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29 Abstract: 

30 Genomic resources for the domestic dog have improved with the widespread adoption of a 173k 

31 SNP array platform and updated reference genome. SNP arrays of this density are sufficient for 

32 detecting genetic associations within breeds but are underpowered for finding associations 

33 across multiple breeds or in mixed-breed dogs, where linkage disequilibrium rapidly decays 

34 between markers, even though such studies would hold particular promise for mapping complex 

35 diseases and traits. Here we introduce an imputation reference panel, consisting of 365 diverse, 

36 whole-genome sequenced dogs and wolves, which increases the number of markers that can be 

37 queried in genome-wide association studies approximately 130-fold. Using previously genotyped 

38 dogs, we show the utility of this reference panel in identifying novel associations and fine-

39 mapping for canine body size and blood phenotypes, even when causal loci are not in strong 

40 linkage disequilibrium with any single array marker. This reference panel resource will improve 

41 future genome-wide association studies for canine complex diseases and other phenotypes.

42

43 Author Summary: 

44 Complex traits are controlled by more than one gene and as such are difficult to map. For 

45 complex trait mapping in the domestic dog, researchers use the current array of 173,000 variants, 

46 with only minimal success. Here, we use a method called imputation to increase the number of 

47 variants – from 173,000 to 24 million – that can be queried in canine association studies. We use 

48 sequence data from the whole genomes of 365 dogs and wolves to accurately predict variants, in 

49 a separate cohort of dogs, that are not present on the array. Using dog body size, we show that 

50 the increase in variants results in an increase in mapping power, through the identification of new 

51 associations and the narrowing of regions of interest. This imputation panel is particularly 

52 important because of its usefulness in improving complex trait mapping in the dog, which has 

53 significant implications for discovery of variants in humans with similar diseases. 

54

55 Introduction:
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56 The modern domestic dog (Canis lupus familiaris) consists of over 500 breeds selected for 

57 diverse roles and subject to wildly different disease prevalences (1). A high quality reference 

58 genome (2–4) and affordable SNP genotyping arrays (5) have helped make the dog a powerful 

59 animal model for studying the genetics of complex traits and diseases. Of 719 traits genetic traits 

60 and disorders in the dog, 420 are potential models of human disease (https://omi.org/home/). 

61 With an average spacing of 1 SNP every 13kb, the CanineHD array (Illumina, San Diego, CA) 

62 has been successfully implemented in many genome-wide association studies (GWAS), 

63 especially within single breeds where linkage disequilibrium (LD) often extends beyond 1Mb (for 

64 example, see (6,7)). However, the results of many complex disease mapping studies in dogs 

65 have been underwhelming, with only one or a few significant loci identified (for example, see (8–

66 10)). 57% of the 719 genetic traits and disorders in dogs are complex but the likely causal variant 

67 is known for only 27% of these (https://omia.org/home/).

68 Recently, we used simulations to show that an increase in SNP density to 1 SNP every 2kb would 

69 improve power for canine complex trait GWAS (8). An increase in density can be achieved by the 

70 following: adding more SNPs to the CanineHD array, using whole genome sequencing (WGS), or 

71 using imputation to predict genotypes through the use of a reference panel created from WGS 

72 data. Of these, imputation is the most cost-effective option and has been used successfully in 

73 human and cattle GWAS, especially with the recent WGS efforts in these species (11,12).

74 GWAS of canine morphological traits has been very successful, due to large effect sizes and long 

75 regions of LD as a result of recent selection in purebred dogs (13). Seventeen quantitative trait 

76 loci (QTLs) associated with body weight, as a proxy for body size, have been identified (5,8,14–

77 22), as well as associations for other morphological phenotypes such as ear flop (5,15,16) and fur 

78 type (8,23,24). Despite the success of morphological trait mapping, we suggest that imputation 

79 can improve the power of GWAS, especially for reducing large intervals for use in fine-mapping.

80 We posit that improving the density of variants by using an imputation panel will greatly improve 

81 the power to identify causal loci for canine complex traits, due to increased LD. We use 365 

82 canine whole genome sequences to create a reference panel of 24 million variants and impute 

83 these variants in 6,112 dogs previously genotyped on a semi-custom 185k CanineHD array. We 
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84 show that using an imputation panel increases our power to detect variants affecting complex 

85 canine traits – both morphological and blood phenotypes – by identifying novel loci, and by 

86 refining intervals for previously-identified QTL’s for use in fine-mapping. To our knowledge, this is 

87 the first study to use an imputation panel based on WGS for canine mapping studies.

88

89 Results: 

90 Evaluation of imputation accuracy

91 We used IMPUTE2 to impute the WGS reference panel across the 6,112 genotyped dogs 

92 resulting in 24 million variants. By comparing 33,144 imputed variants to directly genotyped sites 

93 on a second custom array, we were able to calculate the accuracy for our imputation panel, which 

94 was 88.4% overall. Across all sites, purebred dogs had the highest accuracy (89.7%, n=276), 

95 followed by mixed-breed dogs (88.6%, n=13), and then village dogs (84.2%, n=86). This result is 

96 expected given that 210 of our 365 WGS panel were purebred dogs, and also due to the long-

97 range haplotypes found in purebreds that make calling imputed variants easier. For all three dog 

98 types (purebred, mixed-breed, and village), imputation accuracy increased with decreasing minor 

99 allele frequency (MAF) (Fig. 1a), which is an expected result because as MAF decreases, the 

100 occurrence of the major allele is the correct call more often. Looking at true heterozygous sites 

101 only (Fig. 1b), imputation accuracy was lower across all MAFs compared to all sites (Fig. 1a). 

102 Imputation accuracy increased as MAF increased for heterozygous sites, as there are more 

103 heterozygous calls for SNPs with higher MAF.

104 In general, the larger chromosomes and chromosome X had higher imputation accuracies than 

105 the smaller chromosomes, such as 35, 36, 37, and 38, due to lower recombination rates (S1 

106 Table). For all purebred, mixed-breed, and village dogs, the average imputation accuracy per 

107 chromosome was 89.1% (range of 84.3-93.5%), 88.0% (range of 83.0-93.0%), and 83.7% (range 

108 of 78.5-92.4%), respectively.

109

110 Body size associations
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111 We performed two separate GWAS, firstly using the semi-custom CanineHD array data of 185k 

112 markers, and secondly using our imputed panel of 24 million variants. The phenotypes used in 

113 these GWAS were male breed-average weight0.303, male breed-average height, and individual 

114 sex-corrected weight0.303. We were then able to compare the results from the array GWAS and 

115 the imputed GWAS using the exact same phenotypes. 

116 Using imputed data generally increased the significance of body size associations seen in the 

117 array data, especially HMGA2 on CFA10 and fgf4 on CFA18 for height (Fig 2a,b,c; S2 Table). 

118 Most of the respective QTLs from the array GWAS and the imputed GWAS were in LD (r2 > 0.2) 

119 with the exception of the CFA12 and two CFA26 associations (Table 1). When imputed variants 

120 were not in high LD (r2 < 0.8) with array QTLs, the imputed variants generally had stronger effect 

121 sizes and lower minor allele frequencies (Table 1).  

122 For most size-associated variants, the breed-average weight and height effects were roughly 

123 isometric, with the exception of CFA18 and CFA12 QTLs, which had a greater effect on height 

124 than weight (Fig. 2d). Of the seventeen autosomal QTLs that have been previously associated 

125 with body size (5,8,14–22,25), only one (CFA3:62) did not reach significance using the imputed 

126 panel (significance threshold of P = 1×10-8), with P-values of 1.1×10-5, 2.1×10-7 and 1.8×10-8 for 

127 individual weight, breed-average weight and breed-average height respectively (S2 Table). 

128 GWAS of breed-average weight provided the most power on average, so we will focus on that 

129 phenotype for the rest of the body size analyses. 

130 We used the identified body size QTLs to predict the body weight of individuals, by randomly 

131 setting 20% of the body weights in the dataset to missing, then using a Bayesian sparse linear 

132 mixed model to predict the missing weights, and finally comparing the predicted weights to the 

133 actual weights. Using the 20 QTLs identified from the array GWAS (see bold in Table 1), we 

134 found a correlation coefficient (r) of 0.851. Using the 20 QTLs from the imputed GWAS (see bold 

135 in Table 1), we found r of 0.869, and this increased very slightly to 0.870 when two more QTLs 

136 were included (see italics in Table 1). 
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137 Table 1: Positions, minor allele frequencies (MAF), and effect sizes for SNPs associated with 

138 breed-average male weight0.303 using the array data and imputed data, and LD between these 

139 pairs of SNPs. 

Chr Array

Position

Array

MAF

Array

Effect size

Imputation

Position

Imputation

MAF

Imputation

Effect size

LD

(r2)

1 55983871 0.129 -0.071 55922563 0.127 -0.077 0.874

3 41758863 0.311 -0.031 41780841 0.111 -0.074 0.246

3 62042184 0.100  0.062 61887587 0.093  0.065 0.849

3 91103945 0.227  0.067 91110878 0.283  0.094 0.433

91103945 91138480 0.237  0.045 0.088

4 39112085 0.334 -0.052 39182836 0.262 -0.060 0.396

4 67026055 0.404 -0.033 67040898 0.363 -0.074 0.382

5 31895829 0.461 -0.029 31689208 0.248 -0.045 0.265

7 30243851 0.271 -0.044 30183217 0.176 -0.067 0.518

7 41392649 0.356 -0.041 41351722 0.349 -0.044 0.903

7 43719549 0.382 -0.067 43724293 0.356 -0.076 0.894

9 N/A 12034947 0.054 -0.094 N/A

10 8183593 0.209 -0.135 8379634 0.249 -0.191 0.557

8183593 8100754 0.194 -0.079 0.851

11 26929946 0.243 -0.045 26929946 0.243 -0.045 1.000

12 33733595 0.435  0.026 33712492 0.161  0.067 0.148

15 41221438 0.465 -0.115 41216098 0.464 -0.114 0.979

18 20272961 0.151 -0.083 20379945 0.161 -0.116 0.577

20 21479863 0.085  0.056 21686712 0.110  0.072 0.493

26 7631562 0.340  0.031 7679257 0.175  0.059 0.075

26 13224865 0.307 -0.042 12838979 0.232 -0.078 0.154

32 N/A 5228269 0.164 -0.077 N/A

34 18559537 0.237 -0.050 18587956 0.258 -0.051 0.849

39 102212242 0.345  0.073 102209680 0.342  0.075 0.983

140 20 array QTLs and 20 imputed QTLs (shown in bold) were used in a prediction model and then 

141 another 2 imputed QTLs (shown in italics) were added to the prediction model (see text).
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142

143 Known body size loci

144 Nine body size QTLs have previously been fine-mapped (IGF1R, STC2, GHR, SMAD2, HMGA2, 

145 FGF4, IGF1, fgf4, IGSF1) (17–20,25,26). For each of these, the region in LD with the most 

146 significant respective marker in the breed-average weight imputed GWAS contained the known or 

147 putative causal variant (S1 Fig.). While the putative causal variants weren’t always the highest 

148 associated variant at a locus, they generally had P-values within two orders of magnitude of the 

149 most associated marker (S1 Fig.), confirming that the imputation panel performs well for the 

150 weight GWAS. 

151 Unsurprisingly, many of the putative causal variants are not markers on the CanineHD array, 

152 including IGF1R (3:41,849,479) (20), STC2 (4:39,182,836), GHR (4:67,040,898 and 

153 4:67,040,939), and HMGA2 (10:8,348,804) (17). With the array data, the IGF1R QTL (P = 1.4×10-

154 5 for breed-average weight GWAS) did not reach significance, but with the imputed data we saw a 

155 significant association signal (P = 1.6×10-12 for breed-average weight GWAS), and the causal 

156 variant was the 6th most associated SNP (r2 = 0.73 between causal and associated SNP) (S1 Fig. 

157 a). The STC2 and GHR (4:67,040,898) putative causal variants were the most significant variants 

158 at those loci in the imputed GWAS (S1 Fig. b,c). Note that there are two putative causal variants 

159 for GHR (17), both in exon 5, but only one passed our 5% MAF filter. Similarly, the HMGA2 

160 causal variant was in high LD (r2=0.91) with the most significant marker at this locus in the 

161 imputed GWAS (S1 Fig. e).

162 For IGF1, SNP5 (BICF2P971192, 15:41,221,438), which is in LD with the SINE element (18), was 

163 the most significant association in the array GWAS. In the imputed GWAS, SNP5 was the 2nd 

164 most associated SNP and the SNP that tags the SINE element (15:41,220,982) was the 4th most 

165 associated SNP, and these SNPs were nearly in complete LD with the most significant marker in 

166 the GWAS (r2=0.98 and 0.97 respectively) (S1 Fig. f). The IGSF1 missense mutation (26) was in 

167 high LD with the most significant association in the imputed GWAS (r2=0.97) (S1 Fig. i). Note that 

168 there is a second variant in IGSF1 – an in-frame deletion – that has also been identified (26).

169
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170 Imputed GWAS novel body size loci

171 We previously identified four novel QTLs, making a total of seventeen, that are associated with 

172 body size in dogs (8). Here, using the imputation data, we found a further five novel QTLs 

173 (CFA5:31, CFA7:41, CFA9:12, CFA26:7, CFA32:5) that passed our significance threshold in a 

174 breed-average weight GWAS. As a conservative control, we performed a further breed-average 

175 weight GWAS in which we included the four most-associated QTLs (CFA10:8, CFA15:41, 

176 CFA3:91, CFA7:43) as covariates. The results showed that the novel loci at CFA5:31, CFA7:41 

177 and CFA32:5 were no longer significant – and four other loci were also not significant in the 

178 covariate GWAS: CFA1:56, CFA11:26, CFA20:21, CFA34:18. Further analyses are required to 

179 determine if these are true or spurious associations, but since we cannot rule out that they are 

180 spurious, we conclude that we have identified only two novel canine body size QTLs, at CFA9:12 

181 and CFA26:7.

182 The most significant SNP at CFA9:12 is located about 200kb upstream of the gene growth 

183 hormone 1 (GH1) (Fig. 3a), which is expressed in the pituitary and has been associated with body 

184 size in humans and cattle (27–29). The non-reference, derived indel that was the most highly 

185 associated in our imputed GWAS is found at high frequency in two small breeds Papillon and 

186 Pomeranian, and also in New Guinea Singing Dogs. Using our snpEff annotated variant files, we 

187 found two variants in GH1: a splice donor variant in intron 3 (CFA9:11,833,343, 

188 c.288+2_288+3insT), and an in-frame deletion in exon 5 (CFA9:11,832,437, 

189 c.573_578delGAAAGA, p.Lys191_Asp). Both of these variants were at <5% frequency in the 

190 WGS panel but all occurrences were in small-sized breeds (such as Yorkshire terrier and 

191 Maltese). 

192 The second novel body size QTL is at CFA26:7 (Fig. 3b). Investigation of the surrounding region 

193 uncovered a couple of potential candidate genes. The first is ANAPC5, a member of the 

194 anaphase-promoting complex gene family that includes ANAPC13, which has been associated 

195 with height in humans (30). The second candidate gene is the histone H3 demethylase KDM2B 

196 (Iysine-specific demethylase 2B), which has been associated with body mass index in humans in 

197 a CpG methylation study (31). However, we did not identify any variants in ANAPC5 or KDM2B in 
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198 the snpEff-annotated files that are in LD with the associated imputation variant. The non-

199 reference, derived allele was found at high frequency in the small breeds Shiba Inu, Havanese, 

200 and Chihuahua. 

201

202 Refinement of body size loci

203 With the imputation panel, we saw a refinement in several QTL regions – for example, the 

204 chromosome 3 association near the genes LCORL and ANAPC13, both of which have previously 

205 been associated with body size (5,15,29,30,32). Using imputed data, this QTL had a more 

206 significant and defined association, compared to the CanineHD array data alone (S2 Fig. a). The 

207 QTL interval is about 65kb and 60kb upstream of the genes LCORL and ANAPC13 respectively, 

208 suggesting the causal variant is likely regulatory. Another example is the recently identified body 

209 size QTL at CFA7:30 Mb, near the gene TBX19 (8). Here the imputed GWAS results showed a 

210 narrower QTL interval of greater significance when compared to the array GWAS (S2 Fig. b). This 

211 region overlaps TBX19 but we did not observe any coding loci in our snpEff annotated variant 

212 files that are in LD with the most associated SNP.

213

214 Allelic heterogeneity

215 In order to reduce phenotypic noise, again we included the four most-associated QTLs (CFA10:8, 

216 CFA15:41, CFA3:91, CFA7:43) as covariates in the GWAS (hereafter referred to as “top 4 

217 covariates”), and then implemented a region-specific stepwise approach, including further 

218 associated SNPs in the region as covariates, until no significant association signal remained. For 

219 breed-average body weight, when we regressed out the most significant association for a QTL, 

220 we expected the association signal to disappear, as seen with the SMAD2 QTL (Fig. 4a). 

221 Our results showed two QTLs (CFA3:91, CFA10:8) that retain significant association signal after 

222 regressing out the most associated locus in the respective region (Fig. 4b,c). For both CFA3 and 

223 CFA10, the data suggest there may be two independent significant associations in these regions. 

224 In the CFA3 region, the initial association signal peak looked regulatory while the residual signal 

225 is located in the genes ANAPC13 and LCORL. The residual signal in the CFA10 region lies close 
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226 to the ear flop association (5,15,16) (candidate gene MSRB3) but is not in LD with the imputed 

227 ear flop locus at CFA10: 8,097,650 (r2=0.147). The variant in this residual signal region may be 

228 regulatory, as the significance peak lies approximately 248kb upstream of HMGA2. We did not 

229 identify any coding variants in these two residual signal regions from the snpEff annotations. Two 

230 other QTLs (CFA4:67 and CFA15:41) showed evidence of residual signal but these did not reach 

231 significance (P = 2.9×10-7 and 2.9×10-8, respectively).

232 This residual signal suggested allelic heterogeneity in these regions but could also be due to 

233 imperfect tagging in the imputed dataset. As a follow-up analysis, for each of these two QTLs 

234 (CFA3:91 and CFA10:8), we took the most significant SNP from the top 4 covariates GWAS. We 

235 used that significant SNP as a covariate in a GWAS to see if we were able to recover the most 

236 significant SNP from the initial GWAS with no covariates. For both CFA3 and CFA10, we did 

237 recover the initial associated SNP, suggesting that these are real associations and not midway 

238 between two imperfectly tagged SNPs. 

239

240 Blood phenotypes

241 Using our imputed panel for GWAS on blood phenotypes revealed several novel associations. 

242 For example, we saw significant associations with the phenotypes of albumin and calcium levels 

243 in peripheral blood (P = 4.5×10-10 and 5.9×10-9 respectively), neither of which were previously 

244 identified in the array GWAS (33) (S3 Table). We also identified a novel association with blood 

245 glucose level and CFA1, located in the gene solute carrier family 22 member 1 (SLC22A1) and 

246 about 30kb downstream of the insulin-like growth factor 2 receptor gene (CI-MPR/IGF2R) (Fig. 

247 5d). During gestation, IGF2R binds insulin-like growth factor 2 (IGF2), the presence of which 

248 stimulates the uptake of glucose (34). The SNP was at highest frequency (>50%) in the Samoyed 

249 and American Eskimo dog breeds.

250 Of the eight significant associations (using a threshold of P = 1.0×10-8) we saw with the imputed 

251 data, only two were not novel – alanine aminotransferase (ALT) and amylase – although both 

252 increased in significance (Fig. 5g, 5h; S3 Table). In addition to significant associations, we also 
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253 saw six associations that nearly meet our significance threshold, that is, P < 2.0×10-8, including 

254 three that were not significant using the genotype data (S3 Table).

255

256 Discussion:

257 Imputation increases GWAS power by including additional sites that are not well-tagged by any 

258 single array marker, and has been successfully implemented in human studies, for example, low-

259 density lipoprotein GWAS (35–37). Here we present a canine imputation panel of 24 million 

260 variants – an approximate 130-fold increase in SNP number and SNP density from the semi-

261 custom CanineHD array – for use in association studies. This panel has an overall accuracy rate 

262 of 88.4% when compared to genotype data from the same individuals (276 purebreds, 86 village 

263 dogs, and 13 mixed-breed dogs). In the future, panels based on even larger numbers of 

264 sequenced individuals would yield even higher accuracy (for example, see (38)), but this panel 

265 based on hundreds of dogs is still a useful, cost-effective way to improve the power of canine 

266 mapping studies today. 

267 With our imputation panel, we improved association mapping for previously studied phenotypes, 

268 such as body size. Previous mapping studies of canine body size and other morphological traits 

269 using CanineHD array data have identified many significant QTLs. This success is largely the 

270 result of selection for body size during the formation of dog breeds, leading to selective sweeps 

271 around large-effect loci that facilitated mapping efforts. Nevertheless, using the imputation panel, 

272 we were able to identify two additional novel loci (at CFA9:12 and CFA26:7) that influence body 

273 size although functional studies, which are beyond the scope of this research study, are required 

274 to validate these two loci. Using imputation, we were also able to narrow intervals for previously 

275 known associated QTLs, and find evidence of possible allelic heterogeneity at two loci. 

276 Furthermore, imputation provides a more accurate analysis of the genetic architecture underlying 

277 canine body size and, in turn, allows a more accurate prediction for body size in dogs. 

278 Imputation is especially helpful in across-breed and/or mixed-breed study designs, where LD 

279 breaks down very rapidly making it more difficult to identify associations. Increasing the number 

280 and density of queried variants (as done by imputation) increases the chance that a variant will be 
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281 in LD with the causal variant, especially when compared to a within-breed study design. We used 

282 our imputation panel for across-breed GWAS of blood phenotypes, resulting in several novel 

283 associations and the narrowing of associated intervals when compared to array data alone. 

284 Although costs of WGS are decreasing, it is still more cost-effective to use a panel of WGS 

285 individuals to create an imputation dataset based on genotyped samples than it is to directly 

286 WGS all the samples (39). Our imputation panel was created using over 350 canine WGS’s 

287 representing 76 breeds. The inclusion of more breeds, especially diverse breeds (such as the 

288 Parson Russell Terrier) and rare breeds (such as the Pumi), will improve the accuracy of, and the 

289 number of rare variants in, future imputation panels. A recent canine imputation study has shown 

290 that imputation accuracy is highest using a multi-breed reference panel (compared to a breed-

291 specific panel), and when there is overlap in breeds between the target and reference panel (40). 

292 Furthermore, human studies have shown that imputation accuracy increases with the size of the 

293 reference panel (41,42).

294 In summary, using our canine imputation panel of 24 million variants results in an increase in 

295 GWAS power, even for phenotypes that have multiple significant associations. The improvements 

296 to canine GWAS, especially for complex phenotypes, will not only further the field of canine 

297 genetics, but may also have beneficial implications for human medical genetics – especially for 

298 complex diseases, such as cancer, for which the domestic dog is a good model organism (43). 

299

300 Material and Methods:

301 Whole genome sequences

302 The 365 whole genome sequences include 210 breed dogs (from 76 breeds), 107 village dogs 

303 (from 13 countries), and 28 wolves (S4 Table). 88 of these were sequenced at the Cornell 

304 University BRC Genomics Facility; others were sourced from public databases (S4 Table). Those 

305 sequenced at Cornell were run on an Illumina HiSeq2000 or Illumina HiSeq2500 and the reads 

306 were aligned to the CanFam3.1 reference genome using BWA (44). Variants were called using 

307 GATK’s HaplotypeCaller (46–48). Variant quality recalibration was done in GATK using the semi-

308 custom canineHD variant sites (8) as a training set (known=false, training=true, truth=true, 
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309 prior=12.0). We included SNPs in the 99.9% tranche and removed sites with minor allele 

310 frequency (MAF) less than 0.5%. Phasing was done using Beagle r1399 (45). 

311

312 Imputation panel

313 SHAPEIT v2.r790(49) was used to phase the genotype data from 6,112 dogs as previously 

314 described (8) and then IMPUTE2 version 2.3.0 (50) was used to impute across these data. 

315 Imputation was only performed on the autosomes and chromosome X, not on the Y chromosome 

316 or mitochondrial SNPs. The final reference panel consists of 24.0 million variants, including 

317 750,000 on the X chromosome, of which 20.33 million are SNPs and 3.67 million are indels. 

318

319 Imputation Accuracy

320 276 purebred, 86 village, and 13 mixed-breed dogs were also genotyped on a second custom 

321 Illumina CanineHD 215k array, which contains 33,144 SNPs that are not on the 185k semi-

322 custom CanineHD array but do feature in our imputed dataset. These 33,144 SNPs were used to 

323 determine the accuracy of our imputation across the 375 total dogs. Accuracy was calculated for 

324 each SNP as the number of sites that are correctly called in the imputed dataset divided by the 

325 total number of dogs. For example, if a G/C SNP was called G/G in 14 dogs, C/C in 10 dogs, and 

326 G/C in the remaining 351 dogs, then the imputation accuracy for that SNP is 93.6%. MAF was 

327 calculated for each SNP as the number of occurrences of the allele across all village, purebred, 

328 and mixed-breed dogs in the genotyped dataset. Imputation accuracy and MAF were plotted in 

329 Jupyter notebook (51) using Matplotlib library (52).

330

331 Marker Datasets

332 For the genotype data, individuals were run on a semi-custom Illumina CanineHD array of 185k 

333 SNPs, and quality control steps were performed as previously described(8). For the imputed data, 

334 IMPUTE2 outputs were converted into PLINK (53) binary format, one for each chromosome.

335

336 GWAS
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337 We ran GWAS using a linear mixed model in the program GEMMA v 0.94 (54), with a MAF cut-off 

338 of 5% and using the Wald test to determine P-values. All LD plots were created using Matplotlib 

339 library (52) in Jupyter notebook (51).

340 For the imputed panel, GWAS was performed for each canine chromosome (CFA1-39) 

341 separately. The kinship matrix calculated using the array data in GEMMA was also used in the 

342 imputed GWAS for the same phenotype. The significance threshold was set to P = 1×10-8 (see 

343 (55)).

344 1. Body size

345 To identify QTLs associated with body size, we ran a GWAS of breed-average body weights 

346 (n=1926) and heights (n=1926), and individual body weights (n=3095), using both the semi-

347 custom 185k CanineHD array data and the imputed panel data. Effect sizes were recorded from 

348 the GEMMA output, and MAF’s and LD statistics were calculated using PLINK.

349 Breed-average body size

350 The breed-average data included dogs from 175 breeds with a maximum of 25 dogs per breed. 

351 The phenotypes of male breed-average weight0.303 in kg, or male breed-average height in cm, 

352 were assigned to all dogs in the breed for the weight and height GWAS, respectively. We used 

353 weight0.303 to normalize the distribution of weights across the breeds, based on a Box-Cox 

354 transformation performed in R (56) using the package MASS (57).

355 Individual body weights

356 Individual body weight GWAS was performed using 3,095 dogs including 417 village dogs and 

357 427 mixed-breed dogs. The average raw weight in this individual dataset is 24.7kg, ranging from 

358 1.6kg to 99.7kg. 164 breeds are represented, with 52 small breeds, 57 medium breeds, 34 large, 

359 and 21 giant breeds. Individual weights were sex-corrected by 16.47% (that is, female weights 

360 were increased by 16.47%), and transformed (weight0.303).

361 Covariate GWAS

362 GWAS of breed-average body weight using imputed variants shows the four most-associated loci 

363 are HMGA2 (CFA10), IGF1 (CFA15), LCORL (CFA3), and SMAD2 (CFA7). In order to control for 

364 possible spurious associations, we ran an imputed GWAS, using breed-average body weights, 
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365 including the four most-associated loci as covariates and then observed which of our significant 

366 associations remained.

367 Fine mapping

368 We used snpEff version 4.3T (58) to annotate our WGS variant file, using the pre-built 

369 CanFam3.1.86 database, and then used this to search for potential causal variants within specific 

370 LD regions. 

371 Predicting body size

372 We used all the individual body weights (n=3,095) and specific body size QTLs as a training set, 

373 and then randomly set 20% of the weights to missing and used a Bayesian sparse linear mixed 

374 model (with a ridge regression/GBLUP fit) in GEMMA to predict these missing weights. We did 

375 this randomization and prediction 50 times, and then compared the actual weights to the 

376 predicted weights using a correlation coefficient. 

377 Allelic heterogeneity

378 In order to reduce phenotypic noise, we again included all four most-associated QTLs as 

379 covariates in a follow-up GWAS of breed-average body weight and then, for those regions that 

380 still had residual association signal, we also included the most associated SNP (in addition to the 

381 four) as a covariate in the next GWAS. We continued this stepwise process of including the most-

382 associated SNP in the next GWAS until there was no significant association signal in the 

383 respective region remaining. The same analysis was run using the three most-associated loci 

384 (HMGA2, IGF1, LCORL) and the five most-associated loci (HMGA2, IGF1, LCORL, SMAD2, 

385 GHR) with comparable results (data not shown).

386 2. Blood phenotypes

387 Using previously published data of 38 phenotypes from complete blood count (CBC) and serum 

388 chemistry diagnostic panels (33), GWAS were performed using the imputed data and results 

389 were compared to the published results using the semi-custom CanineHD array data.

390

391 Data Availability
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392 Whole-genome sequence data produced for this research have been deposited in the Sequence 

393 Read Archive (http://www.ncbi.nlm.nih.gov/sra) with accession numbers listed in S4 Table.

394 The pre-phased genotype data (binary PLINK files) and the phased WGS data (vcf files) are 

395 publicly available at datadryad.org (doi:10.5061/dryad.jk9504s). 
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577 Figures:

578 Figure 1: Imputation accuracy for 33,144 variants of different allele frequency in mixed-breed 

579 dogs (blue), purebred dogs (green), and village dogs (red).

580 a) all sites, b) heterozygous sites only.

581

582 Figure 2: Scatter plots showing P-values for array GWAS (x axis) and imputed GWAS (y axis).
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583 a) breed-average weight, b) breed-average height, c) individual weight, and d) absolute values of 

584 the effect sizes of the most-associated SNP for breed-average weight and breed-average height 

585 from the imputed GWAS.

586

587 Figure 3: Novel body size loci.

588 Linkage disequilibrium plots of the region around breed-average weight GWAS results

589 a) CFA9:12, b) CFA26:7. Array genotypes are shown as o, imputed data are shown as +. Colors 

590 indicate amount of LD with the most significantly associated SNP, ranging from black (r2<0.2) to 

591 red (r2>0.8). 

592

593 Figure 4: Stepwise-covariate LD plots for breed-average weight imputed GWAS.

594 a) CFA7 (SMAD2), showing that the association signal in the region disappears with the inclusion 

595 of the top 4 SNPs as covariates. b)-d) Association signal in the region remains with the inclusion 

596 of the top 4 SNPs as covariates and then additional stepwise covariates in the region b) LCORL, 

597 c) HMGA2. Array genotypes are shown as o, imputed data are shown as +. Colors indicate 

598 amount of LD with the most significantly associated SNP, ranging from black (r2<0.2) to red 

599 (r2>0.8).

600

601 Figure 5: LD plots for significant blood phenotypes.

602 a) albumin on CFA13, b) anion gap on CFA29, c) calcium on CFA37, d) sqrt glucose on CFA1, e) 

603 potassium on CFA8, f) white blood cells on CFA4, g) log ALT on CFA13, h) sqrt amylase on 

604 CFA6. Array genotypes are shown as o, imputed data are shown as +. Colors indicate amount of 

605 LD with the most significantly associated SNP, ranging from black (r2<0.2) to red (r2>0.8).

606

607 Supporting Information:

608 S1 Figure: Linkage Disequilibrium (LD) plots of the region around the breed-average weight QTL 

609 intervals that have been fine-mapped a) CFA3:41 near the gene IGF1R, b) CFA4:39 near the 

610 gene STC2, c) CFA4:67 near the gene GHR, d) CFA7:43 near the gene SMAD2, e) CFA10:8 
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611 near the gene HMGA2, f) CFA15:41 near the gene IGF1, g) CFA18:20, h) CFA32:5 near the 

612 gene BMP3, i) CFAX near the gene IGSF1. Dashed lines show the significant interval (defined by 

613 P-values within two orders of magnitude of the most associated SNP). Asterisks show the 

614 location of the causal locus. Note that for d), f), and g) the causal locus is a deletion, SINE 

615 insertion, and retrogene insertion respectively, so these locations are labeled with asterisks at the 

616 top of the plot. 

617

618 S2 Figure: Linkage Disequilibrium (LD) plots of the region around the breed-average weight QTL 

619 intervals on a) CFA3:91 near the gene LCORL and ANAPC13, b) CFA7:30 near the gene TBX19. 

620 The significant interval, drawn with dashed vertical lines, is defined by P-values within two orders 

621 of magnitude of the most associated SNP. Array genotypes are shown as o, imputed data are 

622 shown as +. Arrows point to the most significant SNP in the array GWAS and imputed GWAS. 

623 Colors indicate amount of LD with the most significantly associated SNP, ranging from black 

624 (r2<0.2) to red (r2>0.8). 

625

626 S1 Table: Imputation accuracy calculated for each chromosome for village dogs, mixed-breed 

627 dogs, and purebred dogs. Average recombination rate (cM/Mb) calculated from (59) for each 

628 chromosome is also shown.

629

630 S2 Table: P-values for body size GWAS QTLs using individual weight, breed-average weight, and 

631 breed-average height phenotypes with array genotypes and imputed panel. Novel body size loci 

632 are shown in bold. 

633

634 S3 Table: Significant and nearly significant imputed GWAS results of blood phenotypes. Also 

635 shown is the location and P-value from the GWAS using the array genotype data.

636

637 S4 Table: List of Whole Genome Sequence (WGS) dog samples.

638
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