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Abstract

What drives people’s exploration in complex scenarios where
they have to actively acquire information by making queries?
How do people adapt their selection of queries to their envi-
ronment? We explore these questions using Entropy Master-
mind, a novel variant of the Mastermind code-breaking game,
in which participants have to guess a secret code by making
useful queries. Participants solved games more efficiently and
more quickly if the entropy of the game environment was low;
moreover, people adapted their initial queries to the scenario
they were in. We also investigated whether it would be possible
to predict participants’ queries within the generalized Sharma-
Mittal information-theoretic framework. Although predicting
individual queries is difficult, the modeling framework offered
important insight on human behavior. Entropy Mastermind
offers rich possibilities for modeling and behavioral research.
Keywords: Curiosity; Active Learning; Exploration; Entropy

Introduction
Humans are curious animals. From learning how to speak to
launching rockets into space, exploration drives mankind’s
progress small and large. Human exploration and curios-
ity have been studied in reinforcement learning, self-directed
sampling, and active learning paradigms. Recently there has
been a great deal of conceptual work in this area (Coenen,
Nelson, & Gureckis, 2018; Gottlieb & Oudeyer, 2018;
Gureckis & Markant, 2012; Schulz & Gershman, 2019),
which is underpinned by the common assumption that behav-
ior is goal-directed and that people select observations based
on a metric of usefulness (Settles, 2009).

Self-directed learning has been investigated empirically in
adults and children, in domains including causal learning
(Bramley, Dayan, Griffiths, & Lagnado, 2017), categorization
(Meder & Nelson, 2012), control tasks (Osman & Speeken-
brink, 2012), and 20-questions games (Nelson, Divjak, Gud-
mundsdottir, Martignon, & Meder, 2014). Self-directed
learning can lead to improved performance (Gureckis &
Markant, 2012; Markant, Ruggeri, Gureckis, & Xu, 2016).
For instance, participants actively intervening on a causal sys-
tem made better inferences about the underlying causal struc-
ture than subjects who received identical information in a pas-
sive fashion (Lagnado & Sloman, 2004).

What metrics best predict how people evaluate the use-
fulness of possible queries? Past work has focused on
the expected reduction of uncertainty, the extent of predic-
tions’ improvement, or the maximization of future rewards
(Nelson, 2005). One study optimized experimental materi-
als to maximally distinguish between different measures in
an experience-based probabilistic classification task (Nelson,

McKenzie, Cottrell, & Sejnowski, 2010). Results showed that
participants were better described by probability gain than by
information gain or other measures. But different models
may better account for human behavior on other tasks. For
instance, probability gain does not capture human intuitions
well on 20-questions tasks (Nelson et al., 2014).

Gureckis et al. (2012) tested whether participants maxi-
mize payoffs or information gain in a game of “battleships”,
where each query cost money and an attempt to maximize
utility would lead to different queries than information-gain
based strategies. Surprisingly, participants’ sampling behav-
ior was best matched by information gain. The authors argued
that using information gain would lead to more knowledge
about the underlying structure and therefore can be an effec-
tive strategy, no matter what the final task will be. Similar
results have been obtained on an active causal learning task
(Bramley, Lagnado, & Speekenbrink, 2015).

Studies on reinforcement learning frequently focus on how
humans explore promising options, and have tested several
exploration algorithms, such as random and directed explo-
ration (Schulz & Gershman, 2019; Wu, Schulz, Speeken-
brink, Nelson, & Meder, 2018). Interestingly, if one defines
directed exploration as an “uncertainty bonus” that inflates
rewards by their predictive standard deviation, this formalism
can again be seen as an approximate measure of information
gain (Srinivas, Krause, Kakade, & Seeger, 2012).

A quintessential game of curiosity
In the Mastermind code-breaking game, both learning and
exploitation are important. Thus, Mastermind offers a po-
tential platform for bringing together pure information mod-
els (like expected information gain) and reinforcement learn-
ing models. It was invented in 1970 by Mordecai Meirowitz,
and was one of the most successful games of the 20th cen-
tury. Although Mastermind has been extensively studied in
computer science (for references see Berghman, Goossens,
& Leus, 2009; Cotta, Guervós, Garcı́a, & Runarsson, 2010),
comparatively little work has been done in cognitive science
(but see, e.g., Laughlin, Lange, & Adamopoulos, 1982; Zhao,
van de Pol, Raijmakers, & Szymanik, 2018).

We introduce a new game, “Entropy Mastermind”, for
studying exploration-driven problem solving (Fig. 1). A key
difference between Entropy Mastermind and the classic game
is that in Entropy Mastermind, hidden codes are drawn from
known probability distributions. By varying the game en-
vironment (the probability distributions from which hidden
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codes are drawn, depicted visually as an icon array of fruits),
Entropy Mastermind allows for research on how the level of
entropy affects people’s strategies and success in game play.

As a first step toward modeling behavior in a probabilistic
framework, we use a model that values both maximizing the
probability of a correct query and a curiosity bonus, similar to
recent work on reinforcement learning in vast decision spaces
(Wu et al., 2018). To model curiosity we use the Sharma-
Mittal space of entropy measures, which subsumes several
well-known entropy measures as special cases (Crupi, Nel-
son, Meder, Cevolani, & Tentori, 2018). According to the
setting of two parameters, known as the order and degree,
this entropy space can recover Shannon entropy, Bayes’s er-
ror, theoretically important intermediate models (for instance
from the Arimoto family of entropy measures), and the Rényi
and Arimoto families of entropy measures. Whereas infor-
mation gain has traditionally been thought of as reduction in
Shannon entropy, any entropy metric could be used.

In what follows, we formally define the Sharma-Mittal
space as a unifying framework for information gain measures.
We then report an exploratory study assessing and modeling
human behavior with Fruit Salad Mastermind, a version of
Entropy Mastermind. Participants adapted their queries to the
level of entropy in the environment, solving games in less-
entropic environments faster and more efficiently. Both the
exploration and exploitation parts of the model were impor-
tant to account for human behavior.

Mapping the space of curiosity
In Mastermind both learning the true code and guessing the
true code are important. (To make this intuitive, suppose that
there are two possible codes, given everything that has been
learned to date, and that one of these codes has 90% prob-
ability of being the correct code. Although the same infor-
mation will be gleaned from testing either code, clearly it is
sensible to test the code that has 90% probability of being cor-
rect, thus ending the game more efficiently on average.) We
implement this idea via a softmax response rule on a value
function which is based on the probability of each query be-
ing the correct code in the immediate time step, as well as a
curiosity-driven exploration bonus:

P(action = ai) ∝ P(success|ai)+β× curiosity bonus(ai)
(1)

How promising a code seems is determined by its current
probability of being correct P(success|ai). This probability is
always the same given a specific history of queries and feed-
back. The curiosity bonus(ai) is weighted by a free parameter
β and can be defined as how much an action promises to re-
duce uncertainty over the space of possible hypotheses (i.e.,
how much it reduces uncertainty about possible codes).

The uncertainty in a discrete random variable K =
k1,k2, ...kn can be measured by its entropy. We use a gen-
eralized class of entropy measures that unifies multiple past
proposals (Crupi et al., 2018). This class is called the Sharma-
Mittal space, and can be defined as shown below:

Figure 1: Fruit Salad Mastermind. Top: Icon array presenting
the fruit bowl that generated the secret code. The fruits are always
chosen from the same six fruit types (apples, oranges, blueberries,
grapes, pears, and pineapples), by random sampling with replace-
ment. Duplicates are allowed, so it is possible that the same fruit
could appear in all positions of the hidden code. Players have to
guess which fruit is in which position of three slots of the secret
code, by clicking on the position they want to change. Each position
is initially blank; clicking cycles through the possible fruits. Once
participants are satisfied with the proposed code, they can click on
a “Check” button (not shown), and then receive feedback. Bottom:
History of game play illustrating feedback. In the first guess, the
player guessed 3 grape items. The feedback (one smiling face fol-
lowed by two frowning faces) conveys that exactly one of the items
is exactly correct. However, the player does not know which of their
guesses is correct: there is no correspondence between the position
of the guess and the position of the feedback. In the second guess,
the player tests grape in the first position, and apple in each of the
other two positions. The feedback (smiling face, neutral face, frown-
ing face) indicates that one of the items is the correct item in the cor-
rect location, another item is in the code but needs moved to a new
location, and another item is not in the code at all. As before, the
guesser has to figure out which feedback smiley face corresponds to
which item in the code. The third guess of pear, grape, apple obtains
two smiling faces and one frowning face. At this point the guesser
can infer that the middle position is grape, and the final position is
apple; the guesser must still figure out the first item.

entropy(K) =
1

t−1

1−

(
n

∑
i=1

P(ki)
r

) t−1
r−1
 (2)

where r is the order and t the degree of the entropy measure.
Note that limits, which exist, are used for points where the
above equation is undefined. Although the above equation
may not be immediately intuitive, there are a number of ways
to build understanding about this space. All of the Sharma-
Mittal entropy measures can be thought of as quantifying the
average surprise that would be experienced if the value of the
random variable K were learned. In the case of Mastermind,
this would be the average surprise that would be experienced
if one were to learn the true hidden code.

The degree parameter t governs which kind of surprise
is averaged. Important values include that if t = 1, then
surprise(ki) = ln(1/P(ki)); if t = 2, then surprise(ki) =
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Figure 2: Sharma-Mittal space. The Sharma-Mittal family of en-
tropy measures is represented in a Cartesian quadrant with values
of the order parameter r and of the degree parameter t. Each point
in the quadrant corresponds to a specific entropy measure, each line
corresponds to a distinct one-parameter generalized entropy func-
tion. Several special cases are highlighted.
1−P(ki). If t > 1, a test is more useful if it is conclusive than
if it is not. If t < 1, a test is always less useful if it is conclu-
sive than if it is not. The order parameter r determines what
kind of averaging function is used. It can be thought of as
an index of the imbalance of the entropy function, which in-
dicates how much the entropy measure discounts minor (low
probability) hypotheses. For example, when r = 0, entropy
becomes a (increasing) function of the mere number of the
available options. When r goes to infinity, on the other hand,
entropy becomes a (decreasing) function of the probability of
a single most likely hypothesis.

Several special cases exist within the Sharma-Mittal space,
as Figure 2 illustrates. For example, Shannon entropy is the
result of setting r = t = 1, and probability gain (also called
error entropy) is the result of setting t = 2 and letting r→ ∞.
One of the goals of the present research is to investigate
whether people’s striving for information (the curiosity goal)
can be represented well as a generalized information gain
metric, where information is defined as the expected reduc-
tion in one of the Sharma-Mittal entropy functions over the
probability distribution of the possible codes.

Methods
Participants and Design Forty-seven first-year undergrad-
uate students (38 female, Mage=19.04; SD=1.04; range: 18 to
23) participated in our study as part of a cognitive psychol-
ogy class. Participants gave informed consent in accordance
with the university’s procedures and the Helsinki Declaration.
They spent 10.5 minutes on average on the task.

We explored how the entropy of the distribution generating
the secret code affected participants’ behavior. Participants
played as many rounds as they wanted within the assigned
time. In each game, one of the entropy conditions was
chosen at random and the six fruits were randomly assigned

to one of the six proportions of that condition. The resulting
generating “fruit bowl” was presented to participants as an
icon array above the current game. A “hidden fruit code”
was generated from that distribution.

Materials and Procedure Before starting the experiment,
participants were introduced to the rules and interface of the
Fruit Salad Mastermind game were and were required to cor-
rectly answer four comprehension questions. Participants
were told to figure out the secret code using as few guesses as
possible. Participants played as many rounds as they wanted
within the available time in the lab session.
Entropy conditions The four different entropy conditions
specified the distribution from which the underlying secret
code was sampled with replacement. In the very high en-
tropy (Shannon entropy of code jar 2.58 bits), the secret code
was sampled based on the proportions (5,5,5,5,6,6). This
means, for example, that there could be 5 pineapples, 5 ap-
ples, 5 pears, 5 blueberries, 6 grapes, and 6 oranges, out of
a total of 32 items, from which three fruits were sampled
with replacement to generate the secret code. In the high en-
tropy condition (Shannon entropy 2.08 bits), the secret code
was sampled based on the proportions (1,1,5,5,5,15). In the
low entropy condition (Shannon entropy 1.62 bits), the secret
code was sampled based on the proportions (1,1,1,4,4,21).
Finally, in the very low entropy condition (Shannon entropy
0.99 bits), the secret code was sampled based on the propor-
tions (1,1,1,1,1,27).
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Figure 3: Behavioral results. a: Number of queries required to
solve a game by entropy condition. b: Time spent thinking (mea-
sured in log-ms per guess) by entropy condition. c: Proportion of
correct guesses in dependency of number of past guesses by entropy
condition. d: Mean proportional feedback after first guess by en-
tropy condition. Points represent mean per participant. Error bars
indicate the standard error of the mean.
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Behavioral results

We first analyzed the number of required guesses to solve
a game as a function of the entropy condition (Fig. 3a).
This revealed a positive average rank correlation between
how much entropy a condition contained and the number
of queries participants required to solve a game (Kendall’s
τ = 0.48, t(46) = 12.44, d = 1.81, BF > 100). More specif-
ically, participants required fewer queries on average for the
very low entropy games as compared to low entropy games
(t(46) = −5.69, p < .001, d = 0.83, BF > 100). They also
required fewer queries for the low entropy games than for
the high entropy games (t(46) =−3.16, p = .002, d = 0.46,
BF = 11.8). Finally, participants needed fewer queries for
the high entropy games than for the very high entropy games
(t(46) =−3.96, p < .001, d = 0.58, BF = 97.2).

Next, we analyzed how much time participants spent think-
ing to enter a guess by entropy condition (Fig. 3b). Thus, we
assessed their mean time to submit a query measured in log-
milliseconds. There was a positive average rank-correlation
between a game’s entropy and participants’ average time
spent thinking, Kendall’s τ = 0.39, t(46) = 11.50, d = 1.68,
BF > 100. More specifically, participants spent less time
thinking during the very low entropy games than during the
low entropy games (t(46) =−5.05, p< .001, d = 0.74, BF =
97.2). They also spent less time thinking in the low entropy
than in the high entropy games (t(46) = −3.96, p < .001,
d = 0.58, BF = 97.9). Finally, they spent less time in the low
entropy than in the very low entropy games (t(46) = −3.99,
p < .001, d = 0.58, B > 100).

We also analyzed the proportion of solved games as a func-
tion of the number of past guesses, again comparing the dif-
ferent entropy conditions (Fig. 3c). We thus estimated a
Bayesian logistic regression of number of past guesses onto
the proportion of correct guesses for each of the entropy
conditions, using Metropolis-Hastings Markov chain Monte
Carlo sampling. The resulting posterior estimate for the ef-
fect of number of past guesses onto the probability of guess-
ing correctly was smallest for the very high entropy con-
dition (β̂ = 0.15, 95%HDI=[0.14, 0.16]). The same esti-
mate was higher for the high entropy condition (β̂ = 0.19,
95%HDI=[0.18, 0.20]), which did not differ meaningfully
from the low entropy condition (β̂ = 0.18, 95%HDI=[0.17,
0.20]). The very low entropy condition showed the highest
estimated effect (β̂ = 0.30, 95%HDI=[0.28, 0.33]). Thus,
participants’ solution rates differed meaningfully between en-
tropy conditions, with lower entropy leading to faster rates.

In our last behavioral analysis, we looked at the very first
query participants submitted as well as the feedback they re-
ceived for that query (Fig. 3d). The number of smiling faces
received on the very first guess was negatively rank-correlated
with entropy condition, τ =−0.51, t(41) =−9.80, p < .001,
d = 1.51, BF > 100, whereas the number of frowning faces
showed a positive rank-correlation, τ = 0.30, t(30) = 6.00,
p < .001, d = 1.06, BF > 100. Interestingly, participants
adapted their first queries to the entropy condition, leading

to a positive rank correlation between the set size of their
first query (the number of unique kinds of fruit contained
in the query) and the entropy of the generating distribution,
τ = 0.40, t(46) = 9.00, p < .001, d = 1.31, BF > 100. Put
differently, if the generating distribution were higher entropy,
then participants tested a larger number of different fruits as
part of their first query.

Computational modeling
We now turn to a model-based analysis of participants’ ex-
ploration strategies. For this, we first need a formal account
of intelligent Mastermind play. Logically, all combinations
that are still consistent in round i based on the feedback re-
ceived so far are part of a feasible set Fi. Note that in Entropy
Mastermind, not only the feasible codes but also their prob-
abilities (which are not in general equal) are relevant. Code
combinations ruled out by prior feedback have zero proba-
bility, while the remaining items’ probability mass is propor-
tional to the probability of obtaining the item via sampling
from the code jar. The effective size of the feasible set is the
total number of all non-zero probability codes left in the set.
Let the probability that ci is the hidden code given the current
feasible set be denoted P(ci). The feasible set is guaranteed to
shrink after each round unless a guess ci is repeated. A gen-
eral playing strategy consists of (i) identifying the set of fea-
sible combinations Fi (with F0 = E), where prior feedback
is used to determine which combinations are still viable; and
(ii) picking a combination ci for the next guess. Let us denote
the informational usefulness of playing combination c in the
current round with u(c). The formula for computing u(c) is

u(c) = entropy(Fi)−
R

∑
r

P( f ) · entropy(F̂c, f ), (3)

the difference in entropy (under a particular Sharma Mittal
entropy measure with specified order and degree) between
the current feasible set and the expected entropy when play-
ing code c. To compute expected entropy, for each possible
feedback f ∈ R , we compute the product of the probabil-
ity of receiving that feedback P( f ) times the entropy of the
updated feasible set F̂c,r when playing combination c and re-
ceiving feedback r. To compute P( f ) for a given c, we look
at all the combinations c j ∈ Fi, that lead to feedback f . To
this end, we define a feedback function h(c,c j) = f that re-
turns the feedback f obtained from checking code c against
code c j. The probability of feedback for code c can then be
calculated as follows:

P( f ) =
∑

F
c j

P(c j) ·1h(c,c j)= f

∑
F
c j ∑

F
ck

P(ck) ·1h(c j ,ck)= f
.

The indicator function 1h(c,c j)= f ensures that we only sum
over codes c j that generate the required feedback f . The
probability of any combination of fruits c = m1m2...mn can
be computed as

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540666doi: bioRxiv preprint 

https://doi.org/10.1101/540666
http://creativecommons.org/licenses/by/4.0/


P(c = m1m2...mn) = P(m1) ·P(m2) · ... ·P(mn) (4)

where each P(m) represents the probability of sampling the
corresponding fruit item from the fruit jar. The other term
of Equation 3, entropy(F̂c, f ), requires us to compute hypo-
thetical feasible sets F̂c,r. Given the current feasible set Fi,
a combination c we want to evaluate, and hypothetical feed-
back f , we need to exclude all combinations c j ∈Fi for which
h(c,c j) 6= f ; that is, all combinations c j that are not consistent
with obtaining feedback f .

Lastly, in order to measure how much one would like one
such hypothetical set, one has to assign a utility to a feasible
set F . For this, we use the Sharma-Mittal entropy framework
to compute the entropy of a probability distribution defined
over set F , PF (c). For each combination c ∈ F

PF (c) =
P(c)

∑
F
c j

P(c j)
,

where the nominator P(c) is computed according to Equation
4 and the denominator is a normalization term.

We assess how well the combination of an entropy-based
exploration bonus and the probability of making a correct
guess describes players’ guesses over time. For this, we an-
alyzed the last five games of the 34 participants who played
at least five games in total. Next, we calculated the expected
information gain for all of the 6×6×6 possible fruit combi-
nations that a participant could enter on every trial for every
participant, given the participant-specific history of queries in
a game. We calculated this information gain for every com-
bination of order r = [1/16,1/8,1/4,1/2,1,2,4,8,16,32,64]
and degree t = [1/16,1/8,1/4,1/2,1,2,4,8,16,32,64], i.e.
121 models per participant in total. We then combined the
probability of a guess being correct with the information gain
assessed by the specific entropy measure following Equation
2 to arrive at a value of an action’s usefulness V (at), which
we put in a softmax function to calculate choice probabilities:

P(x) =
exp(V (at(x))/τ)

∑
N
j=1 exp(V (at(x))/τ)

(5)

where τ is a free temperature parameter. For each participant,
we calculated a model’s AIC(M ) =−2log(L(M ))+2k and
standardized it using a pseudo-R2 measure as an indicator
for goodness of fit, comparing each model Mk to a random
model: Mrand, R2 = 1−AIC(Mk)/AIC(Mrand).

The results of this analysis revealed a mean pseudo-R2 of
0.041 over all orders and degrees, which was low but signifi-
cantly better than chance (t(33) = 20.52, p < 0.001 d = 1.86,
BF > 100). Moreover, the estimated median temperature pa-
rameter was τ = 1.02, indicating a relatively wide spread of
predictions. There was a significant negative rank-correlation
between the degree parameter and model fit, τ = −0.37,
z =−5.84, p < .001, BF > 100, whereas this correlation was

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

0.
06

25
0.

12
5

0.
25 0.

5 1 2 4 8 16 32 64

Order r

D
eg

re
e 

t

R2 0.039 0.041 0.043 0.045

a: Averaged performance

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

0.
06

25
0.

12
5

0.
25 0.

5 1 2 4 8 16 32 64

Order r

D
eg

re
e 

t

β 24 27 30 33

b: Exploration bonus

Figure 4: Modeling results. a: Averaged r2 for different Sharma-
Mittal parameters. b: Clustered model quality for different Sharma-
Mittal parameters.

not significant for the order parameter, τ = 0.04, z = 0.60,
p = .54, BF = 0.3. Thus, even though entropies with smaller
degree parameters seemed to generally work better at mod-
eling participants’ queries, there was no meaningful effect of
the different order parameters.

The range of pseudo-R2 values, 0.038−0.045, also shows
that most of the entropy measures led to similar performance.
We also assessed the magnitude of the estimated exploration
bonus β (Fig. 4b), which had a mean of β̂ = 27.81, and there-
fore differed significantly from 0, t(33) = 115.47, p < .001,
d = 10.9, BF > 100. Interestingly, areas of the Sharma-Mittal
space with higher r2 also tended to have higher β estimates.

Figure 5: Number of times most likely fruit was chosen in first
query by simulated entropy models across entropy conditions.

Finally, we compared how often participants put the most
likely fruit into their first query with how often simulated
models of different order and degree parameters chose the
same fruit in their first query, for each entropy condition (see
Fig. 5). The higher degree models chose the most likely fruit
more often than people did. Specifically, participants put on
average 2.14 of the most likely fruit in their first query in the
very low entropy condition, 1.60 in the low entropy condi-
tion, 1.26 in the high entropy condition and 0.48 in the very
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high entropy condition. This analysis therefore corroborated
our previous finding that the lower degree entropies better
matched participants’ queries. In relation to previous work
modeling behavior with the Sharma-Mittal framework, En-
tropy Mastermind appears to be more similar to experience-
based than to description-based probabilistic classification
tasks (see Crupi et al., 2018, Fig. 7).

Discussion and conclusion
We introduced Entropy Mastermind as a game for research-
ing human curiosity and exploration. Participants reported
Fruit Salad Mastermind to be engaging and fun. They re-
quired fewer queries, spent less time thinking about queries
and showed faster learning rates if the distribution generating
the secret code had lower entropy. Participants also adapted
their queries to the code-generating distribution, and did so in
sensible ways. In particular, many of the informational mod-
els (Figure 5) use greater proportions of the most-probable
fruit in the first guess in lower-entropy conditions; partici-
pants also followed this pattern.

Modeling results paralleled earlier findings from other
tasks (Crupi et al., 2018) suggesting that it is easier to identify
the value of the degree parameter than of the order parame-
ter in the Sharma-Mittal space. Moreover, the general pre-
dictive performance of many models was rather similar and
relatively low. This might be due to the overall complexity of
choices, since there were 216 possible options on every trial,
making it difficult to compare among candidate models (also
see Parpart, Schulz, Speekenbrink, & Love, 2017).

The difficulty of modelling could also be due to partic-
ipants using cognitive shortcuts instead of fully entropy-
reducing strategies, as has been observed in other domains
of active learning (Bramley et al., 2015, 2017). Future
studies should therefore investigate both heuristic strategies
(Gigerenzer & Gaissmaier, 2011) and boundedly rational ap-
proaches (Griffiths, Lieder, & Goodman, 2015). Adaptive
experimental designs (Cavagnaro, Myung, Pitt, & Kujala,
2010) could be employed to maximally discriminate among
the Sharma-Mittal parameters.

Entropy Mastermind is a promising paradigm to investigate
human exploration behavior in complex hypothesis testing
scenarios. Although our current modeling framework did not
fully map out the space of exploration behavior, we believe
that combining the Sharma-Mittal space of entropy measures
with an enjoyable game rich in scientific history can further
inform our theories of self-directed learning. To fully map out
the space of human exploration, we have to keep exploring.
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