
Making ATP fast and slow: do yeasts play a mixed strategy
to metabolise glucose?

Hadiseh Safdari1, Mehdi Sadeghi1,2, Ata Kalirad1*

1 School of Biological Science, Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran
2 National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

* akalirad@ipm.ir

Abstract

The ability of some microorganisms to switch from respiration to fermentation in the
presence of oxygen -the so-called Crabtree effect- has been a fascinating subject of study
at the theoretical and experimental fronts. Game-theoretical approaches have been
routinely used to examine and explain the way a microorganism, such as yeast, would
switch between the two ATP-producing pathways, i.e., respiration and fermentation.
Here we attempt to explain the switch between respiration and fermentation in yeast by
constructing a simple metabolic switch. We then utilise an individual-based model, in
which each individual is equipped with all the relevant chemical reactions, to see how
cells equipped with such metabolic switch would behave in different conditions. We
further investigate our proposed metabolic switch using the game-theoretical approach.
Based on this model, we postulate that individuals play a mixed game of glucose
metabolism in the population. This approach not only sheds some light in the varieties
of metabolic regulations that can be utilised by the individual in the population in
competition with others for a common resource, it would also allow a better
understanding of the causes of the Warburg effect and similar phenomena observed in
nature.
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Introduction 1

The viability of an organism depends on the fit between its phenotype and the 2

environment it inhabits; an environment that includes the abiotic and biotic factors. 3

When discussing the characteristics of living entities, Waddington enumerated three 4

types of temporal changes that shape a living system: evolution, development, and 5

physiology [1]. The different strategies that a microorganism utilises to tackle the 6

environmental needs can be explained either in terms of Waddington’s first type of 7

temporal changes (evolution) or the last type of change (physiology). 8

9

In an evolutionary explanation, a given genotype have been shaped by evolutionary 10

processes - i.e., natural selection, drift, mutation, & recombination. The genotype would 11

translate into the phenotype which would affect the survival strategy of the organism. 12

The physiological response, on the other hand, should consist of an apparatus that has 13
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been shaped by evolution but is capable of responding to the environmental cues in 14

much shorter time spans. 15

16

The “decision-making” in λ phage is a textbook example of an apparatus - in this 17

case, a genetic switch. The λ phage switch has been shaped by natural selection so that 18

it would give the virus a choice between two possible strategies (lysing the host or 19

integrating within the host’s genome), thus equipping the phage to respond to the 20

transient conditions in a timely manner [2]. The “decision-making” approach to 21

biological phenomena has been widely used (reviewed in [3]). 22

23

The ATP-producing pathways in Saccharomyces cerevisiae is a perfect example of a 24

set of strategies that can be explained differently by invoking evolution or physiology. A 25

yeast can either convert glucose through fermentation, a process that is fast but low 26

yields, ≈ 2 moles of ATP per 1 mole of glucose, or go down the slower path -i.e., 27

respiration-, and produce ≈ 32 moles of ATP per 1 mole of glucose [4]. Is the strategies 28

utilised by a yeast a fixed response hardwired in its genome by the natural selection, or 29

is it a physiological response, a distant relative of λ phage decision-making apparatus? 30

31

The characteristics of fermentation –i.e., fast and low in yield– and respiration –i.e., 32

slow but high in yield– can be easily reformulated using a game-theoretical approach, 33

where fermentation is cast as the “cheater” strategy and the respiration as the 34

“cooperative” one. If the choice of the ATP-producing pathway is a fixed behaviour, 35

determined by the genetics, then one could assume that the “selfish” strains would 36

follow the dictum described by Hobbes as “the war of every man against every man” [5] 37

and simply consume the glucose as fast as possible - through fermentation - to 38

outcompete other yeasts in the environment. The game-theoretical approach is an 39

attempt to explain why in nature microorganisms capable of both respiration and 40

fermentation, do not always follow the principle of the maximisation of molar yield [6]. 41

42

Pfeiffer et al. [7] led the charge in utilising the game-theoretical framework to 43

address why yeasts would sometimes choose to ferment and other times to respirate: if 44

every yeast would ferment, then the pool of glucose would drain so fast that each yeast 45

would only get few ATPs. This “tragedy of the commons” is avoidable through 46

respiration, which is viewed through game-theoretical prism as cooperation. Others 47

further analysed and expanded this approach to explain the trade-off between yield and 48

rate and the dynamic nature of pay-offs for each ATP-producing strategy in yeast (e.g., 49

see [8, 9]). Aside from the trade-off hypothesis, some suggested that the accumulation of 50

ethanol can be utilised by certain strains of yeasts to poison less-alcohol-tolerant strains 51

in their niche [10]. The conditions of cooperation in microorganisms have been 52

investigated experimentally as well (e.g., [8]). 53

54

Even the game-theoretical approach described above does not distinguish between a 55

situation where different strains play “selfish” or “cooperative”, something that would 56

require the hand of evolution to intervene, or a scenario in which each yeast has the 57

apparatus to play selfish AND cooperative in different measures to suit its temporal 58

needs. In fact, in reformulating the fermentation/respiration dichotomy in the mould of 59

evolutionary game theory, the “cheaters” and “cooperators” are usually considered 60

different strains that compete for a shared resource (e.g., [11–13]). 61

62

In our view, there is no reason to preclude the possibility that individuals do mix 63

these two ATP-producing strategies depending on the environmental conditions. Here, 64

we propose a simple form of such model that allow individual yeast cells to play a 65
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mixture of fermentation and respiration. When dealing with a population of organisms 66

showing a mixture of two strategies –e.g., 25% cheating to 75% cooperation – the 67

population-level phenomenon can be caused by two distinct situations at the level of the 68

individuals: a) either 25% of individuals are exclusively utilising the cheating strategy, 69

while 75% exclusively cooperate, or b) each individual mixes cheating with cooperation 70

in 1 to 3 ratio. The same dilemma is applicable to S.cerevisiae, or any other 71

microorganism capable of fermentation and respiration. 72

73

Here, we attempt to construct a simple regulatory network which makes it possible 74

for a microorganism to combine fermentation and respiration as a mixed strategy. We 75

utilise two models to investigate the ramifications of this regulatory network: firstly, 76

simulating the chemical reactions relevant to the ATP-producing pathways at individual 77

and population levels, and secondly, using a game-theoretical approach. Our results 78

from the population-level modelling of chemical reactions show that such regulatory 79

network affords yeasts to utilise a mixed strategy. The results from the game-theoretical 80

framework demonstrates the inviability of pure strategy in this system. Finally, we 81

suggest an experimental approach to distinguish between a population of yeasts taking 82

advantage of a mixed strategy versus a population that consists of distinct cheaters and 83

cooperators. 84

Model 85

Metabolic regulatory network for playing a mixed strategy 86

For yeasts to be able to mix cheating, i.e., glycolysis, with cooperation, i.e., utilising the 87

TCA cycle, we postulate a regulatory network that is partly supported by the 88

experimental works conducted on S.cerevisiae. In the ATP-producing pathways, 89

pyruvate kinase seems to play an interesting regulatory role: in yeast, two paralogs of 90

pyruvate kinase (PYK) exist: PYK1 and PYK2. A comprehensive study by Gruning et 91

al. [14] concludes that a switch from expressing PYK1 to PYK2 corresponds with a 92

shift from fermentation to respiration and the accumulation of PEP suppresses the 93

glycolytic pathway. Boles et al. [15] showed that the expression of PYK2 is suppressed 94

by glucose. Based on these experimental observations, we constructed a regulatory 95

network that modulates the ATP-producing pathways (figure 1). The results from the 96

experimental evolution in yeast is in accordance with our regulatory network: 97

Comparing the gene expression patterns between different populations of S.cerevisiaein 98

shows a decrease in PYK1 expression in the evolved lines with reduced ethanol 99

production in comparison with the parental lines [16]. One can suspect that many 100

interactions can be included in this network, but a simple model like this, if correct, 101

may explain the usage of ATP-producing pathways in a cell. 102

Modelling respiration and fermentation 103

In modelling glycolysis and the TCA cycle in a digital microorganism, we condensed the 104

myriad of reactions into a few main reactions (Table 1). To simulate the chemical 105

reactions we used Gillespie’s first-reaction methods [17]. In this approach, the time for 106

reaction i (τi) is 107

τi =
1

ai
ln(

1

r
) , (1)

where ai is the propensity of reaction i and r is a random number drawn from a 108

uniform distribution. The reaction with the lowest τ is picked as the reaction that 109
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Fig 1. A simple regulatory network to explain utilising both
ATP-producing pathways. Our proposed regulatory network imagines a simple
switch between fermentation and respiration based on the experimental data.

occurs. Since the reaction constants are mesoscopic and dissimilar to deterministic rate 110

constants [18], we choose values that result in biologically-reasonable behaviour in our 111

digital microorganism. 112

113

In order to factor in the regulatory network (figure 1), in reactions #3 (fermentation) 114

and #5 (the TCA cycle), we multiply the propensities of these reactions by the number 115

of PYK1 and PYK2, respectively. For the activation of PYK1 (reaction #6) a Hill 116

function is used to include the stimulating effect of glucose on PYK1 activation: 117

θ6 =
a× (#GLC)2

b2 + (#GLC)2
, (2)

where a = 10−3 and b = 30. The propensity of the PYK1 inactivation reaction (reaction 118

#8) includes a Hill function to take into account the inhibitory effect of PEP on this 119

enzyme: 120

θ8 =
a× (#PEP )2

b2 + (#PEP )2
, (3)

where a = 10−2 and b = 1. PYK2 inactivation is modelled in a similar fashion (reaction 121

#9), where glucose exerts its inhibitory effect on PYK2 by facilitating the PYK2 122

inactivation reaction through a Hill function: 123

θ9 =
a× (#GLC)2

b2 + (#GLC)2
, (4)

where a = 10−3 and b = 30. 124

125

In a population of cells in our model, each cell has its own set of chemical reactions 126

(as described in Table 1). In each step of a simulation, all the first reactions in every cell 127

is determined using Gillespie’s method. Then, the cells execute their first reactions in 128

the order of their reaction times –i.e., the first cell to execute its reaction has the lowest 129

τ , while the last cell to proceed with its reaction has the largest τ . Afterwards, the 130

population-level clock moves τmax forward. Each cell will undergo binary fission after 131

accumulation of 20 ATPs. We assume that the biomass needed for division consumes all 132

the ATP molecules in the mother cell, so after the division, daughter cells start with 0 133

ATPs and have to make ATPs afresh. The number of glucose molecules remain constant 134

in the environment. 135
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Table 1. The chemical reactions used to model respiration and
fermentation.

# Reaction Propensity (ai) Parameters

1 GLC + 2 NAD+ 2 PEP + 2 NADH k1 ×#(GLC)×#(NAD+)2 k1 = 10−6

2 PEP PYR + ATP k2 ×#(PEP ) k2 = 2

3 PYR + NADH
PYK1

EtOH + NAD+ k3 ×#(PY R)×#(NADH)×#(PY K1) k3 = 10−2

4 EtOH + NAD+ PYR + NADH k4 ×#(EtOH)×#(NAD+) k4 = 10−5

5 PYR
PYK2

17 ATP k5 ×#(PY R)×#(PY K2) k5 = 10−4

6 PYK1inactive PYK1 θ6 ×#(PY K1inactive) See Eq. 2

7 PYK2inactive PYK2 k7 ×#(PY K2inactive) k6 = 10−3

8 PYK1 PYK1inactive θ8 ×#(PY K1) See Eq. 3

9 PYK2 PYK2inactive θ9 ×#(PY K2) See Eq. 4

∗ GLC: Glucose, PYR: Pyruvate, PEP: Phosphoenolpyruvate, EtOH: Ethanol, PYK:
Pyruvate kinase.

Evolutionary Game-theoretical model of mixed metabolic 136

strategy 137

The occurrence of respiration or fermentation pathways could be treated as a decision 138

making process by rational players. Since they share the same resource for energy, the 139

respiration pathway is considered as a cooperative strategy – with high yield/low rate– 140

and the fermentation as a cheater strategy – with low yield/ high rate. Therefore, at 141

any time, the population consists of a mixture of cooperators and cheaters. The goal in 142

this approach is to find the evolutionary stable strategy (ESS), i.e., a set of strategies 143

chosen by players which cannot be invaded by other strategies. In this approach, the 144

selection criterion between these two choices for players would be based on the payoff 145

matrix which shows the benefits gained by players as the result of their decisions. The 146

payoffs depend on the amount of glucose as a crucial environmental factor. 147

148

The energetic benefit for a player utilising the respiration pathway is shown by V 149

which is much more than the energetic benefit of the fermentation pathway, W . 150

However, in each of the metabolic pathways, cells as players have to consume energy to 151

synthesise enzymes, C and D in respiration and fermentation respectively and C > D. 152

153

The symmetric payoff matrix of the game (Table 2) represents the gain acquired by 154

player 1 against player 2. According to this matrix, if two players choose the respiration 155

pathway, the payoff –which is the gain in the respiration minus its cost– will be 156

distributed equally between them. On the contrary, if both choose anaerobic pathway, 157

again they should split the payoff (i.e., the gain in the fermentation case mines its 158

enzymatic cost). However, the payoff for a cooperative strategy against a cheating 159

strategy and vice versa, implicitly depends on the amount of glucose, as the rate of 160

respiration and fermentation pathways are highly correlated with the glucose value. We 161

define the ratio of the above rates with n as a nonlinear Hill function, 162

n =
ratef
rater

= α
GLCH

GLCH +KH
, (5)

in which GLC and H indicates the glucose value and Hill exponent and K is the half 163
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saturation value. This ratio, n, affects the off diagonal elements in the the payoff matrix 164

(Table 2). For large amounts of glucose, n approaches its maximum value α; therefore, 165

the payoff for a cheating strategy against a cooperation would be higher, 166

n→ α� 1⇒ n(W −D)� 1

n
(V − C) ≈ 0 . (6)

167

As a result, when glucose is abundant, the fermentation/cheating would be the 168

dominant strategy. On the contrary, in the case of glucose deficiency, n approaches zero. 169

In this scenario, the cooperation would be reaping more benefit against cheating and 170

would be the dominant strategy in this situation, 171

n→ 0⇒ 1

n
(V − C)� n(W −D) ≈ 0 . (7)

In a medium where the concentrations of nutrients constantly changes, the encounter 172

between cooperation and cheating for a shared resource could be considered as a 173

dynamic Hawk-Dove game. When the glucose is abundant, being a Hawk is the best 174

response, in contrast, a Dove strategy will dominate the population when there is a 175

shortage of glucose. When a moderate amount of glucose exists in the environment, 176

neither of the strategies could invade the other one. In this range of resources, both 177

subpopulations coexist simultaneously. 178

179

We can consider the dynamic of the strategies over time by the replicator equation. 180

Assuming that x fraction of the population choose the strategy r with fitness fr, and 181

1− x the f strategy, with fitness ff , the replicator equation would be: 182

ẋ(t) = x(t)[fr − 〈f〉] , (8)

in which 〈f〉 = fr + ff is the mean fitness of the population. This deterministic, 183

nonlinear game theoretical equation, by considering the frequency dependent fitness for 184

each strategy, calculates its frequency in the population over time. Based on the payoff 185

matrix A in table 2, fitness of the cooperators could be defined as fr = Ax, and 186

〈f〉 = xTAx, where xT is the transpose of x. We can rewrite the Eq. 8 as, 187

ẋ(t) = x(t)(1− x(t))
[(

1
2 (V − C)− n(W −D) + 1

n (V − C)− 1
2 (W −D)

)
x(t)

+ 1
n (V − C)− 1

2 (W −D)
]

. (9)

The glucose effect is introduced through a new equation coupled with the replicator 188

equation to reflect the consumption of glucose by cells and its influence on the payoffs: 189

dGLC

dt
= l1

GLCH

GLCH +KH
(αrxr(t) + αfxf (t)) , (10)

with K as the half saturation constant, and H the Hill exponent. The αr and αf , 190

respectively, show the rate of respiration and fermentation pathways. 191

Results 192

The bias of the regulatory metabolic network in a single cell 193

depends on the amount of glucose 194

While the raison d’être for the regulatory network espoused in this manuscript is to 195

explain the metabolic behaviour of cells at the population level, it has ramifications for 196
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Table 2. The payoff matrix of the game between respiration and fermentation
strategies; the elements show the benefits to players 1 and 2 – from left to right,
respectively– while the strategies in rows are selected by player 1.

player 2

Propensity Parameters

player 1
respiration

(
1
2 (V − C), 12 (V − C)

) (
1
n (V − C), n(W −D)

)
fermentation

(
n(W −D), 1

n (V − C)
) (

1
2 (W −D), 12 (W −D)

)
a single cell in isolation as well. If a small number of glucose molecules are present in 197

the environment, a cell would “choose” the respiration over fermentation (figure 2A). 198

The low glucose means weaker activation of PYK1 and weaker repression of PYK2. 199

Such behaviour is consistent with the yield-rate hypothesis as well, since in the absence 200

of competition, there is no need for rapid consumption of glucose through fermentation 201

(“cheating”) and the payoff for respiration will be paramount. 202

203

Since glucose is the key regulatory element in our network, increasing the number of 204

glucose molecules drives the regulatory networks towards fermentation (figure 2B and 205

2C). When the energy source in the environment is more abundant, the balance of the 206

metabolic scale tilts towards faster energy production –i.e., fermentation– since there is 207

no benefit to preferring the slower but more efficient path. It is worth-noting again that 208

in our model, a cell, even in isolation, plays a “mixed” strategy and the choice between 209

higher yield or faster rate is never binary. 210

The usage of ATP-producing pathways in a homogenous 211

population depend on the population size 212

Interestingly, in the chemical-reactions model, the cells equipped with the regulatory 213

metabolic network behave as one would expect within the confines of the yield-rate 214

hypothesis. In the extreme case, where there are only two cells in a homogenous 215

environment –i.e., an environment lacking any spatial structure– and only 2 molecules of 216

glucose are accessible to them, the cells would opt for the “cooperative” strategy 217

(respiration), since no “cheating” is justifiable with such a limited resource (figure 3A). 218

Increasing the amount of accessible glucose to 100 molecules, immediately affect the 219

behaviour of two cells: now they utilise a mixed strategy of respiration/fermentation 220

where fermentation is dominant (figure 3B). 221

222

Increasing the number of cells to 100, with a low number of accessible glucose (5), 223

results in a mixed strategy of respiration/fermentation. The smaller proportion of the 224

average number of accessible glucose per cell, opting for higher yield is once again the 225

priority (figure 3C). 226

Some PYK mutants can propagate in the population 227

In order to investigate how mutating the two key enzymes in our regulatory network, we 228

introduced mutant strains into a population of wild-type cells. To model mutation, the 229

rate of the activation reaction for an enzyme (reactions #6 and #7 for PYK1 and 230

PYK2, respectively, as depicted in table 1), was multiplied by a coefficient (ζ). At the 231

start of simulation, mutants and wild types were equal in number and each cell would 232

duplicate after producing 20 ATPs. 233

234
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If mutation results in the under-expression of PYK1 (ζ = 0.01), then the mutant 235

would dominate the population (figure 4A). The population growth, coupled with 100 236

accessible glucose in the environment, makes a more yield-oriented mixed strategy more 237

suitable and the under-expression of PYK1 means that respiration will be the more 238

dominant path in the mutant. Consequently these mutants would accumulate ATP 239

faster and duplicate faster than the wild types. Over-expression of PYK1 (ζ = 100) has 240

the opposite effect; the mutants utilise a more rate-oriented strategy, but their wild-type 241

rivals, which would respirate more, duplicate faster and dominate (figure 4B). 242

243

Under-expression of PYK2, results in mutants that prefer fermentation more and 244

slightly edge out the wild-type cells (figure 4C). Over-expression of PYK2 has the 245

opposite effect, since the wild types produce more ATPs in a shorter amount of time 246

and duplicate faster (figure 4D). The under-expression of PYK2, simply reduces the 247

inhibitory effect of glucose, while the over-expression of PYK2 means that the fates of 248

these mutants are more affected by glucose as the major inhibitor. 249

The replicator dynamics indicates no pure strategy 250

Figure (5) shows the amount of glucose over time; as well, the changes in the frequency 251

of two strategies. As it can be seen, for high value of glucose, almost all members of the 252

population follow the cheater strategy as it has the highest payoff and does better 253

against the other strategy, i.e. it is the ESS; however, by glucose consumption and 254

decrease in its level, none of the strategies could invade the other one, therefore, there is 255

not a pure strategy as the ESS. Under this circumstance, the ESS would be a mixture of 256

the cheating and cooperation. For small amounts of glucose, the cooperative strategy 257

has the highest payoff. As a result, it would be the dominant strategy which plays better 258

than cheating; hence, all the population members have the tendency to this choice. 259

Fig 2. The effect of glucose concentration on the metabolic regulation of a single yeast
cell. Each run indicates the change in the number of ATP molecules produce via the
TCA cycle and the number of Ethanol molecules.

Discussion 260

The importance of the fermentation/respiration dichotomy in microorganisms is not a 261

mere theoretical curiosity; the well-known tendency of cancerous cells to consume large 262

amounts of glucose and metabolise it via fermentation, while oxygen is present in their 263

umwelt, has been extensively studied since Ott Warburg observed it [19]. In spite of 264

these studies, the biological causes of the Warburg effect have remained largely 265

unresolved [20]. Understanding the underlying biology of the Crabtree effect -i.e., the 266
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Fig 3. The population size differentially affects the metabolic regulation of a single
yeast cell at different glucose concentrations. Each run indicates the change in the
number of ATP molecules produce via the TCA cycle and the number of Ethanol
molecules in a population of cells.

ability of microorganism to produce ethanol in the presence of oxygen is of extreme 267

importance in the industrial endeavour to optimise ethanol production in yeast 268

(reviewed in [21]). 269

270

Studying the alternative metabolic strategies have been a rather fruitful enterprise. 271

Generally, different strategies are treated as distinct “strain” that do compete for a 272

shared resource (e.g., see [22]). This approach simplifies the problem and allows to treat 273

the problem similar to studying the invasion and fixation of mutant strain in well-mixed 274

and structured populations. Here we propose that, alternatively, there could be no 275

distinct cheaters and cooperators when it comes to alternative ATP-producing 276

pathways. 277

278

Our result can provide a molecular basis for further optimisation of yeasts for 279

ethanol production. Hitherto, environmental variables such as temperature or pH have 280

been the focus of optimisation efforts to increase ethanol production (e.g., [23]). The 281

manipulation of environmental conditions is a coarse-grain method based on the general 282

effect of these conditions on the rate of chemical reactions. Our regulatory network 283

would provide two alternative approaches: at a physiological level one can tune the 284

concentrations of PEP and glucose so that the metabolic switch would tilt towards 285

fermentation, or a site-directed mutagenesis targeting PYK1 and/or PYK2 can disable 286

the switch such that the production of ethanol becomes an inevitability (as shown in 287

figure 4). 288

289

The notion that cells might combine different strategies is not novel, but our results 290

show that in the case of a microorganism equipped with alternative pathways for 291

metabolising glucose, a simple experiment can distinguish between a population of 292

microorganisms playing mixed strategy and a population composed of distinct 293

respirators and fermentors. If we sample from a population where each individual 294

respirates or ferments and measure the amount of ATP and ethanol produced in this 295

sample, or result would vary form those of the population since by chance we could 296

sample many more fermentors (or respirators) and thus proportion of respirators to 297

fermentors would be different in our sample. On the contrary, if we sample from a 298

population of mixed players, we would expect similar results from our sample compared 299

to the population, since the proportion of respirators to fermentors observed at the 300

population-level does not correspond to different individuals utilising different strategies, 301
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Fig 4. Investigating the effects of mutations on the regulatory functions of PYK1 and
PYK2. Under-expression of PYK1 (A), over-expression of PYK1 (B), Under-expression
of PYK2 (C), over-expression of PYK2 (D) are depicted here. Orange shows the
frequency of the mutant strain and blue depicts the wild types. Each figure is the result
of a single run of our simulation, starting from 5 wild types and 5 mutants. Nf

indicates the total number of cells at the end of the simulation. ζ is a multiplied by the
propensity PYK1 or PYK2 activation reaction to simulate over- or under-expression.
100 glucose molecules were present throughout the simulation.

but to individuals taking advantage of both pathways (figure 6). 302

303

It has not escaped our notice that one significant advantage of conceiving the 304

biological details of the metabolic network is the ability to test the veracity of such 305

regulatory scheme. The veracity of our proposed regulatory network can have significant 306

ramification in developing anti-angiogenic drugs, given the over-reliance of cancer cells 307

on glycolysis in place of the TCA cycle [24]. In spite of years of research on the 308

Warburg effect, the biology of this phenomenon is still far from crystalline [20]. 309

Unraveling the changes in the metabolic landscape of a cell as a result of cancer is an 310

endeavour that has only recently been kickstarted [25]. Thus, little is known about the 311

specific roles different metabolites and reactions play in driving cancerous cells to 312

anaerobic ATP production, but our model can be an starting point to explore potential 313
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Fig 5. The frequency of two strains population over time as a function of glucose level
based on the replicator equation (9). By reduction in the glucose level, cells with the
respiration strategy (cooperators) invade the whole population.

targets to suppress anaerobic ATP production in malignant cells. 314

Fig 6. While average ATP productions can be identical between a population utilising
a mixed strategy and a population where individuals respirate or ferment, the variances
between the two would be drastically different (Bartlett’s statistic= 124.16,
p− value = 7.75× 10−29).
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