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Abstract

What drives people’s exploration in complex scenarios where
they have to actively acquire information? How do people
adapt their selection of queries to the environment? We explore
these questions using Entropy Mastermind, a novel variant
of the Mastermind code-breaking game, in which participants
have to guess a secret code by making useful queries. Partici-
pants solved games more efficiently if the entropy of the game
environment was low; moreover, people adapted their initial
queries to the scenario they were in. We also investigated
whether it would be possible to predict participants’ queries
within the generalized Sharma-Mittal information-theoretic
framework. Although predicting individual queries was dif-
ficult, the modeling framework offered important insights on
human behavior. Entropy Mastermind opens up rich possibili-
ties for modeling and behavioral research.
Keywords: Curiosity; Active Learning; Exploration; Entropy

Introduction
Humans are curious animals. From learning how to speak
to launching rockets into space, exploration drives mankind’s
progress small and large. Human exploration has been stud-
ied in self-directed learning paradigms in adults and chil-
dren, in domains including causal learning (Bramley, Dayan,
Griffiths, & Lagnado, 2017), categorization (Meder & Nel-
son, 2012), control (Osman & Speekenbrink, 2012), and
explore-exploit tasks (Wu, Schulz, Speekenbrink, Nelson, &
Meder, 2018). Some experiments have used games includ-
ing Battleship (Gureckis & Markant, 2009) and 20 ques-
tions (Nelson, Divjak, Gudmundsdottir, Martignon, & Meder,
2014). Self-directed learning can lead to improved per-
formance (Gureckis & Markant, 2012; Markant, Ruggeri,
Gureckis, & Xu, 2016). For instance, participants actively in-
tervening on a causal system made better inferences about the
underlying causal structure than subjects who received iden-
tical information passively (Lagnado & Sloman, 2004).

Recent conceptual work (Coenen, Nelson, & Gureckis,
2018; Gureckis & Markant, 2012; Schulz & Gershman,
2019) is underpinned by the assumption that behavior is goal-
directed and that people select observations based on a met-
ric of usefulness (Settles, 2009). What metric best predicts
how people evaluate the usefulness of possible queries? Past
work has focused on the expected reduction of uncertainty,
the extent of predictions’ improvement, or the maximization
of future rewards (Nelson, 2005). One study optimized exper-
imental materials to maximally distinguish between different
measures in an experience-based probabilistic classification
task (Nelson, McKenzie, Cottrell, & Sejnowski, 2010). Re-
sults showed that participants were better described by prob-

ability gain than by information gain or other measures.
Markant and Gureckis (2012) tested whether participants

maximize payoffs or information gain in a game of “battle-
ships” (Gureckis & Markant, 2009), where each query cost
money and an attempt to maximize utility would lead to dif-
ferent queries than information-gain based strategies. Sur-
prisingly, participants’ sampling behavior was nonetheless
best matched by information gain. The authors argued that
using information gain would lead to more knowledge about
the underlying structure and therefore can be an effective
strategy, no matter what the final task will be. Similar results
have been obtained in an active causal learning task (Bramley,
Lagnado, & Speekenbrink, 2015).

Exploiting the characteristics of the Entropy Mastermind
game, we investigate people’s sensitivity to the information
structure of their environment (mathematical entropy or psy-
chological uncertainty) and adaptive strategy selection when
facing different levels of probabilistic uncertainty. In particu-
lar, we focus on what information metrics best predict how
people evaluate the usefulness of possible queries, and on
what initial-guess strategies people use.

A quintessential game of exploration
In the Mastermind code-breaking game, both information
search and exploitation are essential for breaking the code.
Thus, Mastermind offers a potential platform for bringing to-
gether pure information models (like expected information
gain) and reinforcement learning models. In the classic two-
player version of the game one player generates a secret
colour code (e.g. blue, red, green) and the other player has
to guess the secret code by repeatedly testing codes (mak-
ing queries) and receiving feedback about the correctness of
items in the guessed code. Although Mastermind has been
extensively studied in computer science (for references see
Berghman, Goossens, & Leus, 2009; Knuth, 1976), compar-
atively less work has been done in cognitive science (but see
Laughlin, Lange, & Adamopoulos, 1982; Zhao, van de Pol,
Raijmakers, & Szymanik, 2018).

We introduce the game “Entropy Mastermind” for studying
exploration-driven problem solving and uncertainty reduction
(Fig. 1). Key attributes of Entropy Mastermind, which distin-
guishes it from the classic game, are that Entropy Mastermind
is a single-player app-based game in which hidden codes
are drawn from known, and typically nonuniform, probabil-
ity distributions. The probability distribution from which the
hidden fruit code is drawn is depicted as a “fruit bowl” icon
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array. The player is informed that the items are mixed before
each draw, and drawn with replacement to form the hidden
fruit code. Thus, Entropy Mastermind makes it possible to
research how the level of entropy affects people’s strategies
and efficiency in game play.

As a first step toward modeling behavior in a probabilistic
framework, we use a model that values both maximizing the
probability of a correct query and a curiosity bonus, similar to
recent work on human reinforcement learning (Schulz, Kon-
stantinidis, & Speekenbrink, 2018; Wu et al., 2018). The cu-
riosity bonus can be defined as information gain in the space
of possible hypotheses (hidden codes). Whereas information
gain has traditionally been thought of as reduction in Shan-
non entropy, any entropy metric could be used. We use the
Sharma-Mittal space of entropy measures (Sharma & Mittal,
1977), which provides a framework within which many dif-
ferent kinds of entropy measures arise. According to the set-
ting of two parameters, known as the order and degree, this
entropy space can recover Shannon entropy, Bayes’s error,
and entropies from the Arimoto, Rényi and Tsallis families
of entropy measures, among others (Crupi, Nelson, Meder,
Cevolani, & Tentori, 2018). One of our research questions is
whether Entropy Mastermind can help identify which model
of uncertainty best predicts exploratory behavior.

In what follows, we formally define the Sharma-Mittal
space as a unifying framework for information gain measures.
We then report a preliminary study assessing and modeling
human behavior in Fruit Salad Mastermind, a version of En-
tropy Mastermind in which the code jar is a fruit bowl and
items are different kinds of fruits. First results show that par-
ticipants adapted their queries to the level of entropy in the
environment, solving games in less entropic environments
more efficiently than in more entropic environments. Thus,
basic assumptions for using Entropy Mastermind as a model
of an information environment varying in entropy were met.
Both the exploration and exploitation parts of the model were
important to account for human behavior. However, distin-
guishing between different parts of the Sharma-Mittal space
turned out to be difficult. Future research could work towards
designing tasks that are optimized for the purpose of discrim-
inating among specific entropy models.

Mapping the space of exploration
In Mastermind both learning about the true code and guess-
ing the true code are important. To make this intuitive, sup-
pose that there are two possible codes, given everything that
has been learned to date, and that one of these codes has 90%
probability of being the correct code. The same information,
namely which code is correct, will be gleaned from testing
either code; thus, the queries have equal value irrespective
of which model of information gain is used. But clearly it is
sensible to test the code that has 90% probability of being cor-
rect, thus having 90%, rather than 10%, probability of ending
the game after the next query. We implement this idea via
a softmax response rule on a value function which is based

Figure 1: Fruit Salad Mastermind: High Entropy Condition.
Top: Icon array presenting an example fruit bowl that generated
the secret code. Probability distributions follow one of four entropy
recipes, resulting in low, medium low, medium high and high en-
tropy levels. Fruit types are apples, oranges, blueberries, grapes,
pears, and pineapples for all possible versions of the fruit bowl.
Codes are generated by randomly sampling fruits with replacement.
Duplicates are allowed, so it is possible that the same fruit could
appear in all positions of the hidden code. Players have to guess
which fruit is in which position of the three slots of the secret code,
by clicking on the position they want to change. Each position is
initially blank; clicking cycles through the possible fruits. Once par-
ticipants are satisfied with the proposed code, they can click on a
“Check” button (not shown), and then receive feedback. Bottom:
History of game play illustrating feedback. In the first guess, the
player guessed 3 grape items. The feedback (one smiling face fol-
lowed by two frowning faces) conveys that exactly one of the items
is correct in type of fruit and in location. However, the player does
not know which of their guesses is correct. There is no correspon-
dence between the position of the guess and the position of the feed-
back: happy faces always come first, then neutral and lastly frown-
ing faces. In the second guess, the player tested grape in the first
position, and apple in each of the other two positions. The feedback
(smiling face, neutral face, frowning face) indicates that one of the
items is the correct type of fruit in the correct location, another item
is in the code but needs to be moved to a new location, and another
item is not in the code at all. As before, the guesser has to figure
out which feedback face corresponds to which item in the code. The
third guess of pear, grape, apple obtains two smiling faces and one
frowning face. At this point the guesser can infer that the middle
position is grape, and the final position is apple; the guesser must
still figure out the first item.

on the probability of each query being the correct code in the
immediate time step, as well as a curiosity-driven exploration
bonus1:

P(action = ai) ∝ P(success|ai)+β× curiosity bonus(ai)
(1)

How promising a code seems is determined by its current
probability of being correct P(success|ai). This probability is
always the same given a specific history of queries and feed-
back. The curiosity bonus(ai) is weighted by a free parameter

1Note that the parts of Eq. 1 are additive. Thus, even a query
that has a probability of 0 of being the true code can still be chosen
if it offers enough informational value.
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Figure 2: Sharma-Mittal space. The Sharma-Mittal family of en-
tropy measures is represented in a Cartesian quadrant with values of
the order parameter r and of the degree parameter t. The order pa-
rameter captures how much minor hypotheses are disregarded (e.g.
that grapes may be contained in the code when the fruit bowl con-
tains only a small proportion of grapes) and the degree parameter
captures how prominent the goal of getting as close as possible to
the state of certainty is (i.e. how much one strives to falsify exist-
ing hypotheses, e.g. that grapes are contained at all in the code).
Each point in the quadrant corresponds to a specific entropy mea-
sure, each line corresponds to a distinct one-parameter generalized
entropy function. Several special cases are highlighted.

β and can be defined as how much an action promises to re-
duce uncertainty over the space of possible hypotheses (i.e.,
how much it reduces uncertainty about possible codes).

The uncertainty in a discrete random variable K =
k1,k2, ...kn can be measured by its entropy. We use the gener-
alized Sharma-Mittal space of entropy measures, that unifies
multiple past proposals (Crupi et al., 2018), and can be de-
fined as:

entropy(K) =
1

t−1

1−

(
n

∑
i=1

P(ki)
r

) t−1
r−1
 , (2)

where r is the order and t the degree of the entropy measure.
Note that limits, which exist, are used for points where the
above equation is undefined. Although the above equation
may not be immediately intuitive, there are a number of ways
to build understanding about this space. All of the Sharma-
Mittal entropy measures can be thought of as quantifying the
average surprise that would be experienced if the value of the
random variable K was learned. In the case of Mastermind,
this is the average surprise that would be experienced if one
were to immediately learn the true hidden code.

The degree parameter t governs which kind of surprise
is averaged. If t = 1, then surprise(ki) = ln(1/P(ki)), as
in Shannon and all of the Rényi entropies. If t = 2, then
surprise(ki) = 1− P(ki), as in the cases of Quadratic en-
tropy and Bayes’s error. If t > 1, a test is more useful if it

is conclusive than if it is not. If t < 1, a test is always less
useful if it is conclusive than if it is not. The order parame-
ter r determines what kind of averaging function is used. It
can be thought of as an index of the imbalance of the en-
tropy function, which indicates how much the entropy mea-
sure discounts minor (low probability) hypotheses. For exam-
ple, when r = 0, entropy becomes an increasing function of
the mere number of the possible options. When r goes to in-
finity, entropy becomes a decreasing function of the probabil-
ity of a single most likely hypothesis. For further discussion
and examples see (Crupi et al., 2018).

Several special cases exist within the Sharma-Mittal space,
as Figure 2 illustrates. For example, Shannon entropy is the
result of setting r = t = 1, and probability gain (also called
error entropy) is the result of setting t = 2 and letting r→ ∞.
One of the goals of the present research is to investigate
whether people’s striving for information (the curiosity goal)
can be represented well as a generalized information gain
metric, where information is defined as the expected reduc-
tion in one of the Sharma-Mittal entropy functions over the
probability distribution of the possible codes.

Methods

Participants and Design Forty-seven first-year undergrad-
uate students (38 female, Mage=19.04; SD=1.04; range: 18 to
23) at University of Surrey participated in our study as part of
a cognitive psychology class. Participants gave informed con-
sent in accordance with the University’s procedures and the
Helsinki Declaration. They were introduced to the rules and
interface of the game and completed a pretest. Participants
then played Fruit Salad Mastermind, spending an average of
10.5 minutes on the task.

Materials and Procedure Participants were required to
correctly answer four comprehension questions before game
play began. These questions tested participants’ understand-
ing of the goal of the game and the interpretation of feedback
(i.e. making sure that they understood that the position of
the faces did not correspond to the position of items in the
entered code). Participants were instructed to figure out the
secret code using as few guesses as possible. Since the ex-
periment was self-paced, the number of rounds played varied
between participants.

Entropy conditions In each game, one of the four entropy
conditions was chosen at random and the six fruits were ran-
domly assigned to the six proportions of that condition. The
resulting generating “fruit bowl” was presented to partici-
pants as an icon array above the current game. A “hidden
fruit code” was generated from that distribution. In the very
high entropy condition, the secret code was sampled based
on the proportions (5,5,5,5,6,6). This means, for example,
that there could be 5 pineapples, 5 apples, 5 pears, 5 blueber-
ries, 6 grapes, and 6 oranges, out of a total of 32 items, from
which three fruits were sampled with replacement to generate
the secret code. In the high entropy condition, the secret code
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was sampled based on the proportions (1,1,5,5,5,15). In the
low entropy condition, the secret code was sampled based on
the proportions (1,1,1,4,4,21). Finally, in the very low en-
tropy condition, the secret code was sampled based on the
proportions (1,1,1,1,1,27).
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Figure 3: Behavioral results. a: Number of queries required to
solve a game by entropy condition (ordered from lowest to highest).
b: Time spent thinking (measured in log-ms per guess) by entropy
condition (ordered from lowest to highest). c: Proportion of correct
guesses in dependency of number of past guesses by entropy con-
dition. d: Mean proportional feedback after first guess by entropy
condition. Points represent mean per participant. Error bars indicate
the standard error of the mean.

Behavioral results
We analyzed behavioral results using both frequentist and
Bayesian statistics. For testing hypotheses regarding the
behavioral data and the model comparison, we used the
default two-sided Bayesian t-test for independent samples
with a Jeffreys-Zellner-Siow prior with its scale set to

√
2/2

(Rouder, Speckman, Sun, Morey, & Iverson, 2009).
We first analyzed the number of required guesses to solve

a game as a function of the entropy condition (Fig. 3a).
This revealed a positive average rank correlation between
how much entropy a condition contained and the number
of queries participants required to solve a game (Kendall’s
τ = 0.48, t(46) = 12.44, d = 1.81, BF > 100). More specif-
ically, participants required fewer queries on average for the
very low entropy games as compared to low entropy games
(t(46) = −5.69, p < .001, d = 0.83, BF > 100). They also
required fewer queries for the low entropy games than for
the high entropy games (t(46) =−3.16, p = .002, d = 0.46,
BF = 11.8). Finally, participants needed fewer queries for
the high entropy games than for the very high entropy games
(t(46) =−3.96, p < .001, d = 0.58, BF = 97.2).

Next, we analyzed how much time participants spent think-
ing to enter a guess by entropy condition (Fig. 3b). Thus, we
assessed their mean time to submit a query measured in log-
milliseconds. There was a positive average rank-correlation
between a game’s entropy and participants’ average time
spent thinking, Kendall’s τ = 0.48, t(46) = 12.44, d = 1.68,
BF > 100. More specifically, participants spent less time
thinking during the very low entropy games than during the
low entropy games (t(46) =−4.07, p< .001, d = 0.59, BF =
97.2). They also spent less time thinking in the low entropy
than in the high entropy games (t(46) = −3.68, p < .001,
d = 0.54, BF = 45.5). Finally, they spent less time in the high
entropy than in the very high entropy games (t(46) =−4.05,
p < .001, d = 0.59, B > 100).

We also analyzed the proportion of solved games as a func-
tion of the number of past guesses, again comparing the dif-
ferent entropy conditions (Fig. 3c). We thus estimated a
Bayesian logistic regression of number of past guesses onto
the proportion of correct guesses for each of the entropy
conditions, using Metropolis-Hastings Markov chain Monte
Carlo sampling (implemented in MCMCpack, Martin, Quinn,
Park, & Park, 2018). The resulting posterior estimate for
the effect of number of past guesses onto the probability of
guessing correctly was smallest for the very high entropy
condition (β̂ = 0.15, 95%HDI=[0.14, 0.16]). The same es-
timate was higher for the high entropy condition (β̂ = 0.19,
95%HDI=[0.18, 0.20]), which did not differ meaningfully
from the low entropy condition (β̂ = 0.18, 95%HDI=[0.17,
0.20]). The very low entropy condition showed the highest
estimated effect (β̂ = 0.30, 95%HDI=[0.28, 0.33]). Thus,
participants’ solution rates differed meaningfully between en-
tropy conditions, with lower entropy leading to faster rates.

In our last behavioral analysis, we looked at the very first
query participants submitted as well as the feedback they re-
ceived for that query (Fig. 3d). The number of smiling faces
received on the very first guess was negatively rank-correlated
with entropy condition, τ =−0.51, t(41) =−9.80, p < .001,
d = 1.51, BF > 100, whereas the number of frowning faces
showed a positive rank-correlation, τ = 0.30, t(30) = 6.00,
p < .001, d = 1.06, BF > 100. Interestingly, participants
adapted their first queries to the entropy condition, leading
to a positive rank correlation between the set size of their
first query (the number of unique kinds of fruit contained
in the query) and the entropy of the generating distribution,
τ = 0.40, t(46) = 9.00, p < .001, d = 1.31, BF > 100. Put
differently, if the generating distribution was higher in en-
tropy, then participants tested a larger number of different
fruits as part of their first query.

Computational modeling
We now turn to a model-based analysis of participants’ ex-
ploration strategies. For this, we first need a formal account
of intelligent Mastermind play. Logically, all combinations
that are still consistent in round i based on the feedback re-
ceived so far are part of a feasible set Fi. Note that in Entropy
Mastermind, not only the feasible codes but also their prob-
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abilities (which are not in general equal) are relevant. Code
combinations ruled out by prior feedback have zero proba-
bility. The remaining items’ probability mass is proportional
to the probability of obtaining the item via sampling from
the code jar. The effective size of the feasible set is the total
number of all non-zero probability codes left in the set. Let
the probability that ci is the hidden code given the current fea-
sible set be denoted P(ci). The feasible set is guaranteed to
shrink after each round unless a guess ci is repeated. A gen-
eral playing strategy consists of (i) identifying the set of fea-
sible combinations Fi (with F0 = E), where prior feedback
is used to determine which combinations are still viable; and
(ii) picking a combination ci for the next guess. Let us denote
the informational usefulness of playing combination c in the
current round with u(c), with

u(c) = entropy(Fi)−
R

∑
r

P( f ) · entropy(F̂c, f ), (3)

i.e. the difference in entropy (under a particular Sharma Mit-
tal entropy measure with specified order and degree) between
the current feasible set and the expected entropy when play-
ing code c. To compute expected entropy, for each possible
feedback f ∈ R , we compute the product of the probabil-
ity of receiving that feedback P( f ) times the entropy of the
updated feasible set F̂c,r when playing combination c and re-
ceiving feedback r. To compute P( f ) for a given c, we look
at all the combinations c j ∈ Fi, that lead to feedback f . To
this end, we define a feedback function h(c,c j) = f that re-
turns the feedback f obtained from checking code c against
code c j. The probability of feedback f for code c can then be
calculated as follows:

P( f ) =
∑

F
c j

P(c j) ·1h(c,c j)= f

∑
F
c j ∑

F
ck

P(ck) ·1h(c j ,ck)= f
.

The indicator function 1h(c,c j)= f ensures that we only sum
over codes c j that generate the required feedback f . The
probability of any combination of fruits c = m1m2...mn can
be computed as

P(c = m1m2...mn) = P(m1) ·P(m2) · ... ·P(mn) (4)

where each P(m) represents the probability of sampling the
corresponding fruit item from the fruit jar. The other term
of Equation 3, entropy(F̂c, f ), requires us to compute hypo-
thetical feasible sets F̂c,r. Given the current feasible set Fi,
a combination c we want to evaluate, and hypothetical feed-
back f , we need to exclude all combinations c j ∈Fi for which
h(c,c j) 6= f ; that is, all combinations c j that are not consistent
with obtaining feedback f .

Lastly, one has to assign a utility to a feasible set F . For
this, we use the Sharma-Mittal entropy framework to com-
pute the entropy of a probability distribution defined over set
F , PF (c). For each combination c ∈ F

PF (c) =
P(c)

∑
F
c j

P(c j)
,

where the nominator P(c) is computed according to Equation
4 and the denominator is a normalization term.

We assess how well the combination of an entropy-based
exploration bonus and the probability of making a correct
guess describes players’ guesses over time. For this, we ana-
lyzed the last five games of the 34 participants who played at
least five games in total. We restricted our analysis to the last
five games as our goal was to study strategies used rather than
early learning. Next, we calculated the expected information
gain for all of the 6× 6× 6 possible fruit combinations that
a participant could enter on every trial for each participant,
given the participant-specific history of queries in a game.
We calculated this information gain for every combination of
order r = [1/16,1/8,1/4,1/2,1,2,4,8,16,32,64] and degree
t = [1/16,1/8,1/4,1/2,1,2,4,8,16,32,64], i.e. 121 models
per participant in total. We then combined the probability of
a guess being correct with the information gain assessed by
the specific entropy measure following Equation 2 to arrive
at a value of an action’s usefulness V (at), which we put in a
softmax function to calculate choice probabilities:

P(x) =
exp(V (at(x))/τ)

∑
N
j=1 exp(V (at(x))/τ)

(5)

where τ is a free temperature parameter. We followed pre-
vious work (Wu et al., 2018; Parpart, Schulz, Speeken-
brink, & Love, 2017) and calculated each model’s AIC(M )=
−2log(L(M )) + 2k and standardized it using a pseudo-
R2 measure as an indicator for goodness of fit, compar-
ing each model Mk to a random model: Mrand, R2 = 1−
AIC(Mk)/AIC(Mrand).
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Figure 4: Modeling results. a: Averaged r2 for different Sharma-
Mittal parameters. b: Estimated exploration bonus β for different
Sharma-Mittal parameters.

The results of this analysis revealed a mean pseudo-R2 of
0.041 over all orders and degrees, which was low but signifi-
cantly better than chance (t(33) = 20.52, p < 0.001 d = 1.86,
BF > 100). Moreover, the estimated median temperature pa-
rameter was τ = 1.02, indicating a relatively wide spread of
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predictions. There was a significant negative rank-correlation
between the degree parameter and model fit, τ = −0.37,
z =−5.84, p < .001, BF > 100, whereas this correlation was
not significant for the order parameter, τ = 0.04, z = 0.60,
p = .54, BF = 0.3. Thus, even though entropies with smaller
degree parameters seemed to generally work better at mod-
eling participants’ queries, there was no meaningful effect of
the different order parameters.

The range of pseudo-R2 values, 0.038−0.045, also shows
that most of the entropy measures led to similar performance.
We also assessed the magnitude of the estimated exploration
bonus β (Fig. 4b), which had a mean of β̂ = 27.81, and there-
fore differed significantly from 0, t(33) = 115.47, p < .001,
d = 10.9, BF > 100. This means that the final model of par-
ticipants’ game play had to incorporate both a code’s proba-
bility of being correct as well as its potential information gain.
Interestingly, areas of the Sharma-Mittal space with higher r2

also tended to have higher β estimates.

Figure 5: Number of times the most likely fruit was chosen in the
first query by simulated entropy models across entropy condi-
tions.

Finally, we compared how often participants put the most
likely fruit into their first query with how often simulated
models of different order and degree parameters chose the
same fruit in their first query, for each entropy condition (see
Fig. 5). The higher degree models chose the most likely fruit
more often than people did. Specifically, participants put on
average 2.14 of the most likely fruit in their first query in the
very low entropy condition, 1.60 in the low entropy condi-
tion, 1.26 in the high entropy condition and 0.48 in the very
high entropy condition. This analysis therefore corroborated
our previous finding that the lower degree entropies better
matched participants’ queries. In relation to previous work
modeling behavior with the Sharma-Mittal framework, En-
tropy Mastermind appears to be more similar to experience-
based than to description-based probabilistic classification
tasks (see Crupi et al., 2018, Fig. 7).

Discussion and conclusion
We introduced Entropy Mastermind as a game for researching
human curiosity and exploration in complex environments.
More specifically, we suggest this game as a paradigm for
the study of how people select queries to reduce uncertainty
under different levels of initial entropy. The complexity of
the game resembles aspects of scientific inference (Strom
& Barolo, 2011) and life. For instance, in life and in sci-
ence, it can be a challenge to fully assimilate feedback that
we get when we make queries. Entropy Mastermind thus
complements existing games, such as Battleship (Gureckis
& Markant, 2009), 20-questions (Nelson et al., 2014), or
explore-exploit (Wu et al., 2018) tasks.

We found that participants required fewer queries, spent
less time thinking about queries and showed faster learn-
ing rates if the distribution generating the secret code had
lower entropy. They also adapted their queries to the code-
generating distribution, and did so in sensible ways. In par-
ticular, many of the informational models (Figure 5) used
greater proportions of the most-probable fruit in the first
guess in lower-entropy conditions; participants also followed
this pattern. Thus, one may conclude that people are gener-
ally sensitive to different levels of entropy, which is a pre-
requisite for a research agenda modeling human exploratory
behavior within the Sharma-Mittal space.

Our modeling results paralleled earlier findings from other
tasks (Crupi et al., 2018) suggesting that it is easier to identify
the value of the degree parameter than of the order parame-
ter in the Sharma-Mittal space. Interestingly, to identify the
order parameter a different type of question could be asked,
translating higher entropy into difficulty of game play in the
sense of the number of queries required to guess the secret
code (for the underlying mathematical result see Crupi et al.,
2018). Participants could be directly asked which of two code
jars would be harder to play Mastermind with (Figure 6).

Figure 6: Identifying the order parameter. Which distribution
is harder for playing Entropy Mastermind? Shannon entropy (or-
der=1) deems the 50:50 distribution higher entropy, but lower-order
entropies deem the 95:1:1:1:1:1 distribution higher entropy.

The general predictive performance of many models was
relatively similar and rather low. This might be due to the
overall complexity of choices, since there were 216 possible
options on every trial, making it difficult to compare among
candidate models (also see Parpart et al., 2017).

The difficulty of modeling could also be due to partic-
ipants using cognitive shortcuts, as has been observed in
other domains of active learning (Bramley et al., 2017). Fur-
thermore, it is unlikely that participants evaluate the use-
fulness of all possible queries at each time point. Instead,
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they might approximate a query’s usefulness by sampling and
reusing past hypotheses, as has been shown in other domains
of human reasoning and hypothesis evaluation (Dasgupta,
Schulz, & Gershman, 2017; Dasgupta, Schulz, Goodman, &
Gershman, 2018; Lieder, Griffiths, & Hsu, 2018). Future
studies should therefore investigate both heuristic strategies
(Gigerenzer & Gaissmaier, 2011) and boundedly rational ap-
proaches (Griffiths, Lieder, & Goodman, 2015). Adaptive ex-
perimental designs (Cavagnaro, Myung, Pitt, & Kujala, 2010)
could also be used to maximally discriminate among models.

Summing up, we propose Entropy Mastermind as a
promising paradigm for investigating human exploration be-
havior in complex hypothesis testing scenarios. In related re-
search we are assessing whether Entropy Mastermind can be
used as an educational tool for primary or secondary school
students, and for studying the effects of emotional states on
strategies used and information search efficiency. Although
our current modeling framework did not fully map out the
space of exploration behavior, we believe that combining the
Sharma-Mittal space of entropy measures with an enjoyable
game rich in scientific history can further inform our theories
of self-directed learning. We will keep exploring.
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