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ABSTRACT 36 

 37 

Conifers are prime candidates for genomic selection (GS) due to their long breeding cycles. 38 

Previous studies have shown much reduced prediction accuracies (PA) of breeding values in 39 

unobserved environments, which may impede its adoption. The impact of explicit environmental 40 

heterogeneity modeling including genotype-by-environment (G×E) interaction effects using 41 

environmental covariates (EC) in a reaction-norm genomic prediction model was tested using 42 

single-step GBLUP (ssGBLUP). A three-generation coastal Douglas-fir experimental population 43 

with 14 genetic trials (𝑛 = 13,615) permitted estimation of intra- and inter-generation PA in 44 

unobserved environments using 66,969 SNPs derived from exome capture. Intra- and inter-45 

generation PAs ranged from 0.447-0.640 and 0.317-0.538, respectively. The inclusion of ECs in 46 

the prediction models explained up to 23% of the phenotypic variation for the fully specified 47 

model and resulted in the best model fit. Modeling G×E effects in the training population 48 

increased PA up to 6% and 13% over the base model for inter- and intra-generations, 49 

respectively. GS-PA can be substantially improved using ECs to explain environmental 50 

heterogeneity and G×E effects. The ssGBLUP methodology allows historical genetic trials 51 

containing non-genotyped samples to contribute in genomic prediction, and, thus, effectively 52 

boosting training population size which is a critical step. Further pheno- and enviro-typing 53 

developments may improve GS-PA.  54 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2019. ; https://doi.org/10.1101/540765doi: bioRxiv preprint 

https://doi.org/10.1101/540765


Ratcliffe et al. Multi-environment single-step genomic prediction   4 

 

INTRODUCTION 55 

 56 

Breeding conifer species for phenotypic improvement is challenged due to late expression of 57 

important phenotypes related to productivity and their late sexual maturity, causing extensive 58 

recurrent selection cycles. Genomic selection (GS) can address such shortcomings through early 59 

prediction of phenotypes based on large numbers of jointly considered genomic markers, most 60 

commonly, single nucleotide polymorphisms (SNPs) (Meuwissen et al. 2001). This solution is 61 

realized through improved management of co-ancestry and increased genetic gain via enhanced 62 

precision and accuracy of pairwise kinship estimates for the breeding population. The recent 63 

exploration of GS within the forest tree breeding framework has produced numerous promising 64 

studies, indicating that GS prediction accuracies are able to at least match and often surpass 65 

pedigree-based predictions (see reviews by Grattapaglia 2017; Grattapaglia et al. 2018). 66 

In forest trees, the effect of genotype-by-environment (G×E) interactions can be 67 

considerable and, if overlooked, detrimental to genetic gain optimization. Therefore, it is 68 

commonplace to regionalize tree breeding efforts based on available biogeoclimatic information 69 

to avoid maladaptation of deployed stock (i.e., defining species’ breeding zones) (Burdon 1977). 70 

However, maladaptation may still occur within regionalized areas due to trees’ long lifespans, 71 

their placement within highly heterogeneous growing environments, along with ongoing and 72 

predicted shifting of climatic boundaries due to climate change. Thus, it is essential to account 73 

for the effect of G×E interactions when predicting breeding values to either select genotypes that 74 

are stable across the breeding region or match specific genotypes with particular locations to 75 

capture additional gain (Li et al. 2017) in the future. In forest trees’ genetic evaluations, G×E 76 

interactions are typically modeled using mixed linear models that allow for covariances to be 77 

estimated between environments assuming that a character measured in two environments 78 

represents two distinct traits (i.e., Type-B genetic correlations; Burdon 1977) (e.g. see e Silva et 79 

al. 2005; Cappa et al. 2012; Bian et al. 2014). However, for large numbers of environments, 80 

typically, this approach is computationally not practical and simplifications of covariance 81 

structures or factor analytic models must be put in place (Isik et al. 2017). 82 

Recent GS studies in conifers have demonstrated that predictions across environments 83 

suffer from marked decreases in accuracy when the prediction model’s training population does 84 

not include phenotypic observations from the environment to which genomic predictions were 85 
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targeted (Gamal El-Dien et al. 2015; Thistlethwaite et al. 2017; Chen et al. 2018). Consequently, 86 

estimated marker effects would be considered specific to the environment(s) of the training 87 

populations. Without phenotypic observations from the target environment, genomic prediction 88 

is challenging. In crop plant systems, high-dimensional environmental covariates (ECs) have 89 

been implemented in GS models to improve multi-environment genomic predictions (Jarquín et 90 

al. 2014). The reaction- norm models use covariance structures analogous to the realized 91 

relationship matrix (VanRaden 2008) to model environmental and G×E interaction effects. 92 

Pérez-Rodríguez et al. (2015) and Morais Júnior et al. (2018) extended the use of the reaction-93 

norm models to include the average numerator relationship matrix (A) and the single-step 94 

combined relationship matrix (H), respectively. Pedigree-based reaction-norm methods such as 95 

random regression were only very recently proposed in a forest tree G×E interactions study 96 

(Marchal et al. 2019). 97 

Single-step genomic evaluation (ssGBLUP) is a unified approach that allows the 98 

incorporation of phenotypic, genomic, and pedigree information into a single analysis (Legarra et 99 

al. 2009; Misztal et al. 2009). This methodology allows the prediction of breeding values for 100 

genotyped and non-genotyped individuals to be on the same scale, avoiding bias and complex 101 

multi-step analyses (Vitezica et al. 2011). It also allows for the phenotypes of non-genotyped 102 

individuals to participate in the estimation of marker effects, effectively boosting the accuracy of 103 

prediction. Thus, the method also provides a cost-effective entry into GS as relatively few 104 

important individuals can be genotyped while phenotypic records of rogued trials can also easily 105 

be implemented yielding a modern analysis for estimating marker effects or breeding values. The 106 

use of ssGBLUP has recently been demonstrated to be effective in genetic evaluations of Picea 107 

glauca (Ratcliffe et al. 2017), Eucalyptus grandis (Cappa et al. 2018), and Eucalyptus nitens 108 

(Klápště et al. 2018). However, ssGBLUP-based reaction-norm remains untested in outcrossing 109 

species such as forest trees. 110 

A limitation of the ssGBLUP method, however, is that the combined genetic relationship 111 

matrix (H) can be very dense when evaluating many individuals, leading to lengthy computation 112 

times (Legarra and Ducrocq 2012). Wang et al. (2012a) demonstrated that genomic estimated 113 

breeding values (GEBV) of the genotyped individuals from ssGBLUP analyses can be used to 114 

calculate SNP marker effects. Lourenco et al. (2015) applied this approach to American Angus 115 

cattle, coining it ‘indirect prediction’. The indirect prediction approach improves computational 116 
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efficiency and allows for fast prediction of GEBV for new genotyped trees via SNP marker 117 

effects as opposed to a full ssGBLUP evaluation where new genotyped individuals need to be 118 

explicitly included. 119 

This study is based on the ‘maritime low’ coastal Douglas-fir (CDF) (Pseudotsuga 120 

menziesii (Mirb.) Franco var. menziesii) seed planning unit (SPU) which represents elevation 121 

bands 0-900m in geographic areas west of the British Columbia (BC) coastal mountain range and 122 

latitudinal gradients South 48°00’ - 52°00’. The CDF breeding program is the most advanced in 123 

BC and is currently in its third generation with advanced generation seed orchards producing 6.6 124 

million seedling equivalents from 2012 to 2017. Using 14 experimental trials planted in different 125 

environments, we used monthly averages of ECs obtained from ClimateBC (Wang et al. 2012b), 126 

and ssGBLUP (Legarra et al. 2009; Misztal et al. 2009) under a Bayesian mixed-model 127 

framework (Pérez and de los Campos 2014) to obtain genetic parameter estimates and genomic 128 

estimated breeding values for genotyped individuals. We then used the method of Lourenco et al. 129 

(2015) to obtain indirect predictions of breeding values of target populations in unobserved 130 

environments. Thus, the objectives of this study were to assess the influence of including 131 

monthly average ECs for environment and G×E effects in mixed model analysis on i) genetic 132 

parameter estimates for the studied population, ii) model fit criteria, and iii) between-133 

environment genomic prediction accuracies for intra- and inter-generational predictions.  134 
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MATERIALS AND METHODS 135 

 136 

Study populations 137 

 138 

Study population 1 (SP1) 139 

 140 

The trees in this study are from low elevation (0-900m asl), third generation coastal Douglas-fir 141 

(Pseudotsuga menziesii (Mirb.) Franco var. menziesii) breeding population located in coastal 142 

British Columbia, Canada (Table 1). The parental (P0) generation consists of 78 wild plus-tree 143 

selections, which were crossed in partial disconnected diallels to produce 165 full-sib families 144 

for the second generation (F1). Full-sib families of the second generation were planted in 1975 145 

using nursery container stock in ten environments using randomized complete block designs with 146 

four replicates per environment and four tree family row plots within the replicates (mean ≈ 15; 147 

range = 14-16; trees / full-sib family / environment). The third generation (F2) contains two 148 

series (F2-2, F2-3), with no common parentage between them (see Figure S1,Table S1, Table S2) 149 

and are the result of crossing forward selections from the F1 generation, based on tree volume. 150 

F2-2 and F2-3 were planted in 2003 and 2006 respectively, both using nursery container stock, 151 

and both planted as full-sib block tests with 5 × 5 tree plots on two environments per series 152 

(mean ≈ 19; range ≈ 17-21; trees / full-sib family / environment). A total of 31,999 tree height 153 

[cm] phenotypic measurements were available for ages 12 (F1) and 11 (F2-2 and F2-3). 154 

Phenotypes were standardized by dividing total tree height by age [years] at time of 155 

measurement to provide the mean annual increment (MAI [cm]). 156 

 157 

Study population 2 (SP2) 158 

 159 

A subset of SP1 was used for the genomic analyses in this study (Table 2). The subset population 160 

was created by setting a relatedness threshold of greater than 0 as the minimum expected 161 

additive genetic kinship coefficient value (𝑨, derived via pedigree) of an individual tree in the F1 162 

or F2 generations, with at least one of the genotyped individuals in the F2 population. This 163 

resulted in 11,759 F1 phenotypes available for the genomic analyses (mean ≈ 15; range ≈ 14-16; 164 
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trees / full-sib family / environment). The relatedness restriction resulted in an average additive 165 

genetic kinship coefficient of 0.033, as opposed to 0.012 in the population described previously. 166 

 167 

SNP genotyping 168 

 169 

SNP genotypes were based on those produced and used by Thistlethwaite et al. (2017, 2019) 170 

with the full details available in Thistlethwaite et al. (2017). Briefly, DNA was extracted from 171 

cambial tissue and sent to RAPiD Genomics
©

 (Florida, US) for SNP genotyping using whole 172 

exome capture. The SNPs used here differed from those used by Thistlethwaite et al. (2017, 173 

2019) due to filtering criteria resulting in a different number of SNPs and genotyped trees for this 174 

study. Filtering criteria was done using VCFtools (Danecek et al. 2011) and were as follows: 175 

maximum number of alleles = 2, minimum number of alleles = 2, Hardy-Weinberg Equilibrium 176 

exact test = 0.10, maximum sample missing = 0.40, maximumSNP missing = 0.40, minor allele 177 

frequency = 0.05, maximum site read depth = 50, minimum site read depth = 4. We then used the 178 

‘impute.svd’ function from the R package ‘bcv’ (Perry 2015) to impute the remaining missing 179 

data resulting in a final count of 66,969 SNPs for the genomic analyses. 180 

 181 

Environmental covariates (ECs) 182 

 183 

Thirteen monthly ECs were obtained using ClimateBC software version 5.51 (Wang et al. 184 

2012b) resulting in 156 individual environmental covariates per environment (i.e., 12 months by 185 

13 variables). ClimateBC generates “scale-free” climate data, thus allows the user to obtain 186 

monthly climate variables for specific test environments rather than pixel averages from grid-187 

based climate data. Monthly ECs were averaged across the growing period for each trial, from 188 

planting year until the year of phenotypic measurement, and included primary measures of 189 

temperature, precipitation, and solar radiation (see Table S3 for a complete list of the thirteen 190 

primary and derived monthly variables). 191 

 192 

Pedigree-based analyses (PBLUP) 193 

 194 
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PBLUP analyses were used to estimate (co)variance components or functions of them (i.e., 195 

heritabilities and Type-B genetic correlations) and breeding values for the experimental 196 

population outlined in Table 1. All PBLUP analyses were completed using ASReml-R v3.0 197 

(Butler et al. 2009), which uses the Average Information algorithm on Restricted Maximum 198 

Likelihood (REML) (Gilmour et al. 1995). 199 

Individual-tree breeding values were obtained under the following multi-environmental 200 

mixed linear model: 201 

 202 

𝒚 =  𝑿𝛃 +  𝒁𝒓𝒓 + 𝒁𝒇𝒇 +  𝒁𝒂𝒂 +  𝒆    [1] 203 

 204 

where 𝒚 is the vector of phenotypic observations; 𝛃 is the fixed effect of environment means; 𝒓 205 

is the vector of random replicate effects within of each F1 environment, with 𝒓~𝑵(𝟎, 𝑮𝒓 ⨂ 𝑰), 206 

where 𝑮𝒓 is the diagonal (co)variance matrix between environments with diagonal elements 𝜎𝑟𝑖
2  207 

for each environment 𝑖 representing the replicate within environment variances, 𝑰 is the identity 208 

matrix, and ⨂ represents the Kronecker product of matrices; 𝒇 is the vector of random full-sib 209 

family genetic effects, with 𝒇~𝑵(𝟎, 𝑮𝒇 ⨂ 𝑰), where 𝑮𝒇 is the diagonal dominance (co)variance 210 

matrix between environments with diagonal elements 𝜎𝑓
2 representing ¼ of dominance genetic 211 

variance (i.e., a common family variance for all environments was used); 𝒂 is the vector of 212 

additive genetic effects (or breeding values, EBV), with 𝒂~𝑵(𝟎, 𝑮𝒂 ⨂ 𝑨) where 𝑮𝒂 is the 213 

additive genetic (co)variance matrix between environments with diagonal elements 𝜎𝑎
2 214 

representing additive genetic variance and off-diagonal elements 𝜎𝑎 (i.e., a common additive 215 

genetic variance and covariance for all environments was used) representing the same additive 216 

genetic covariance between environments, and the matrix A contains the additive genetic 217 

relationships among all trees; 𝑿, 𝒁𝒓, 𝒁𝒇, and 𝒁𝒂 are the respective incidence matrices assigning 218 

fixed and random effects to each observation. Finally, 𝒆 is the vector of random residual effects, 219 

with 𝒆~𝑵(𝟎, 𝑹), where 𝑹 = ⨁ 𝑰 𝜎𝑒𝑖
2 , 𝜎𝑒𝑖

2  is the residual variance for each environment 𝑖, and ⨁ 220 

represents the ‘direct sum’ of matrices. We chose to use a common variance for genetic 221 

dominance and additive effects to allow a more parsimonious model when using a large number 222 

of trees and environments. 223 
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Single-environment narrow-sense heritability for each environment 𝑖 (ℎ𝑖
2) was calculated 224 

using the same model from Eq. [1], except that in 𝑮𝒂 different 𝜎𝑎
2 were used for each 225 

environment 𝑖 (𝜎𝑎𝑖
2 ) (i.e., CORUH structure in ASReml). Then, ℎ𝑖

2 were estimated as: ℎ𝑖
2 =226 

𝜎𝑎𝑖
2 /(𝜎𝑎𝑖

2 + 𝜎𝑓
2 + 𝜎𝑒𝑖

2 ). 227 

Finally, pairwise Type-B genetic correlations between environments 𝑖 and 𝑖′ (𝑟𝑔𝑖𝑖’
) were 228 

estimated using the model of Eq. [1] but fitting two environments at the time, and 𝑮𝒂 was a 229 

heterogeneous (co)variance matrix with different additive genetic variances among environments 230 

and an additive genetic covariance between pairs of environments 𝑖 and 𝑖′ equal to 𝜎𝑎
𝑖𝑖′  (i.e., US 231 

structure in ASReml) was used for the vector random additive genetic effects in this case. For 232 

this analysis, only two environments were fitted to the model at a time. Then, 𝑟𝑔𝑖𝑖’
 was estimated 233 

as: 𝑟𝑔𝑖𝑖’
=  𝜎𝑎

𝑖𝑖′
√𝜎𝑖𝑖

2𝜎𝑖′𝑖′
2⁄ . 234 

 235 

Genomic-based analyses (ssGBLUP) 236 

 237 

Variance components, genetic parameters, and model fit (Deviance Information Criterion, 238 

Spiegelhalter et al. 2002) were estimated by fitting models to the data set in Table 2. Following 239 

Jarquín et al. (2014), the models fit were a series of five linear hierarchical single-step GBLUP 240 

(ssGBLUP) models. The R package ‘BGLR’ (Pérez and de los Campos 2014) was used. For 241 

variance component estimation, all data in Table 2 was fit to each model and the Monte Carlo 242 

Markov Chain (MCMC) was generated with 200,000 iterations thinned at a rate of 5, with the 243 

first 25,000 discarded as burn-in. Bayesian ridge regression (BRR; Gaussian prior) model was 244 

used for all model effects. The ‘BGLR’ package default starting parameters were used. Multiple 245 

chains were generated and the MCMC chain posterior means and trace plots of the posterior 246 

distributions were compared to confirm convergence. Cholesky decomposition of all variance-247 

covariance matrices was used to speed up computations. 248 

 249 

Model 1 (M1): 250 

 251 

The first ssGBLUP model included an overall mean (μ) as a fixed effect, random environment 252 

effects (𝑺𝒊), random replicate (𝑹𝒌), and random additive genetic effects (𝒂𝒋). Let 𝒚𝒊𝒋𝒌 and 𝒆𝒊𝒋𝒌 be 253 
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the phenotype and residual effects, respectively, of individual 𝑗 for environment 𝑖, scored in 254 

replicate 𝑘. Then the mixed model to analyze the data is: 255 

 256 

𝒚𝒊𝒋𝒌 = μ + 𝑺𝒊 +  𝑹𝒌 + 𝒂𝒋 + 𝒆𝒊𝒋𝒌    [2] 257 

 258 

where 𝑺𝒊 ~ 𝑵(𝟎, 𝑰𝜎𝑠
2) , 𝑹𝒌 ~ 𝑵(𝟎, 𝑰𝜎𝑟

2), 𝒂𝒋 ~ 𝑵(𝟎, 𝑯𝜎𝑎
2), and 𝒆𝒊𝒋𝒌 ~ 𝑵(𝟎, 𝑰𝜎𝑒

2) where the 259 

respective variances 𝜎𝑠
2, 𝜎𝑟

2, 𝜎𝑎
2, and 𝜎𝑒

2  are common for all the environments. The combined 260 

additive genetic relationship matrix, 𝑯, was calculated as follows (Legarra et al. 2009; 261 

Christensen and Lund 2010): 262 

 263 

𝑯 = [
𝑨11 + 𝑨12𝑨22

−1(𝑮 − 𝑨22)𝑨22
−1𝑨21 𝑨12𝑨22

−1𝑮

𝑮𝑨22
−1𝑨21 𝑮

]  264 

 265 

where 𝑨11 is the portion of the average numerator relationship matrix (𝑨) including the non-266 

genotyped individuals, 𝑨22 is the portion of genotyped individuals, and 𝑨12 and 𝑨21 are the 267 

portions containing the expected additive genetic relationships between genotyped and non-268 

genotyped individuals. The genomic additive relationship matrix for genotyped individuals, 𝑮, 269 

was calculated after VanRaden (2008): 270 

 271 

𝑮 = 𝑴𝑴′/Σ𝑙𝑝𝑙(1 − 𝑝𝑙) 

 272 

where 𝑴 is the centered matrix of SNP covariates, and 𝑝𝑙 is the current (or observed) allele 273 

frequency of the genotyped trees for marker 𝑙. Further, 𝑮 was scaled for compatibility with 𝑨 274 

such that the mean diagonal and off-diagonal elements were equal (Christensen et al. 2012): 275 

 276 

𝑮∗  =  𝛽𝑮 +  𝛼, 

{
𝐴𝑣𝑔(𝑑𝑖𝑎𝑔(𝑮))𝛽 +  𝛼 =  𝐴𝑣𝑔(𝑑𝑖𝑎𝑔(𝑨22))

𝐴𝑣𝑔(𝑮)𝛽 +  𝛼 =  𝐴𝑣𝑔(𝑨22)
  

 277 

To avoid potential problems with the inversion of 𝑮∗, it was weighted as (Aguilar et al. 2010): 278 

 279 
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𝑮𝒘  =  0.95 ×  𝑮∗  +  (1 −  0.95)  ×  𝑨22 [8] 280 

 281 

Model 2 (M2): 282 

𝒚𝒊𝒋𝒌 = μ + 𝑺𝒊 +  𝑹𝒌 + 𝒂𝒋 + 𝒘𝒊𝒋 + 𝒆𝒊𝒋𝒌    [3] 283 

 284 

M2 extends model M1 (Eq. [2]) to include the vector of random effects for environmental 285 

covariates (𝒘) which is distributed as 𝒘 ~ 𝑵(𝟎, 𝛀𝜎𝑤
2 ). Where 𝛀 is the matrix of similarity 286 

among environments calculated as 𝛀 ∝ 𝑾𝑾′ 𝑞⁄ , with 𝑾 being a centred and standardized 287 

matrix of ECs and 𝑞 the number of ECs as described by (Jarquín et al. 2014) in detail, and 𝜎𝑤
2  is 288 

the variance of the vector of ECs. 289 

 290 

Model 3 (M3): 291 

𝒚𝒊𝒋𝒌 = μ + 𝑺𝒊 +  𝑹𝒌 + 𝒂𝒋 + 𝒘𝒊𝒋 + 𝒂𝒘𝒊𝒋 + 𝒆𝒊𝒋𝒌    [4] 292 

 293 

M3 incorporates the vector of random effects for the interaction between additive genetic (𝒂) and 294 

EC (𝒂𝒘), 𝒂𝒘 ~ 𝑵(𝟎, 𝒁𝒂𝑯𝒁𝒂
′ ∘ 𝛀𝜎𝑎𝑤

2 ), where 𝜎𝑎𝑤
2  is the variance of the interaction between 295 

additive genetic effects and ECs, and ∘ is the Hadamard (Schur) product of matrices. 296 

 297 

Model 4 (M4): 298 

𝒚𝒊𝒋𝒌 = μ + 𝑺𝒊 +  𝑹𝒌 + 𝒂𝒋 + 𝒘𝒊𝒋 + 𝒂𝑺𝒊𝒋 + 𝒆𝒊𝒋𝒌   [5] 299 

 300 

M4 includes a vector of random effects for the interaction between additive genetic and main 301 

environment terms (𝒂𝑺), 𝒂𝑺~ 𝑵[𝟎, 𝒁𝒂𝑯𝒁𝒂
′ ∘ (𝐙𝑺𝐙𝑺

′ )𝜎𝑎𝑆
2 ], where 𝒁𝑺 is the incidence matrix for 302 

the effects of environments, and 𝝈𝒂𝑺
𝟐  is the variance of the interaction between additive genetic 303 

and main environmental effects. 304 

 305 

Model 5 (M5): 306 

𝒚𝒊𝒋𝒌 = μ + 𝑺𝒊 +  𝑹𝒌 + 𝒂𝒋 + 𝒘𝒊𝒋 + 𝒂𝒘𝒊𝒋 + 𝒂𝑺𝒊𝒋 + 𝒆𝒊𝒋𝒌   [6] 307 

 308 
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Finally, M5 includes both interaction effects from M3 (i.e., 𝒂𝒘) (Eq. [4]) and M4 (i.e., 𝒂𝑺) (Eq. 309 

[5]). 310 

 311 

Prediction accuracy and cross-validation 312 

Two scenarios were considered for estimating the prediction accuracy of the validation 313 

populations (VP, Table 2). In the first scenario (GA1), a leave one environment out approach for 314 

environments with genotyped individuals (Lost, Adam, and Fleet) was used to form the training 315 

population (TP). In the second scenario (GA2), the TP consisted of all individuals from the F1 316 

generation. In either case, the non-genotyped individuals of the TP were randomly divided into 317 

five folds, that is, the phenotypes of genotyped individuals in the TP always participated in the 318 

estimation of SNP marker effects. The random folding process was replicated three times for 319 

each model (M1-M5). For each fold, genomic estimated breeding values (GEBV) of the 320 

genotyped VP were correlated to their EBV estimated in the PBLUP analysis (Eq. [1]). 321 

Prediction accuracy (𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉)) was then calculated as the mean Pearson product-moment 322 

correlation of the three replicates. The procedure for obtaining GEBV for the VP follow closely 323 

the methods of Lourenco et al. (2015) and are outlined below. 324 

 325 

Estimation of GEBV for the validation population 326 

1) Use ssGBLUP models M1-M5 to obtain the vector of GEBV (𝒂) for the genotyped 327 

portion of the TP. 328 

2) Calculate the direct genomic value for each genotyped tree 𝑗 (𝐷𝐺𝑉𝑗) in the TP (Aguilar et 329 

al. 2010): 330 

 331 

𝐷𝐺𝑉𝑗 = − ( ∑ 𝑔𝑗′𝑗𝐺𝐸𝐵𝑉𝑗′
/𝑔𝑗𝑗

𝑗′,𝑗′≠𝑗

) 

 332 

where 𝑔𝑗′𝑗 (and 𝑔𝑗𝑗) is an off-diagonal (and diagonal) element of the inverse of 𝑮 (𝑮−𝟏) 333 

corresponding to relationships between tree 𝑗′ and 𝑗 and 𝐺𝐸𝐵𝑉𝑗′
 is the predicted additive 334 

genetic solutions from the ssGBLUP models M1-M5 for TP and individual 𝑗′. 335 

3) Estimate SNP marker effects from the TP: 336 
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 337 

�̂� = 𝑫𝑴′𝑮−1(𝑫𝑮𝑽) 

 338 

where �̂� is the vector of estimated SNP effects, 𝑫 is a weight diagonal matrix for SNP 339 

(here an identity matrix), 𝑴 as defined before, and DGV is the vector of DGV for the TP. 340 

4) Calculate DGV for the trees in the VP: 341 

 342 

𝐷𝐺𝑉𝑗 = 𝑴𝑗�̂� 

 343 

where 𝐷𝐺𝑉𝑗 and 𝑴𝑗 are the direct genomic values and the matrix of centered genotypes 344 

for tree 𝑗 in the VP and not included in the ssGBLUP models M1-M5, respectively. 345 

5) Calculate GEBV for the VP: 346 

 347 

𝐺𝐸𝐵𝑉𝑗 ≈ 𝑤1𝑃𝐴 +  𝑤2𝐷𝐺𝑉𝑗  [16] 348 

 349 

where PA is the parental average of individual 𝑗 in the VP and 𝑤1 and 𝑤2 are weights 350 

associated with the covariances of 𝐷𝐺𝑉𝑗 and PA: 351 

 352 

[
𝑤1

𝑤2
] = [

𝜎𝑃𝐴
2 𝜎𝑃𝐴,𝐷𝐺𝑉𝑗

𝜎𝐷𝐺𝑉𝑗,𝑃𝐴 𝜎𝐷𝐺𝑉𝑗

2 ] [
𝜎𝑃𝐴

2

𝜎𝐷𝐺𝑉𝑗

2 ]  353 

 354 

Lourenco et al. (2015) note that this approximation excludes the pedigree prediction 355 

component from the selection index approach proposed by VanRaden et al. (2009). 356 

Parental breeding values for the F1 generation were calculated as the average breeding 357 

value of all offspring without masked phenotypes. Parental breeding values for the F2 358 

generation were directly estimated in the prediction models. 359 

 360 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2019. ; https://doi.org/10.1101/540765doi: bioRxiv preprint 

https://doi.org/10.1101/540765


Ratcliffe et al. Multi-environment single-step genomic prediction   15 

 

Data availability 361 

All statistical analyses were carried out in the R environment (R Core Team 2017). Phenotypic 362 

and genotypic data are available from the Dryad Digital Repository 363 

https://doi.org/10.5061/dryad.8n2d374. 364 

.  365 
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RESULTS 366 

 367 

Pedigree-based analyses (PBLUP) 368 

 369 

Individual tree single environment narrow-sense heritability estimates for the PBLUP analysis 370 

were low to moderate for the F1 generation trials (ℎ̂𝑖
2 = 0.04 − 0.27) while estimates for the F2 371 

generation were higher (ℎ̂𝑖
2 = 0.13 − 0.42) (Table 3). Standard errors of heritability estimates 372 

were low indicating significance of the estimates. Type-B genetic correlation estimates between 373 

F1 trials were positive and generally high (�̂�𝑔𝑖𝑖’
= 0.51 − 0.98), representing agreement in allelic 374 

effects contributing to MAI among the tested environments. This result is expected since the 375 

trials are from a single breeding zone. Among the three genotyped F1 trials (Lost, Adam, Fleet) 376 

the Type-B genetic correlations were moderate to high (�̂�𝑔𝑖𝑖’
= 0.71 − 0.88), and between 377 

environments of F2-2 (�̂�𝑔𝑖𝑖’
= 0.62) and F2-3 (�̂�𝑔𝑖𝑖’

= 0.57). Type-B genetic correlations between 378 

F1 and F2 trials were in most cases not significant based on standard errors or were non-379 

estimable due to low genetic connectivity between environments (see Figure S1, Table S1, Table 380 

S2). 381 

 382 

Genomic-based analyses (ssGBLUP) 383 

 384 

In M1 46% and 5% of the phenotypic variance was explained by the between environment (�̂�𝑆
2) 385 

and within environment (�̂�𝑟
2) effects, respectively (Table 4). With the addition of ECs (�̂�𝑤

2) in M2 386 

those values dropped to 34% and 3% respectively, with the ECs accounting for 22% of the 387 

phenotypic variance. The shift of explained variance from the between environment effect to 388 

ECs can be understood as a decomposition of environmental variance, showing that ECs in M2 389 

are able to capture additional environmental variation not captured by M1. This shift was 390 

accompanied by 9% decrease in error variance (�̂�𝑒
2) across models M1-M5. However, a minor 391 

increase in the DIC model fit statistic of M2 did not justify the addition of ECs to M1. 392 

Evaluating the addition of G×E interactions into the model structure (M3-M4) showed 393 

that the use of ECs (�̂�𝑎𝑤
2 ) in M3 explained 4% more phenotypic variation than the use of the 394 

environment interaction effect (�̂�𝑎𝑆
2 ) in M4. Large decreases in the DIC model fit statistic were 395 

observed with the addition of either 𝒂𝑺𝒊𝒋 or 𝒂𝒘𝒊𝒋 interaction effects in the model, justifying their 396 
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use; however, when considering them individually the 𝒂𝒘𝒊𝒋 effect offered a better DIC model fit 397 

statistic. The joint use of both 𝒂𝑺𝒊𝒋 and 𝒂𝒘𝒊𝒋 interaction effects in the model to explain G×E 398 

accounted for 9% of the total phenotypic variation, indicating a small but important source of 399 

genetic variation in the breeding population. The DIC estimate for the most complex model (M5) 400 

was lowest, justifying the specification and use of all model parameters for the prediction of 401 

breeding values in this population. 402 

Narrow-sense heritability estimates for models M1-M5 were in agreement with the mean 403 

single environment narrow-sense heritability estimates from the prior PBLUP analysis. A 404 

decrease in additive genetic variance estimates and consequently narrow-sense heritability, was 405 

observed with increasing model complexity due primarily to the addition of G×E effects into the 406 

models, and a decrease in percent variance explained by the additive genetic effect (�̂�𝑎
2) 9% M1 407 

vs 7% M2-M5. The decrease in heritability highlights the confounding nature between additive 408 

genetic effect estimates and G×E interaction effects. 409 

 410 

Genomic prediction accuracy 411 

 412 

Intra-generation (GA1) 413 

 414 

Models M1-M5 prediction accuracies for EBV of genotyped individuals across environments 415 

and within the F1 generation varied (𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) = 0.447 − 0.640) (Table 5, Figure 1). 416 

Individual environment mean prediction accuracies for models M1-M5 were not equal among 417 

the three tested environments 𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) = 0.619 (Lost), 𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) = 0.513 (Fleet), and 418 

𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) = 0.452 (Adam). The addition of ECs facilitated by model M2 gave minor increases 419 

in prediction accuracy, up to 2% over M1 (Fleet). Gains in prediction accuracy of up to 6% (M3, 420 

Lost; M5, Fleet) were observed by accounting for G×E effects in the population. Treatment of 421 

G×E effects using ECs (M3) performed better than using main environment effects (M4) when 422 

comparing to the base model scenario (M2). Standard errors of predictions were minor, ranging 423 

from 0.0000-0.0027, indicating low variation between cross-validation replicates. 424 

 425 

Inter-generation (GA2) 426 

 427 

Testing the models to predict EBV across generations and across environments yielded an 428 

expectedly lower minimum prediction accuracy than observed for GA1 (𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) = 0.317 −429 
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0.538) (Table 6, Figure 1). In all models, prediction accuracies were greater for the Bigtree 430 

environment than they were for Jordan. Comparison of models M1 and M2 show that the 431 

addition of ECs in M2 did not produce an increase in prediction accuracy for Bigtree and a 1% 432 

decrease was observed for Jordan. The addition of individual G×E terms in models M3 and M4 433 

both gave increases in prediction accuracy over the base model M1 for both Jordan and Bigtree. 434 

However, the use of ECs to explain G×E variation (M3) gave 13% (Jordan) and 6% (Bigtree) 435 

increases in prediction accuracies over M1 versus 8% (Jordan) and 4% (Bigtree) given by M4. 436 

No improvement in prediction accuracy occurred for Jordan with the addition of both G×E terms 437 

in model M5 and estimates were, in fact, equal to those given by M3. For the Bigtree 438 

environment, a small 2% gain in prediction accuracy was observed for model M5 over model M4 439 

versus 1% for model M3. 440 

  441 
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DISCUSSION 442 

 443 

The capability of GS and its application to increase genetic gain in conifer forest tree breeding 444 

programs is at this point recognized as being a future certainty (Grattapaglia et al. 2018). Genetic 445 

gain is ultimately a product of trait heritability, accuracy, and intensity of selection, and the time 446 

interval to complete a round of selection, testing, and breeding. Of these factors, the accuracy of 447 

selection and time effort are most effectively addressed by GS methods. Previously, with forest 448 

trees, the ssGBLUP method was demonstrated by Ratcliffe et al. (2017), Cappa et al. (2018) and 449 

Klápště et al. (2018) to improve the accuracy of genetic parameter estimates and intra-generation 450 

breeding values in forest trees. Here, the ssGBLUP methodology permitted the use of rogued 451 

genetic trial data by collectively leveraging their phenotypic, pedigree and genomic information 452 

to participate in marker effect estimation and subsequent intra- and inter-generation breeding 453 

value predictions. Additionally, the merit of using indirect genomic predictions with the 454 

ssGBLUP method was supported by this study in reducing the computational time required to 455 

obtain predictions for unobserved samples. 456 

We further demonstrated the capabilities of ssGBLUP in boosting (or increasing) the 457 

training population size without the need of extra genotyping, an important aspect of genomic 458 

prediction accuracy highlighted by Hayes et al. (2009). As a result, the training population 459 

(𝑛 = 11,759) used here, so far represents the largest for a genomic prediction study in forest 460 

trees. A study involving Norway spruce highlighted that a TP to VP ratio of up to 3:1 produced 461 

increased prediction accuracies for growth and wood quality traits (Chen et al. 2018). However, 462 

it should be noted that Tan et al. (2017) and Lenz et al. (2017) observed benefit in prediction 463 

accuracy above the stated 3:1 ratio. Training population size is critical when the G×E effect can 464 

be as substantial as commonly observed in forest trees. Thus, it is a boon when historical trials 465 

which represent testing of genotypes across many environments can be recovered and included 466 

in the genomic prediction analysis. Additionally, larger training populations will better capture 467 

trait architecture and the totality of genetic diversity of the breeding population, a substantial 468 

benefit for making inferences. This variation may include rare marker variants, which are 469 

effective for the prediction of oligogenic traits where they may account for larger proportions of 470 

trait heritability (e.g., Resende et al. 2017). In our analysis, the studied trait (MAI) is considered 471 

to have low heritability and complex genetic architecture (i.e., polygenic). Indeed, the heritability 472 
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estimates (Table 3, Table 4) and marker effect plot (Figure S2) agree, justifying the use of the 473 

BRR model and Gaussian prior choice for prediction of the GEBV. 474 

We investigated the effect of modeling G×E interactions on GS prediction accuracies in 475 

Douglas-fir, an outcrossing conifer tree species. Thereby, we demonstrated increased inter- and 476 

intra-generation prediction accuracy of EBV through consideration of G×E effects defined not 477 

only by main environment effects but also by ECs in the predictive models. The inclusion of EC 478 

effects in the model by themselves (i.e., M2) presented a fractioning of the phenotypic variance 479 

into effects explained by the main environment effect (34%) and that of the ECs (22%). This was 480 

accompanied by a 7% decrease in the proportion of total variance explained by the residual 481 

effect, thus producing more realistic gain estimates. However, in most cases M2 offered little to 482 

no increase in prediction accuracy over M1, which agrees with the results of previous studies 483 

which tested the same suite of models used here for various traits in plants such as rice, wheat, or 484 

cotton (Jarquín et al. 2014; Pérez-Rodríguez et al. 2015; Morais Júnior et al. 2018). Jointly, the 485 

specification of EC effects, 𝒘𝒊𝒋 and 𝒂𝒘𝒊𝒋, in M3 resulted in a decrease in estimated residual 486 

variance over M1 (16%) and the interaction effect explained 9% of the phenotypic variation 487 

versus 5% of 𝒂𝑺𝒊𝒋, the interaction specified using the main environment effect (M4). 488 

Additionally, models M3 and M5 showed the most consistent increases in prediction accuracy 489 

over the base model M1 which also corroborates the aforementioned crop plant-based studies. 490 

In our analysis, maximum intra-generation prediction accuracies were achieved using 491 

either M3 or M5 which always included 𝒘𝒊𝒋 and 𝒂𝒘𝒊𝒋 and ranged from 𝑟 =  0.461 –  0.640 492 

depending on the target environment, which are similar to previous reports of intra-generation 493 

GS prediction accuracies based on multi-environment trials using conifer trees. Though many 494 

previous studies did not explicitly model or test the inclusion of G×E interaction effects in the 495 

training population or GS prediction model. For example, and perhaps most informative, was a 496 

four environment GS analysis of loblolly pine (Pinus taeda) by Resende et al. (2012) which 497 

showed an average decrease of 23% in prediction accuracies for tree height (age 6) when the 498 

prediction was done in unobserved environments within the same breeding zone (𝑟 =  0.41 −499 

0.74). However, the same study noted an average decrease of 41% when the prediction was 500 

extended to between breeding zones (𝑟 =  0.23 − 0.55). Thus, Resende et al. (2012) stressed 501 

the importance of regionalizing tree breeding efforts, breeding zone delineation, and the lack of  502 

transferability of genomic prediction models across breeding zones. A later study by Beaulieu et 503 
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al. (2014) found large decreases (33-41%) in prediction accuracies for Quebec white spruce 504 

(Picea glauca) tree height (age 17) when predicting EBV in unobserved environments (𝑟 =505 

 0.22 –  0.34). Lenz (2017) however, reported only 2% and 9% reductions in prediction accuracy 506 

for 25 year tree height for black spruce (Picea mariana) when their prediction model did not 507 

include the target environment (𝑟 = 0.52 − 0.56). The results observed by Lenz et al. (2017) 508 

reflect the low G×E effects of their black spruce population. 509 

Two previous studies did however explicitly model GxE in the training population. The 510 

first by Gamal El-Dien et al. (2015) showed an average decrease of 29% in genomic prediction 511 

accuracy of tree height (age 38) for interior spruce (Picea glauca × engelmannii) when the target 512 

environment was not explicitly included in the training population (𝑟 = 0.37 − 0.53). However, 513 

the mentioned study did not compare the inclusion of specific model terms for G×E to 514 

investigate their impact on prediction accuracy as was done in the present study. The second by 515 

Thistlethwaite et al. (2017) was based on the same F1 population of trees studied here, albeit 516 

with differences (see further discussion). Thistlethwaite et al. (2017) observed prediction 517 

accuracies of 𝑟 = 0.88 − 0.93 for age 12 tree height. This result contrasts with previous studies, 518 

since it is higher than the average prediction accuracy when the training population contained 519 

observations from all three environments (𝑟 = 0.88). 520 

Empirical studies examining inter-generation GS prediction accuracies in forest tree 521 

species are very limited. Isik et al. (2016) were the first to include multiple generations in a 522 

genomic selection analysis of a forest tree. The prior study was continued by Bartholomé et al. 523 

(2016) who observed moderately high prediction accuracies (𝑟 =  0.70) for age 12 tree height 524 

when using a training population of grandparents and parents to predict offspring. Using samples 525 

from the same breeding population of this study, Thistlethwaite et al. (2019) observed inter-526 

generation prediction accuracy of 𝑟 = 0.42 for the Jordan environment. However, the results 527 

presented by Thistlethwaite et al. (2019) are not directly comparable to those presented here due 528 

to many key methodological differences: i) genomic prediction methods, ii) training and 529 

validation population structure and composition, iii) marker subset and imputation method, iv) 530 

estimation method of EBV, and v) modeling of G×E factors. The inter-generation prediction 531 

accuracies observed in this study were nevertheless lower than those of the study for maritime 532 

pine juvenile tree height (𝑟 =  0.70) (Bartholomé et al. 2016). Maximum inter-generation 533 
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prediction accuracies for MAI here were 𝑟 = 0.360 (Jordan) and 𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) = 0.538 (Bigtree) 534 

given by model M6 in both cases. 535 

The inclusion of a main G×E interaction term is standard in individual-tree mixed 536 

models, yet the inclusion of ECs to explain environmental heterogeneity and genetic variation is 537 

not yet widely used in forestry. With the availability of ‘scale-free’ climate data for specific 538 

locations from programs such as ClimateBC (Wang et al. 2012b) and the NASA POWER 539 

Project (Stackhouse et al. 2017), breeders should opt for their use to help describe growing 540 

conditions and improve EBV predictions. Type-B genetic correlations in this study were high 541 

between the predicted F1 environments (�̂�𝑔𝑖𝑖’
 =  0.71 − 0.88), which might account for the 542 

moderately high intra-generation prediction accuracies observed here. However, Coastal 543 

Douglas-fir is noted to have strong G×E interaction for growth traits (Campbell 1992; Cappa et 544 

al. 2016), which may also help to explain the observed gain in prediction accuracy in this study 545 

by accounting for G×E effects. Thus, it appears to be critical for species with moderate to strong 546 

G×E interactions to either i) explicitly include the target environment in the GS prediction 547 

model, or ii) incorporate G×E effects in the genomic prediction model by including observations 548 

from as many environments as possible from across the breeding zone, an opportunity made 549 

possible with ssGBLUP. 550 

To our knowledge, this is the first use of ECs to capture environmental heterogeneity and 551 

G×E effects on phenotypic variation in outcrossing trees for genomic prediction of breeding 552 

values. The prior mentioned studies concerning forest trees and multi-environment trials have 553 

not considered methods to improve predictions in unobserved environments as was done in this 554 

study. Here, we advocate the inclusion of 𝒘𝒊𝒋, as well as both  𝒂𝑺𝒊𝒋 and 𝒂𝒘𝒊𝒋 interaction effects 555 

in the model as the gain in prediction accuracy was generally  consistent across all tested 556 

environments and generations.  557 

From a practical standpoint, the base (M2) and fully specified (M5) models were mostly 558 

agreeable in candidate rankings of the predicted individuals from unobserved environment 559 

(Figure S3). It is clear from the low discordance in rankings of highest and lowest ranked 560 

individuals that the same selections would be made irrespective of the model used. However, 561 

forest tree breeding programs by necessity require minimum effective population sizes (𝑁𝑒) 562 

which requires the selection of some sub-optimal individuals to maintain adequate genetic 563 

diversity in the breeding population. For these individuals (i.e., mid-ranked candidates) there is 564 
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much less concordance in rankings between the two models. During this phase the selection of 565 

these individuals becomes important to balance genetic gain with and genetic diversity in the 566 

breeding population. This result is in agreement with Stejskal et al. (2018) who noted the 567 

capacity of GS to accurately capture Mendelian sampling (i.e., within family genetic variance) 568 

and cryptic relatedness in the breeding population, making it a preferred approach over 569 

traditional pedigree-based selection in forestry. 570 

In addition to the combination of high-density genomic and environmental/climate data, 571 

it is realistic to assume that prediction of phenotypes can be further improved through the 572 

simultaneous inclusion of multiple phenotypic and environmental traits obtained via high-573 

throughput platforms such as those produced by remote sensing (Araus et al. 2018; Dungey et al. 574 

2018). Information sharing between genetic lines, correlated traits and correlated environments 575 

via multiple-trait models with the specification of G×E interaction effects will lead to improved 576 

phenotypic predictions. Finally, as the anticipated increasing role of GS in tree breeding, it is 577 

essential to highlight the importance of prediction accuracy improvement through the utilization 578 

of all possible available information such as was demonstrated here with the inclusion of non-579 

genotyped individuals and their testing environments, as well as environmental covariates to 580 

better model G×E effects.  581 
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FIGURES 760 

 761 

 762 
Figure 1: Scatterplots of intra-generation (GA1) and inter-generation (GA2) predictions of EBV. 763 
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TABLES 765 

 766 

Table 1: Experimental population summaries for pedigree-based analyses. 767 

 768 

Environment Ntree NPar NFSFam Age Latitude Longitude Elevation (mas) Date 

Parents (F1)  

Lost 2,464 78 165 12 49° 22′ 15″ 122° 14′ 07″ 424 1975-1987 

Adam 2,368 78 165 12 50° 24′ 42” 126° 09′ 37″ 576 1975-1987 

Fleet 2,595 78 165 12 48° 39′ 25″ 128° 05′ 05″ 561 1975-1987 

Sechelt 2,472 78 165 12 49° 28' 05" 123° 42' 00" 227 1975-1987 

Eldred 2,389 78 165 12 50° 08' 51" 124° 11' 19" 148 1975-1987 

Menzies 2,509 78 165 12 50° 08' 55" 125° 38' 16" 333 1975-1987 

Sproat 2,485 78 165 12 49° 17' 44" 125° 03' 10" 318 1975-1987 

Squamish 2,477 78 165 12 50° 11' 51" 123° 22' 40" 470 1975-1987 

Tansky 2,607 78 165 12 48° 27' 52" 124° 01' 48" 545 1975-1987 

White 2,503 78 165 12 50° 06' 03" 126° 04' 54" 409 1975-1987 

Series 2 (F2-2)  

Jordan 1,551 74 79 11 48° 25’ 86" 124° 01’ 80" 160 2003-2014 

North Arm 1,583 75 81 11 48° 50’ 72" 124° 06’ 53" 168 2003-2014 

Series 3 (F2-3)  

Big Tree 2,228 73 108 11 50° 15’ 80" 125° 43’ 59" 225 2006-2017 

Roach 1,768 73 104 11 48° 45’ 08" 124° 06' 14" 230 2006-2017 

NOTE: Ntree, Number of individual tree observations; NPar, Combined number of male and female parents; NFSFam, Number of full-sibling families; Age, Age of tree height measurement; Date, Year of planting to year of tree height measurement. 769 
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Table 2: Training (T) and validation (V) population summaries for genomic analyses. 771 

 772 

Environment Generation NTree NPar NFSFam NGenotyped GA1 GA2 

Lost F1 1,167 36 78 288 T / V T 

Adam F1 1,114 36 78 285 T / V T 

Fleet F1 1,228 36 78 295 T / V T 

Sechelt F1 1,164 36 78 - T T 

Eldred F1 1,130 36 78 - T T 

Menzies F1 1,191 36 78 - T T 

Sproat F1 1,170 36 78 - T T 

Squamish F1 1,169 36 78 - T T 

Tansky F1 1,236 36 78 - T T 

White F1 1,190 36 78 - T T 

Jordan F2-2 171 9 8 79 - V 

Bigtree F2-3 821 26 41 230 - V 

NOTE: GA1, Genomic Analysis 1; GA2, Genomic Analysis 2; T, training population; V, validation population; NTree, Number of individual tree observations; NPar, Combined number of male and female parents; NFSFam, Number of full-sibling 773 
families. 774 
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Table 3: Pedigree based single environment narrow-sense heritabilities (diagonal) and Type-B genetic correlations (lower triangle) for MAI, standard errors in parentheses. 776 

 777 

 
Lost Adam Fleet Sechelt White Menzies Sproat Tansky Eldred Squamish Bigtree Roach Jordan Northarm 

Lost 0.13 (0.002) 
             

Adam 0.71 (0.128) 0.18 (0.002) 
            

Fleet 0.83 (0.131) 0.88 (0.089) 0.22 (0.004) 
           

Sechelt b 0.77 (0.097) 0.98 (0.071) 0.22 (0.003) 
          

White 0.73 (0.138) 0.85 (0.100) 0.93 (0.078) 0.93 (0.078) 0.04 (0.014) 
         

Menzies 0.83 (0.137) 0.90 (0.095) 0.92 (0.117) 0.91 (0.099) 0.97 (0.097) 0.17 (0.003) 
        

Sproat 0.55 (0.163) 0.51 (0.142) 0.78 (0.116) 0.80 (0.104) 0.78 (0.115) 0.81 (0.128) 0.21 (0.003) 
       

Tansky 0.73 (0.138) 0.63 (0.121) 0.89 (0.083) 0.84 (0.090) 0.67 (0.125) 0.72 (0.132) 0.60 (0.136) 0.27 (0.005) 
      

Eldred 0.77 (0.159) 0.61 (0.148) 0.77 (0.144) 0.98 (0.100) 0.91 (0.108) 0.89 (0.139) 0.86 (0.139) 0.72 (0.148) 0.14 (0.002) 
     

Squamish 0.83 (0.103) 0.85 (0.068) 0.87 (0.076) 0.84 (0.080) 0.80 (0.090) 0.93 (0.070) 0.62 (0.120) 0.64 (0.120) 0.70 (0.135) 0.25 (0.002) 
    

Bigtree -0.23 (0.604) -0.01 (0.474) 0.53 (0.394) -0.14 (0.472) 0.09 (0.529) 0.13 (0.597) -0.53 (0.455) -0.04 (0.554) -0.06 (0.575) -0.05 (0.565) 0.13 (0.000) 
   

Roach 0.48 (0.468) 0.46 (0.368) 0.32 (0.418) 0.31 (0.407) 0.20 (0.471) 0.51 (0.452) -0.03 (0.506) 0.24 (0.480) 0.19 (0.500) 0.70 (0.338) 0.57 (0.133) 0.33 (0.000) 
  

Jordan 0.73 (0.488) 0.64 (0.430) 0.20 (0.504) 0.72 (0.400) 0.80 (0.540) b 0.98 (0.369) 0.41 (0.573) b 0.35 (0.455) b b 0.42 (0.006) 
 

Northarm b b b 0.89 (0.430) b b b b b 0.75 (0.435) b b 0.62 (0.194) 0.12 (0.003) 

NOTE: b, Type-B genetic correlation and their approximate standard errors were not estimated due to convergence problems.  778 
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Table 4: Model Deviance Information Criterion (DIC), posterior means and their 95% highest posterior density (HPD) intervals in brackets for the additive variance (�̂�𝑎
2), replicate within 779 

environment variance (�̂�𝑟
2), environmental variance (�̂�𝑠

2), environment covariates variance (�̂�𝑤
2), the interaction between additive effects and environment covariates (�̂�𝑎𝑤

2 ), the variance of the 780 

interaction between additive and environmental effects (�̂�𝑎𝑆
2 ), residual variance (�̂�𝑒

2), heritability (ℎ̂2). See text for models´ abbreviations. 781 

 782 

Model DIC �̂�𝑎
2 �̂�𝑟

2 �̂�𝑠
2 �̂�𝑤

2  �̂�𝑎𝑤
2  �̂�𝑎𝑆

2  �̂�𝑒
2 ℎ̂2 

M1 87846.80 20.02 11.11 102.53 - - - 91.35 0.18 

  [13.00 27.59] [6.35 16.63] [38.18 193.00] - - - [86.24 96.17] [0.12 0.24] 

M2 87850.41 19.11 9.20 90.52 58.04 - - 91.55 0.17 

  [12.58 26.08] [5.27 14.01] [24.32 186.18] [10.15 181.48] - - [86.67 96.23] [0.12 0.23] 

M3 87176.25 18.51 8.05 86.16 33.86 19.99 - 76.61 0.16 

  [11.89 25.15] [4.65 12.22] [26.04 168.63] [8.22 70.70] [14.88 25.31] - [71.10 82.19] [0.11 0.21] 

M4 87380.72 17.41 8.03 85.50 38.95 - 12.82 81.12 0.16 

  [11.27 23.88] [4.57 12.32] [21.92 172.05] [8.84 99.37] - [9.67 15.94] [76.17 86.00] [0.10 0.21] 

M5 87159.53 16.53 7.20 90.08 30.08 12.19 8.52 76.43 0.15 

  [10.87 22.92] [4.07 10.97] [25.45 181.30] [5.37 65.72] [6.96 17.48] [5.64 11.49] [71.27 81.92] [0.10 0.20] 

  783 
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Table 5: Intra-generation (GA1) cross-validation prediction accuracies (𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉)) with standard errors (𝑆𝐸). See text for models´ abbreviations. 784 

 785 

 Lost  Adam  Fleet  

 𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) 𝑆𝐸  𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) 𝑆𝐸  𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) 𝑆𝐸 

M1 0.601 0.0000  0.447 0.0004  0.498 0.0006 

M2 0.613 0.0011  0.453 0.0011  0.513 0.0027 

M3  0.640 0.0007  0.461 0.0006  0.519 0.0010 

M4  0.615 0.0011  0.448 0.0010  0.515 0.0010 

M5 0.629 0.0009  0.452 0.0010  0.526 0.0023 

  786 
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Table 6: Inter-generation (GA2) cross-validation prediction accuracies (𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉)) and standard errors (𝑆𝐸). See text for models´ abbreviations. 787 

 788 

 Jordan Bigtree 

 𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) 𝑆𝐸  𝑟(𝐺𝐸𝐵𝑉,𝐸𝐵𝑉) 𝑆𝐸 

M1 0.320 0.0012  0.506 0.0006 

M2 0.317 0.0011  0.506 0.0008 

M3  0.360 0.0015  0.535 0.0009 

M4  0.346 0.0029  0.526 0.0006 

M5 0.360 0.0016  0.538 0.0004 

 789 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 7, 2019. ; https://doi.org/10.1101/540765doi: bioRxiv preprint 

https://doi.org/10.1101/540765


SUPPLEMENTS 1 

 2 

Figure S1: Three generation coastal Douglas-fir contemporary pedigree containing the inter-generation validation population of study. Circles represent single individuals; octagons represent 3 

full-sibling families. Red colours are the unrelated (assumed) base population of wild plus tree selections (P0), green colours are the forward selection progenitors (F1) of the Jordan (purple, 4 

F2-2) and Bigtree (yellow, F2-3) validation populations (F2) respectively. The pedigree was produced using Helium software (Shaw et al., 2014). 5 

 6 

 7 

 8 
  9 
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 10 

Figure S2: Scatterplot of mean absolute marker effects from the cross-validation analysis. 11 

  12 
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 13 

Figure S3: Scatterplots of mean rank of predicted trees with Spearman rank correlation coefficients from the cross-validation analyses for all predictions (𝜌1) and top 40% of predictions (𝜌2) 14 

within environments Adam (A), Lost (B), Fleet (C), Jordan (D), and Bigtree (E) comparing the base model (M1, x-axis) and fully specified model (M5, y-axis). Deviation from the diagonal 15 

line implies a rank change. 16 

  17 
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Table S1: Number of parent-parent (F1-F1 / F2-F2) or parent-grandparent (F1-F2) (above diagonal) and families (below diagonal) in common among the environments for study population 18 

1 (SP1). 19 

Generation  F1 F2-2 F2-3 

 
 

Lost Adam Fleet Sechelt Eldred Menzies Sproat Squamish Tansky White Jordan Northarm Bigtree Roach 

F
1
 

Lost 
 

78 78 78 78 78 78 78 78 78 13 13 12 12 

Adam 165  78 78 78 78 78 78 78 78 13 13 12 12 

Fleet 165 165 
 

78 78 78 78 78 78 78 13 13 12 12 

Sechelt 165 165 165  78 78 78 78 78 78 13 13 12 12 

Eldred 165 165 165 165 
 

78 78 78 78 78 13 13 12 12 

Menzies 165 165 165 165 165  78 78 78 78 13 13 12 12 

Sproat 165 165 165 165 165 165 
 

78 78 78 13 13 12 12 

Squamish 165 165 165 165 165 165 165  78 78 13 13 12 12 

Tansky 165 165 165 165 165 165 165 165 
 

78 13 13 12 12 

White 165 165 165 165 165 165 165 165 165 
 

13 13 12 12 

F
2
-2

 Jordan           
 

74   

Northarm           79 
 

  

F
2
-3

 

Bigtree             
 

73 

Roach             104 
 

  20 
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Table S2: Number of F2 parents within the F1 environments. 21 

  F2-2 F2-3 

 
 

Jordan Northarm Bigtree Roach 

F
1
 

Lost 4 4 5 5 

Adam 6 6 4 4 

Fleet 7 7 8 8 

Sechelt 8 8 9 9 

Eldred     

Menzies     

Sproat     

Squamish     

Tansky     

White     

  22 
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Table S3: List of monthly (from January/01 to December/12) climatic variables obtained from ClimateBC v5.51 (Wang et al., 2012a) used in the genomic analyses. 23 

 24 

Primary monthly variables 

Tave01 – Tave12  mean temperatures (°C) 

TMX01 – TMX12  maximum mean temperatures (°C) 

TMN01 – TMN12  minimum mean temperatures (°C) 

PPT01 – PPT12  precipitation (mm) 

RAD01 – RAD12  solar radiation (MJ m
‐2 

d
‐1

) 

 

Derived monthly variables 

DD_0_01 – DD_0_12  degree-days below 0°C 

DD5_01 – DD5_12  degree-days above 5°C 

DD_18_01 – DD_18_12  degree-days below 18°C 

DD18_01 – DD18_12  degree-days above 18°C 

NFFD01 – NFFD12  number of frost-free days 

PAS01 – PAS12  precipitation as snow (mm) 

Eref01 – Eref12  Hargreaves reference evaporation (mm) 

CMD01 – CMD12  Hargreaves climatic moisture deficit (mm) 

 25 

 26 
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