater improvement in dynamic 229balance on the non-dominant than dominant lower limb. To our knowledge, this is the first 230study to report changes in muscle activities, associated with improvements in balance and 231muscle strength, after long-term training using the part 2 of the FIFA 11+ program. Observed 232changes in glucose uptake, balance and strength would, therefore, be the key mechanisms 233explaining the association between the FIFA 11+ and a decrease in sports-related injuries.

Glucose enters the muscle cell by facilitated diffusion via the glucose transporter-4 (GLUT4), with exercise stimulating an increase in the expression of GLUT4 in skeletal muscles, as shown by the findings of Reichkendler et al. after an 11-week program of daily moderateand high-dose aerobic exercise [14]. Similarly, an increase in GLUT4 levels in skeletal muscles is a key adaptation to regular exercise training [15]. Thus, FDG accumulation in the muscle can be used as a measure of the change in glucose uptake with training, as well as providing a proxy measure of muscle activity [16].

By comparing the change in FDG accumulation of each muscle from pre- to post-training, we demonstrated that routine training using part 2 of the FIFA11+ program improved muscle metabolism and activation as well as the previous studies [4,5]. These adaptations are important when we consider the positive effects of core and lower limb

245strength on balance. Kaji et al. reported on the improvement in two-leg standing balance with 246eyes closed after performing the FIFA11+ program (p=0.005) [17]. Granacher et al. reported on 247the improvement in the Functional Reach test (p<0.05) after performing a core stability 248training program which increased the strength of the trunk flexors (p<0.001), extensors 249(p<0.001) and lateral flexors (p<0.001) [18]. In the same way, Imai et al. reported immediate 250improvements in the posteromedial (p<0.001) and posterolateral directions (p=0.002) of the 251SEBT after the trunk stabilization exercises [19]. Considering the effect of core stability on 252balance, Willson et al. suggested that appropriate core strength training could reduce 253sports-related injuries [20]. We reported similar findings, showing an increase in the mean 254SUVs of the obliguus externus abdominis and erector spinae muscles after training, with a 255concomitant improvement in dynamic balance, indicative of the effectiveness of the part 2 256FIFA11+ program in improving core strength.

257With regard to lower limb muscle activation, Day et al. reported an increase activity 258of the tibialis anterior during active swaying (compared to static standing), which they 259associated to the higher proprioceptive demands of balancing under more challenging sensory 260conditions and the proprioceptive role of the tibialis anterior [21]. Similarly, Earl et al. reported 261an increase in the general activity of lower limb muscles (vastus medialis obliguus, vastus 262lateralis, medial hamstring, biceps femoris, and tibialis anterior) during the SEBT (p<0.05), with 263the exception of the triceps surae muscles (p=0.08) [22]. We demonstrated comparable 264findings post-training, supporting the effectiveness of the FIFA11+ (part 2) in improving 265balance [8].

The balance of muscle strength is also an important component with regard to injury prevention. For the lower limb, the hamstring-to-quadriceps ratio is an important risk factor of injury [23]. Previous studies have reported on the effectiveness of the complete FIFA 11+

269program in improving knee flexor strength and, thus, the hamstring-to-quadriceps ratio [7]. 270Between-limb strength imbalances might also be an important risk factor for lower leg injury 271[24]. A prospective study provided evidence that a between-limb imbalance in eccentric knee 272flexor strength increase in the risk of hamstring injuries [25]. Although we reported the 273effectiveness of the training in eliminating the higher SUV of the semimembranosus muscles in 274the dominant than non-dominant lower limb observed pre-training, we did not identify a 275significant between-limb imbalance among our study participants, either pre- or post-training. 276Therefore, we cannot stipulate if the FIFA11+ (part 2) program is effective to improve lower 277limb muscle imbalances, although the results of our SUV analysis indicate that the program 278would likely be of benefit in this regard.

Overall, our findings are consistent with previous reports on the effectiveness of performing the complete FIFA 11+ program in improving balance and muscle strength, which lowered the incidence of sports injuries [7–9]. The methods we used, and PET-CT in particular, could be useful for evaluating the effectiveness of training programs and identifying the underlying pathways.

284We note the following limitations of our study. First, the FDG-PET method accounts 285only for muscle glucose uptake. Other substrates, such as free fatty acids, muscle glycogen and 286lactate, are also metabolized in active muscle cells. That being said, studies have confirmed 287that glucose oxidation increases with exercise intensity and increases in glucose uptake, to 288some extent, increases in proportion with glycogen utilization as exercise intensity increases. A 289second limitation was the method we used to define the ROI. Since FDG uptake was measured 290at an arbitrary site on the target muscle, it did not reflect the uptake of glucose for the entire 291muscle. Lastly, taking into consideration the ethical dilemma of radiation exposure with CT 292(even though the amount of FDG was <10% of normal PET examination), our study sample was

small and we did not include a control group. Our use of PET-CT was consistent with the aim of our study to confirm that improvements in muscle metabolism was an important underlying pathway for the previously reported effectiveness of the FIFA11+ training program. In this sense, our use of PET-CT and our findings of an increase in glucose uptake post-training are novel.

298

299 **Conclusions**

Routinely performing part 2 of the FIFA11+ program for 6 months increased glucose uptake, related to muscle activity, of the obliquus externus abdominis, erector spinae and tibialis anterior, while decreasing activation of the triceps surae. The training program also improved knee flexor strength and dynamic balance, with no effect identified on static balance. We speculate that these improvements could be beneficial in lower the risk of sports-related injuries.

306

307 Acknowledgments

308 The authors would like to express their appreciation for the outstanding efforts 309 positive attitude of the participants. In addition, they are extremely grateful for the technical

assistance with measurement provided by physical therapists of our hospital.

311 No financial assistance was received for the project.

312

Author Contributions

314 Conceptualization: Takeshi Oshima, Junsuke Nakase.

315 Data curation: Takeshi Oshima, Anri Inaki.

- 316 Formal analysis: Takeshi Oshima, Anri Inaki, Takafumi Mochizuki.
- 317 Investigations: Takeshi Oshima, Yasushi Takata, Kengo Shimozaki.
- 318 Methodology: Takeshi Oshima, Anri Inaki, Takafumi Mochizuki, Junsuke Nakase.
- 319 Project administration: Seigo Kinuya, Hiroyuki Tsuchiya.
- 320 Resources: Takeshi Oshima, Yasushi Takata, Kengo Shimozaki, Junsuke Nakase.
- 321 Supervision: Seigo Kinuya, Hiroyuki Tsuchiya.
- 322 Validation: Takeshi Oshima, Anri Inaki, Takafumi Mochizuki.
- 323 Writing- original paper: Takeshi Oshima.
- 324 Writing- review and editing: Junsuke Nakase, Seigo Kinuya, Hiroyuki Tsuchiya.

325

326 **Conflict of interest statement**

- 327 This research didn't receive grants from any funding agency in the public, commercial
- 328 or not-for-profit sectors.

329

330 Ethical approval

331 This study was approved by the ethics committee of Kanazawa University (approval 332 number: 1286).

333 References

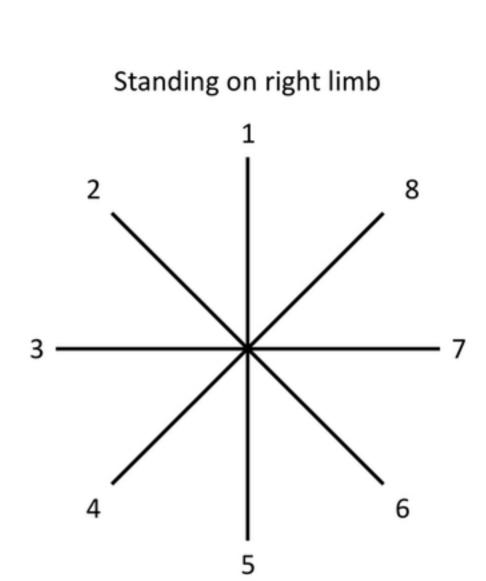
- Junge A, Lamprecht M, Stamm H, Hasler H, Bizzini M, Tschopp M, et al. Countrywide
 Campaign to Prevent Soccer Injuries in Swiss Amateur Players. Am J Sports Med.
 2011;39: 57–63. doi:10.1177/0363546510377424
- Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, et al.
 Effectiveness of a Neuromuscular and Proprioceptive Training Program in Preventing
 Anterior Cruciate Ligament Injuries in Female Athletes. Am J Sports Med. 2005;33:
- 340 1003–1010. doi:10.1177/0363546504272261
- Zebis MK, Andersen LL, Brandt M, Myklebust G, Bencke J, Lauridsen HB, et al. Effects of
 evidence-based prevention training on neuromuscular and biomechanical risk factors
 for ACL injury in adolescent female athletes: a randomised controlled trial. Br J Sports
 Med. 2016;50: 552–557. doi:10.1136/bjsports-2015-094776
- 3454. Nakase J, Inaki A, Mochizuki T, Toratani T, Kosaka M, Ohashi Y, et al. Whole Body 346 Muscle Activity during the FIFA 11+ Program Evaluated by Positron Emission 347Tomography. Chen С-Т, editor. PLoS One. 2013;8: e73898. 348doi:10.1371/journal.pone.0073898
- Takata Y, Nakase J, Inaki A, Mochizuki T, Numata H, Oshima T, et al. Changes in muscle
 activity after performing the FIFA 11+ programme part 2 for 4 weeks. J Sports Sci.
 2016;34. doi:10.1080/02640414.2016.1149606
- Ohnuma M, Sugita T, Kokubun S, Yamaguchi K, Rikimaru H. Muscle activity during a
 dash shown by18F-fluorodeoxyglucose positron emission tomography. Journal of
 Orthopaedic Science. 2006. pp. 42–45. doi:10.1007/s00776-005-0972-y
- 355 7. Impellizzeri FM, Bizzini M, Dvorak J, Pellegrini B, Schena F, Junge A. Physiological and 356 performance responses to the FIFA 11+ (part 2): a randomised controlled trial on the

357training effects. J Sports Sci. 2013;31: 1491–1502. doi:10.1080/02640414.2013.802926 358Daneshjoo A, Mokhtar AH, Rahnama N, Yusof A. The Effects of Comprehensive 8. 359 Warm-Up Programs on Proprioception, Static and Dynamic Balance on Male Soccer 360 Players. Lucia A, editor. PLoS One. 2012;7: e51568. doi:10.1371/journal.pone.0051568 3619. Barengo N, Meneses-Echávez J, Ramírez-Vélez R, Cohen D, Tovar G, Bautista J. The 362 Impact of the FIFA 11+ Training Program on Injury Prevention in Football Players: A 363 Systematic Review. Int J Environ Res Public Health. 2014;11: 11986–12000. 364 doi:10.3390/ijerph111111986

- 365 10. Okuda K, Abe N, Katayama Y, Senda M, Kuroda T, Inoue H. Effect of vision on postural
 366 sway in anterior cruciate ligament injured knees. J Orthop Sci. 2005;10: 277–283.
 367 doi:10.1007/s00776-005-0893-9
- 368 11. Oshima T, Nakase J, Kitaoka K, Shima Y, Numata H, Takata Y, et al. Poor static balance is
 369 a risk factor for non-contact anterior cruciate ligament injury. Arch Orthop Trauma
 370 Surg. 2018;138: 1713–1718. doi:10.1007/s00402-018-2984-z
- 37112.Demura S, Yamaji S, Noda M, Kitabayashi T, Nagasawa Y. Examination of Parameters372Evaluating the Center of Foot Pressure in Static Standing Posture from the Viewpoints373of Trial-to-trial Reliability and Interrelationships Among Parameters. Equilib Res.
- 374 2001;60: 44–55. doi:10.3757/jser.60.44
- 37513.Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiuletti NA. Reliability of isokinetic376strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol

377 Funct Imaging. 2008;28: 113–119. doi:10.1519/JSC.0b013e3181c06bdd

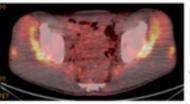
Reichkendler MH, Auerbach P, Rosenkilde M, Christensen AN, Holm S, Petersen MB, et
al. Exercise training favors increased insulin-stimulated glucose uptake in skeletal
muscle in contrast to adipose tissue: a randomized study using FDG PET imaging. Am J


381 Physiol Metab. 2013;305: E496–E506. doi:10.1152/ajpendo.00128.2013

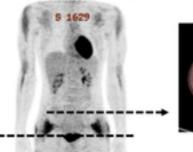
- Richter EA, Hargreaves M. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake.
 Physiol Rev. 2013;93: 993–1017. doi:10.1152/physrev.00038.2012
- 38416. Bojsen-Møller J, Kalliokoski KK, Seppänen M, Kjaer M, Magnusson SP. Low-intensity 385tensile loading increases intratendinous glucose uptake in the Achilles tendon 386 [Internet]. 2006. Journal of Applied Physiology. 196-201. pp. 387 doi:10.1152/japplphysiol.00004.2006
- Kaji A, Sasagawa S, Kubo T, Kanehisa H. Transient Effect of Core Stability Exercises on
 Postural Sway During Quiet Standing. J Strength Cond Res. 2010;24: 382–388.
 doi:10.1519/JSC.0b013e3181c06bdd
- 391 18. Granacher U, Lacroix A, Muehlbauer T, Roettger K, Gollhofer A. Effects of Core
 392 Instability Strength Training on Trunk Muscle Strength, Spinal Mobility, Dynamic
 393 Balance and Functional Mobility in Older Adults. Gerontology. 2013;59: 105–113.
 394 doi:10.1159/000343152
- Imai A, Kaneoka K, Okubo Y, Shiraki H. Comparison of the immediate effect of different
 types of trunk exercise on the star excursion balance test in male adolescent. The
 International Journal of Sports Physical Therapy. 2014. pp. 428–435.
- Willson JD, Dougherty CP, Ireland ML, Davis IM. Core Stability and Its Relationship to
 Lower Extremity Function and Injury. J Am Acad Orthop Surg. 2005;13: 316–325.
 doi:10.5435/00124635-200509000-00005
- 21. Day JT, Lichtwark GA, Cresswell AG. Tibialis anterior muscle fascicle dynamics
 adequately represent postural sway during standing balance. J Appl Physiol. 2013;115:
 1742–1750. doi:10.1152/japplphysiol.00517.2013
- 404 22. Earl JE, Hertel J. Lower-Extremity Muscle Activation during the Star Excursion Balance

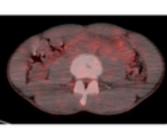
405 Tests. J Sport Rehabil. 2001;10: 93–104. doi:10.1123/jsr.10.2.93

- 406 23. Croisier J-L, Ganteaume S, Binet J, Genty M, Ferret J-M. Strength Imbalances and
- 407 Prevention of Hamstring Injury in Professional Soccer Players. Am J Sports Med.
- 408 2008;36: 1469–1475. doi:10.1177/0363546508316764
- 409 24. Yeung SS, Suen AMY, Yeung EW. A prospective cohort study of hamstring injuries in
- 410 competitive sprinters: preseason muscle imbalance as a possible risk factor. Br J Sports
- 411 Med. 2009;43: 589–594. doi:10.1136/bjsm.2008.056283
- 412 25. Bourne MN, Opar DA, Williams MD, Shield AJ. Eccentric Knee Flexor Strength and Risk
- 413 of Hamstring Injuries in Rugby Union. Am J Sports Med. 2015;43: 2663–2670.
- 414 doi:10.1177/0363546515599633

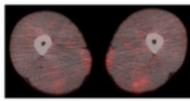


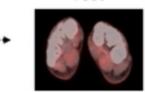
- 1. Anterior
- 2. Anteromedial
- 3. Medial
- 4. Posteromedial
- 5. Posterior
- 6. Posterolateral
- 7. Lateral
- 8. Anterolateral


Figure 1



Lower leg

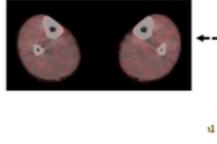




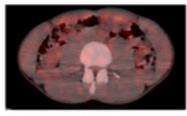
Trunk

Thigh

Foot

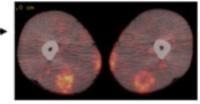


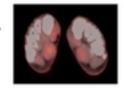
Before the training


I 95

Pelvis

Lower leg





Trunk

Thigh

Foot

After the training

1 78

Figure 2