1	Deciphering the Genetics of Major End-Use Quality Traits in Wheat
2	¹ Sepehr Mohajeri Naraghi [*] , Senay Simsek [*] , Ajay Kumar [*] , S.M. Hisam Al Rabbi [*] , Mohammed
3	S. Alamri [†] , Elias M. Elias [*] , and Mohamed Mergoum ^{‡1}
4	
5	[*] Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, [†] Arizona Plant
6	Breeders Inc., Casa Grande, AZ 85122, [†] Department of Food Sciences and Nutrition, King Saud
7	University, Riyadh 11451, Saudi Arabia, [‡] Department of Crop and Soil Sciences, Redding
8	Building #262, 1109 Experiment Street, Griffin, GA 30223-1797
9	

 ¹Sepehr Mohajeri Naraghi1, PhD in Plant Breeding and Genetics. Department of Plant Sciences at North Dakota State University, Fargo, ND, 58102. Email: <u>Sepehr.mohajerinarag@ndsu.edu</u>

^{2.} Senay Simsek, PhD in Food Science. Department of Plant Sciences at North Dakota State University, Fargo, ND, 58102. Email: Senay.Simsek@ndsu.edu

Ajay Kumar, PhD in Genetics and Plant Breeding. Department of Plant Sciences at North Dakota State University, Fargo, ND, 58102. Email: <u>ajay.kumar.2@ndsu.edu</u>

^{4.} S.M. Hisam Al Rabbi, PhD in Plant Breeding and Genetics. Department of Plant Sciences at North Dakota State University, Fargo, ND, 58102. Email: smhisam.rabbi@ndus.edu

Mohammed S. Alamri, PhD in Cereal and Food Sciences. Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University. P. O. Box 2460 Riyadh 11451 Saudi Arabia. Email: <u>msalamri@ksu.edu.sa</u>

Elias. M. Elias. PhD in Plant Breeding and Genetics. Department of Plant Sciences at North Dakota State University, Fargo, ND, 58102. Email: <u>Elias.Elias@ndsu.edu</u>

Mohamed Mergoum, PhD in Plant Breeding and Genetics. Department of Crop and Soil Sciences, Redding Building #262, 1109 Experiment Street, Griffin, GA 30223-1797. Email: <u>mmergoum@uga.edu</u>

10 **Running Tittle**: Both additive and epistatic effects play important roles in the genetic

- 11 control of end-use quality traits in wheat
- 12 Key Words: Genetics, Wheat, End-use Quality Traits, High-density Linkage Map,
- 13 Quantitative Trait Loci (QTL) Identification; QTL mapping.

14 Corresponding author: Mohamed Mergoum

- 15 Professor, Georgia Seed Development/UGA Foundation Professor
- 16 Institute of Plant Breeding, Genetics and Genomics. Department of Crop and Soil
- 17 Sciences, Redding Building #262, 1109 Experiment Street, Griffin, GA 30223-1797.
- 18 Phone: (770) 228-7289.
- 19 mmergoum@uga.edu
- 20
- 21
- 22
- 23
- 24
- 25
- 26

27

- 28

29 Abstract

Improving the end-use quality traits is one of the primary objectives in wheat breeding programs. 30 In the current study, a population of 127 recombinant inbred lines (RILs) derived from a cross 31 between Glenn (PI-639273) and Traverse (PI-642780) was developed and used to identify 32 33 quantitative trait loci (QTL) for 16 end-use quality traits in wheat. The phenotyping of these 16 traits was performed in nine environments in North Dakota, USA. The genotyping for the RIL 34 35 population was conducted using the wheat Illumina iSelect 90K SNP assay. A high-density 36 genetic linkage map consisting of 7,963 SNP markers identified a total of 76 additive QTL (A-QTL) and 73 digenic epistatic QTL (DE-QTL) associated with these traits. Overall, 12 stable 37 38 major A-QTL and three stable DE-QTL were identified for these traits, suggesting that both A-39 QTL and DE-QTL played an important role in controlling end-use quality traits in wheat. The 40 most significant A-QTL (AQ.MMLPT.ndsu.1B) was detected on chromosome 1B for mixograph middle line peak time. The AQ.MMLPT.ndsu.1B A-QTL was located very close to the position 41 42 of the Glu-B1 gene encoding for a subunit of high molecular weight glutenin and explained up to 43 24.43% of phenotypic variation for mixograph MID line peak time. A total of 23 co-localized QTL loci were detected, suggesting the possibility of the simultaneous improvement of the end-44 45 use quality traits through selection procedures in wheat breeding programs. Overall, the information provided in this study could be used in marker-assisted selection to increase 46 47 selection efficiency and to improve the end-use quality in wheat. 48

- 49
- 50
- 51

52 Abbreviations

- 53 AACCI American Association of Cereal Chemists International
- **A-QTL** additive QTL
- **BA** baking absorption
- **BLV** bread loaf volume
- **BLUP** best linear unbiased predictor
- **BMT** bake-mixing time
- **CBCL** crumb color
- **CTCL** crust color
- **cM** centimorgans
- **DArT** diversity arrays technology
- **DE-QTL** digenic epistatic QTL
- **DO** dough character
- **FE** flour extraction
- **FHB** *Fusarium* head blight
- **GPC** grain protein content
- **HMW** high molecular weight
- **HRSW** hard red spring wheat
- **ICIM-ADD** inclusive composite interval mapping with additive effects
- 71 ICIM-EPI inclusive composite interval mapping of epistatic QTL
- 72 LMW low molecular weight
- 73 MAS marker-assisted selection

- **MELS** mixograph envelope left slope
- **MERS** mixograph envelope right slope
- **MMLPI** mixograph MID line peak integral
- **MMLPT** mixograph MID line peak time
- **MMLPV** mixograph MID line peak value
- **MMLPW** mixograph MID line peak width
- 80 MMLTV mixograph MID line time * value
- 81 MIXOPA general mixograph pattern
- 82 NDSU North Dakota State University
- **NIR** near-infrared reflectance
- **PPM** parts per million
- **PV** phenotypic variation
- **QTL** quantitative trait loci
- **RCBD** randomized complete block design
- **RFLP** restriction fragment length polymorphisms
- **REML** restricted maximum likelihood
- **SSD** single seed descent
- **SKB** Sandstedt, Kneen, and Blish

92 Introduction

Wheat (Triticum aestivum L.) produced in the Northern Great Plains of the USA is 93 known around the world due to its high protein content and outstanding end-use quality traits 94 (Vachal et al. 2010). In wheat breeding programs, the end-use quality traits are not usually 95 evaluated until late (starting from primarily yield trials onwards) in the breeding program. This is 96 because the end-use quality evaluations are expensive and a large amount of grain is needed to 97 conduct the evaluations. Performing these evaluations at a late stage in the breeding program 98 99 often results in ostensibly promising wheat lines with high yield and resistance to diseases that cannot be released due to poor end-use quality traits, such as a weak performance for milling 100 parameters and baking properties. To address these challenges, many studies have been 101 102 conducted to identify quantitative trait loci (QTL) and associated markers for end-use quality traits, with the aim to use such markers in marker-assisted selection (MAS) to improve quality 103 traits in early generations of the breeding program (Campbell et al. 2001; Groos et al. 2003; 104 105 Prasad et al. 2003; Breseghello et al. 2005; Kulwal et al. 2005; Arbelbide and Bernardo 2006; 106 Breseghello and Sorrells 2006; Huang et al. 2006; Kuchel et al. 2006; Kunert et al. 2007; Mann 107 et al. 2009; Tsilo et al. 2010; Zhao et al. 2010; Carter et al. 2012; Li et al. 2012a; Simons et al. 108 2012; El-Feki et al. 2013; Mergoum et al. 2013; Deng et al. 2015; Echeverry-Solarte et al. 2015; 109 Tiwari et al. 2016; Jin et al. 2016). It should be mentioned that MAS for end-use quality traits would be commenced from F₅ generation onwards if a single seed decent (SSD) method is used 110 to develop wheat cultivars. 111

Kernel characteristics, grain protein content; flour, dough, milling, and bread baking
characteristics differentiate the end-use quality traits of wheat (*Triticum aestivum* L.) (Souza et

114 al. 2002). These traits are complex traits influenced by a combination of environmental conditions and genetic factors (Rousset et al. 1992; Peterson et al. 1998). Grain protein content 115 has received special attention among end-use quality traits because it is an indication of the 116 quality performance of wheat products such as bread, cake, noodles, and pasta (Zhao et al. 2010). 117 Moreover, wheat markets are determined based on the amount of protein in the grain (Regional 118 119 Quality Report 2011). Several studies reported the existence of genes associated with grain protein content across all wheat chromosomes (Galande et al. 2001; Gross et al. 2003; Prasad et 120 al. 2003; Kulwal et al. 2005; Huang et al. 2006; Kunert et al. 2007; Mann et al. 2009; Tsilo et al. 121 122 2010; Zhao et al. 2010; Li et al. 2012a and b; Carter et al. 2012). Recently, Tiwari et al. (2016) reported a major QTL on chromosome 1A associated with grain protein content that account for 123 16.2 to 17.7% of the PV across environments using a doubled-haploid population comprised of 124 125 138 segregants from a cross between Berkut and Krichauff cultivars. In another study, Boehm et al. (2017) identified three major QTL for grain protein content on chromosomes 1A, 7B, and 7B 126 using 132 F6:8 recombinant inbred lines (RILs) population derived from a cross between 127 Butte86 and ND2603. In some of these studies, molecular markers associated with genes 128 regulating gluten proteins have also been reported. Gluten is the coherent mass formed when 129 130 glutenin and gliadin (storage protein) bind after water is added to flour (Stone and Savin 1999). Glutenins are responsible for dough strength and are composed by subunits of high molecular 131 weight (HMW) and subunits of low molecular weight (LMW). The major genes controlling 132 133 HMW Glutenins are Glu-1, Glu-A1, Glu-B1, and Glu-D1, whereas the major genes controlling LMW Glutenins are Glu-A3, Glu-B3, and Glu-D3 (Payne 1987). 134

135 Mixograph-related properties determine the performance of wheat flour dough during mechanical treatment (Alamri 2009a, b). Mann et al. (2009) reported major dough rheology QTL 136 associated with the Glu-B1 and Glu-D1 loci in a double haploid population derived from a cross 137 of Kukri × Jans. The same study also identified a major QTL for unextractable polymeric protein 138 (UPP). Unextractable polymeric protein were located on chromosomes 1B and 2B and were 139 140 suggested as a predictor of dough strength (Gras et al. 2001). Mann et al. (2009) also showed time to peak dough development (TPDD) was associated with the Glu-B1, Glu-B3, and Glu-D1 141 loci, while peak resistance (PR) was influenced by two QTL detected on chromosome 1A. 142 143 Several studies have shown the existence of genes associated with flour extraction across all wheat chromosomes except chromosome 1D (Kunert et al. 2007; Tsilo et al. 2011; Simons et al. 144 2012). Campbell et al. (2001) reported several QTL on chromosomes 1B, 3B, 5A, 5B, 5D in a 145 population consisted of 78 F_{2:5} RILs derived from the NY18/CC cross using 370 molecular 146 markers to create a genetic linkage map including restriction fragment length polymorphisms 147 148 (RFLP), microsatellites, and markers derived from known function genes in wheat. In another study, Echeverry-Solarte et al. (2015) identified four stable QTL on chromosomes 1A, 1B, 3D, 149 and 6A for flour extraction in a RIL population derived from a crossing between an elite wheat 150 151 line (WCB414) and an exotic genotype with supernumerary spikelet. In this study, 939 Diversity 152 Arrays Technology (DArT) markers were used to assemble 38 genetic linkage groups covering 3,114.2 cM with an average distance of 4.6 cM between two markers. 153

154 Kuchel et al. (2006) identified a major QTL for dough development time on chromosome 155 1A and several QTL for dough stability time on chromosomes 1A and 1B using two advanced 156 backcross populations named as B22 (Batis × Syn022) and Z86 (Zentos × Syn086). The same 157 study identified OTL for water absorption on chromosomes 1A and 2D (Kuchel et al. 2006). Recently, a major QTL for water absorption was detected on the short arm of chromosome 5D 158 using compositions of 390 landraces and 225 released varieties from the wheat germplasm bank 159 of Shandong Academy of Agricultural Science (Li et al. 2009). In another study, Li et al. (2009) 160 detected a major QTL for water absorption associated with the puroindoline loci on the short arm 161 of chromosome 5D. Further Li et al. (2012) identified a main effect QTL for water absorption on 162 chromosome 5B in two populations derived from crosses among three Chinese wheat cultivars: 163 Weimai8, Jimai20, and Yannong19. Arbelbide and Bernardo (2006) identified four QTL for 164 165 dough strength on chromosomes 1A, 1B, 1D, and 5B using 80 parental and 373 advanced breeding lines. 166

Limited information appears to be available on the genetic control of baking properties. 167 Mann et al. (2009) found a QTL associated with sponge and dough baking on chromosome 5D in 168 a population of doubled haploid lines derived from a cross between two Australian cultivars 169 Kukri and Janz. In another study, Zanetti et al. (2001) detected 10 QTL for dough strength on 170 chromosomes 1B, 5A, 5B, and 5D. Kunert et al. (2007) reported two major QTL for loaf volume 171 trait in the BC₂F₃ population of B22 (Batis \times Syn022). Simons et al. (2012) identified a QTL on 172 173 the long arm of chromosome 1D for bake-mixing time and water absorption traits in a population derived from a cross between BR34 \times Grandin. In the same study, Simons et al. (2012) found no 174 significant QTL for flour brightness and bake-mixing water absorption, suggesting that these 175 176 characteristics may be controlled by small effect QTL.

177 Although several studies were conducted in the past to dissect the genetics of wheat end-178 use quality traits, almost all of these studies were based on low-density genetic linkage maps 179 containing only several hundred molecular markers. Recently, Boehm et al. (2017) conducted a high-density genetic linkage map study that identified 79 QTL associated with end-use quality 180 traits in a wheat RIL population derived from a cross between Butte86 and ND2603 using 607 181 genotyping-by-sequencing SNP markers, 81 microsatellite markers, and seven HMW and LMW 182 markers. In this study, a total of 35 linkage groups were also assembled with a total map size of 183 184 1813.4 cM, an average genetic distance of 2.9 cM between any two markers, and coverage on all wheat chromosomes except chromosome 4D. In another study, Jin et al. 2016 performed a high-185 density linkage map study to detect 119 additive QTL associated with milling quality traits in a 186 187 RIL population derived from a cross between Gaocheng 8901 and Zhoumai 16. In this study, a total of 46.961 SNP markers based on the wheat Illumina 90K and 660K iSelect SNP assays 188 were used to construct a linkage map with the average density of 0.09 cM per marker. 189

190 A low-density genetic linkage map limits the successful application of associated markers 191 in breeding programs. In the current study, the wheat Illumina 90K iSelect assay (Wang et al. 2014) was used to detect marker-trait associations for end-use quality traits in wheat. Kumar et 192 al. (2016) reported using the wheat Illumina 90K iSelect assay to create a genetic linkage map, 193 indicating that it had a much higher resolution compared to most of the previous genetic linkage 194 195 maps for the dissection of grain shape and size traits. Thus, the aims of this study were to: (1) construct a high-density linkage map using the wheat Illumina 90K iSelect assay, (2) provide 196 comprehensive insight into the genetic control of end-use quality traits, and (3) identify SNP 197 198 markers closely linked to QTL associated with end-use quality traits to enhance molecular breeding strategies. 199

200 Material and Methods

201 Plant materials

202	A population of 127 RILs derived from a cross between Glenn (PI-639273; Mergoum et						
203	al. 2006) and Traverse (PI-642780; Karl 2006; https://www.sdstate.edu/sites/default/files/2017-						
204	01/B749.pdf) was used in this study. Glenn and Traverse are both hard red spring wheat						
205	(HRSW) cultivars. Glenn was developed and released in 2005 by the Hard Red Spring Wheat						
206	Breeding Program at North Dakota State University (NDSU) in Fargo, ND, USA. It is well-						
207	known in domestic and export markets due to its high level of resistance to Fusarium head blight						
208	(FHB), high grain protein content, and excellent end-use quality characteristics						
209	(http://www.ndwheat.com/uploads/resources/1026/hrs18jb.pdf). Traverse was developed and						
210	released by the South Dakota Agricultural Experiment Station in 2006. It is a high yielding,						
211	FHB-tolerant cultivar with marginal grain protein content and end-use quality. The RIL						
212	population was advanced by single seed descent (SSD) method from the F2 through F10						
213	generations.						
214	Field Experiment Design						
215	The RILs, parental lines, and check varieties were grown under field conditions at three						
216	locations in ND for three years from 2012 to 2014 (Table 1). In 2012, the three sites were						
217	Prosper, Carrington, and Casselton; whereas in 2013 and 2014 the Casselton site was replaced						
218	with the Minot site. A detailed description of the environments is given in Table 1. In 2012, lines						
219	were grown in a randomized complete block design (RCBD) with two replicates; however, in						
220	2013 and 2014, a 12 \times 12 partially balanced square lattice design with two replicates (simple						
221	lattice design) was used to reduce experimental error and increase the experiment precision. In						
222	2012 and 2013, each plot was 2.44 m long and 1.22 m wide; whereas in 2014 the plots were 2.44						

m long and 1.42 m wide. All plots consisted of seven rows. Sowing rate was 113 kg ha-1 in allenvironments.

225 Phenotypic Data Collection

226 The grain samples harvested from the field experiments were cleaned in two steps before evaluating quality traits. First, the samples were cleaned using a clipper grain cleaner machine. 227 228 Second, the samples were cleaned using a carter dockage tester machine. One replicate was used to create a 200-g grain sample per line in each location for evaluating 16 end-use quality 229 characteristics. Quality characteristics analyzed in this study were: grain protein content, flour 230 231 extraction, eight mixograph-related parameters, and six baking-related properties. Grain protein content (%) was measured based on 12% moisture using the Near-Infrared 232 Reflectance (NIR) method for protein determination in small grains and following the American 233 Association of Cereal Chemists International (AACCI)-approved method 39-10-01 (AACC 234 International Method 1999). Flour extraction (%) was determined using 150 g of thoroughly 235 cleaned wheat grain per sample tempered to 16.0% moisture, using the Brabender Quadrumat Jr. 236 Mill and following the AACCI-approved method 26-50-01 (AACC International Method 1999). 237 Mixograph parameters include the mixograph envelope left slope, mixograph envelope 238 239 right slope, mixograph MID line peak time, mixograph MID line peak value, mixograph MID line time * value, mixograph MID line peak width, mixograph MID line peak integral, and 240 general mixograph pattern. Mixograph measurements were obtained from 10 g of flour per 241 242 sample on a 14% moisture basis using the National Manufacturing Mixograph (National Manufacturing, TMCO Division, Lincoln, NE) and following the AACCI-approved method 54-243 40-02 (AACC International Method, 1999). Mixsmart software was used to collect data of 244

245 mixograph envelope left slope (%/min), mixograph envelope right slope (%/min), mixograph MID line peak time (min), mixograph MID line peak value (%), mixograph MID line peak width 246 (%), mixograph MID line peak integral (%/min), and mixograph MID line time * value (%). 247 248 The general mixograph pattern was based on a 0 to 9 scale (0 = weakest and 9 = strongest) according to USDA/ARS-Western Wheat Quality Laboratory mixogram reference chart 249 250 (http://wwql.wsu.edu/wp-content/uploads/2017/03/Appendix-6-Mixogram-Chart.pdf). Baking properties include bake-mixing time, baking absorption, dough character, bread 251 loaf volume, crumb color and crust color, Baking parameters were determined from 100 g of 252 253 flour per sample on a 14% moisture basis according to the AACCI-approved method 10-09-01 with a little modification in baking ingredients (AACC International Method 1999). The baking 254 ingredients were modified as follows: (1) malt dry powder was replaced with fungal amylase (15 255 256 SKB); (2) compressed yeast was replaced with instant dry yeast; (3) ammonium phosphate was increased from 0.1 to 5 ppm; (4) two percent shortening was added. Bake mixing time (minutes) 257 was determined as time to full dough development. Baking absorption was evaluated as a percent 258 of flour weight on a 14% moisture basis for the amount of water required for optimum dough 259 baking performance. Dough character was assessed for handling conversion at panning based on 260 261 a scale of 1 to 10, with higher scores preferred. Bread loaf volume (cubic centimeters) was measured by rapeseed (Brassica napus L.) displacement 30 minutes after the bread was removed 262 from the oven. Crumb color and crust color were valued according to visual comparison with a 263 264 standard by using a constant illumination source based on a 1 to 10 scale, with higher scores preferred. 265

266 Phenotypic Data Analysis

267 Because the evaluations of end-use quality are expensive and a large amount of grain is needed, seeds from the two replicates of each environment was bulked and used to analyze 268 phenotypic data. The experimental design employed was a randomized complete block design 269 270 (RCBD). End-use quality traits analyzed were generated from a bulk sample combining two replicates in each environment, thus data from each environment was considered as a replicate. 271 Variance components were estimated using restricted maximum likelihood (REML) in the 272 MIXED procedure of SAS software Version 9.3 (SAS Institute, Inc., Cary, NC, USA). Blocks 273 (environments) and genotypes were considered random effects. Best linear unbiased predictor 274 275 (BLUP) values were estimated using the solution option of the random statement of the Proc Mixed procedure in SAS. Broad-sense heritability and genetic correlations were calculated using 276 the Proc Mixed procedure in SAS (Holland et al., 2003; Holland et al., 2006). Broad-sense 277 heritability was estimated as $H^2 = \frac{\widehat{\sigma}_G^2}{(\frac{\widehat{\sigma}_e^2}{e} + \widehat{\sigma}_{GE}^2 + \widehat{\sigma}_G^2)}$, where $\widehat{\sigma}_G^2$ is the estimate of genotypic variance, 278 $\hat{\sigma}_{GE}^2$ is the estimate of genotype × environment interaction variance, $\hat{\sigma}_{e}^2$ is the estimate of error 279 variance, r is the number of replications per environment, and e is the number of environments. 280 It should be mentioned that, in this study r = 1 for the end-use quality traits evaluated on bulked 281 samples. Broad-sense heritability coefficients were classified according to Hallauer and Miranda 282 (1988): VH = very high = $H^2 > 0.70$, HI = high = $0.50 < H^2 < 0.70$, M = medium = $0.30 < H^2 < 0.70$ 283 0.50, and $L = low = H^2 < 0.30$. Pearson correlations between quality traits were evaluated using 284 285 BLUP values across all environments. The CORR procedure in SAS was used to calculate Pearson correlations. Trait values collected from the first replicate of each environment and 286 287 BLUP values were used for the QTL mapping analysis.

288 Genotyping and Genetic Linkage Map Construction

Lyophilized young leaves were used to isolate genomic DNA for RILs and parental lines 289 following a modified Doyle and Doyle (1987) protocol described by Diversity Arrays 290 Technology Pty., Ltd. (https://ordering.diversityarrays.com/files/DArT_DNA_isolation.pdf). 291 292 DNA quality was checked via visual observation on 0.8% agarose gel. DNA concentrations were 293 determined with a NanoDrop 1000 spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA). DNA samples were diluted to the concentration of 50 ng/ μ l, and 20 μ l 294 295 of the diluted samples were sent to the USDA Small Grains Genotyping Lab in Fargo, ND, for SNP analysis using the wheat Illumina 90K iSelect SNP assay (Wang et al. 2014). SNP markers 296 297 were called as described by Wang et al. (2014) using Genome Studio Polyploid Clustering 298 Module v1.0 software (www.illumina.com). Out of a total 81,587 SNP markers from the wheat Illumina 90K iSelect assay (Wang et 299 al. 2014), 8,553 polymorphic SNP markers between parents after excluding poor quality markers 300 were identified. Markers with a high number of missing values ($\geq 15\%$), inconsistent results in 301 three replicates of each parental genotype, or significant segregation distortion (γ 2 goodness-of-302 fit statistic, p < 0.001) were excluded from the following map construction. Linkage analysis for 303 8,553 SNP markers was performed using a combination of MAPMARKER/EXP software 304 version 3.0 (Lander et al., 1989) and MSTmap software (Wu et al., 2008). In the first step, a 305 306 high-density SNP consensus map was used (Wang et al., 2014) as a reference to select 210 anchor SNP markers for all 21 wheat chromosomes. For each chromosome, 10 SNP markers that 307 308 covered the whole length of each chromosome were selected. By using MAPMARKER/EXP 309 software version 3.0 (Lander et al. 1987) and the 210 anchor SNP markers, 7,963 out of 8,553

310 SNP markers were placed into the 21 wheat chromosomes based on a minimum LOD score of 5.0 and a maximum distance of 40 centimorgans (cM). In the second step, the marker orders and 311 genetic distances of each linkage group were estimated using MSTmap software (Wu et al. 312 2008), with a cut-off at p < 0.000001, the maximum distance of 15 cM between markers, 313 grouping LOD criteria of 5.0, and a minimum linkage group size of 2 cM. Genetic distances 314 between markers were calculated using Kosambi's genetic mapping function (Kosambi 1944). 315 To check the accuracy of the marker orders, the genetic linkage groups were compared by 316 inspection with the high-density SNP consensus map of Wang et al. (2014). The final genetic 317 318 linkage maps and corresponding graphs were drawn using Mapchart software version 2.2 program (Voorrips 2002). 319

320 Quantitative Trait Loci Mapping

Inclusive composite interval mapping with additive effects (ICIM-ADD) was 321 implemented to identify additive QTL (A-QTL) for each trait within each of the nine 322 environments, as well as across all environments, using QTL IciMapping software version 4.1 323 (Wang et al. 2012). In QTL IciMapping, stepwise regression (p < 0.001) with simultaneous 324 consideration of all marker information was used. The step size chosen for all A-OTL was kept 325 at the default value, 1.0 cM. Left and right confidence intervals were calculated by one-LOD 326 drop off from the estimated A-OTL (Wang et al. 2016). The LOD threshold values to detect 327 328 significant A-QTL were calculated by performing a permutation test with a set of 1,000 iterations at a Type I error of 0.05; all A-QTL identified above the LOD threshold value were 329 reported in this study. In addition, those A-QTL detected in more than two environments or 330 331 associated with at least two traits were reported. Furthermore, an A-OTL with an average LOD

value above the LOD threshold value and an average phenotypic variation (PV) contribution

- over 10% was considered a major A-QTL. Moreover, A-QTL which were identified in at least
 three environments were defined as stable OTL.
- three environments were defined as stable QTL.
- Inclusive composite interval mapping of epistatic QTL (ICIM-EPI) method, available in
- 336 QTL IciMapping software version 4.1 (Wang et al. 2012), was employed to identify additive-by-
- additive epistatic interactions or digenic epistatic QTL (DE-QTL) for each of the end-use quality
- 338 characteristics within each environment, as well as across all environments. For the convenience
- of illustration, the digenic epistatic QTL were named as DE-QTL. The step size chosen for DE-
- 340 QTL was 5.0 cM. The probability used in stepwise regression for DE-QTL was 0.0001. To
- detect DE-QTL, the LOD threshold values were kept at the default value of 5.0. Additionally, the
- LOD value of 3.0 was also used as another threshold to declare the presence of a putative DE-
- 343 QTL. Those DE-QTL that were identified in at least two environments were reported in this
- study. Furthermore, a DE-QTL detected in at least three environments was defined as a stable
- 345 DE-QTL. It should be noted that in order to represent the most relevant data, only the highest
- values observed across environments for LOD score, additive effect, epistatic effect, and PV
- 347 were reported in this study.
- 348 Data Availability
- 349 Supplemental material is available online at
- 350 <u>https://figshare.com/s/7cea3895f1b90dfe106b</u>. There are two files (Excel files) in Supplemental
- 351 Material, File S1 and File S2. File S1 contains three supplementary tables. Supplementary Table
- 1 includes complete genetic maps developed using Glenn * Traverse RIL population.
- 353 Supplementary Table 2 shows information related to the complete list of additive QTL (A-QTL)

detected for end-use quality traits in a wheat (*Triticum aestivum* L.) RIL population derived from
a cross between Glenn (PI-639273) and Traverse (PI-642780). Supplementary Table 3 shows the
complete list of digenic epistatic QTL (DE-QTL) detected for end-use quality traits in a wheat
(*Triticum aestivum* L.) RIL population derived from a cross between Glenn and Traverse. File S2
contains genotyping data, linkage groups, and phenotyping data.

359 **Results**

360 Phenotypic Variation, Heritability, and Genetic and Pearson Correlations

361 The RIL population showed variation for all end-use quality characteristics studied (Figure 1; Table 2 and Supplementary Material File S2). The parental lines showed significantly 362 363 different values for grain protein content, bake-mixing time, baking absorption, bread loaf 364 volume, general mixograph pattern, mixograph envelope left slope, mixograph MID line peak time, mixograph MID line time * value, mixograph MID line peak width, and mixograph MID 365 line peak integral. The values differed slightly but not significantly for crumb color, crust color, 366 flour extraction, mixograph envelope right slope, mixograph MID line peak value, and dough 367 character across all environments (Table 2). All traits showed approximately normal distributions 368 (Figure 1), demonstrating the complex (polygenic) nature and quantitative inheritance of these 369 370 traits (Fatokun et al. 1992). Transgressive segregation in both directions was observed for grain protein content, baking absorption, bread loaf volume, crumb color, flour extraction, mixograph 371 372 envelope left slope, mixograph envelope right slope, mixograph MID line peak time, and mixograph MID line peak value across all environments, indicating positive alleles were present 373 in both parents. Transgressive segregation for crust color, mixograph MID line time * value, and 374

375 dough character was observed in the direction of the better parent (Glenn cultivar); several RILs showed better performance than Glenn cultivar for these traits. For flour extraction and 376 mixograph envelope left slope, transgressive segregation in the direction of Traverse was 377 observed, with several RILs showing higher values than the Traverse cultivar for these 378 characteristics (Table 2). 379 The broad-sense heritability coefficients varied substantially for different traits. The 380 highest estimated broad-sense heritability was for mixograph MID line peak time (0.77), and the 381 lowest for crust color (0.05) (Table 2). Among baking properties, bake-mixing time and baking 382 383 absorption showed high and moderate broad-sense heritability (0.65 and 0.40, respectively); while bread loaf volume, crumb color, crust color, and dough character showed low broad-sense 384 heritability (0.26, 0.11, 0.05, and 0.22, respectively). Among milling and mixograph traits, flour 385 extraction, general mixograph pattern, mixograph envelope left slope, mixograph envelope right 386 slope, mixograph MID line peak time, mixograph MID line peak value, mixograph MID line 387 time * value, and mixograph MID line peak integral showed moderate to high broad-sense 388 heritability (0.55, 0.42, 0.38, 0.50, 0.77, 0.31, 0.41, and 0.43, respectively), but mixograph MID 389 line peak width had low broad-sense heritability (0.23). High to very high broad-sense 390 391 heritability coefficients for bake-mixing time, flour extraction, mixograph MID line peak time, 392 and mixograph MID line peak value indicated stability of these traits, and the PV of these characteristics was mainly due to genetic effects (Table 2). 393 394 The genetic and Pearson correlation analyses showed most of the quality traits were associated with each other (Table 3). Highly positive significant genetic and phenotypic 395

correlations (correlation coefficient value lies between + 0.50 and + 0.97) were observed

between grain protein content and bread loaf volume; grain protein content and envelope left 397 slope; grain protein content and mixograph MID line peak value; bake-mixing time and general 398 mixograph pattern; bake-mixing time and mixograph envelope right slope; bake-mixing time and 399 mixograph MID line peak time; bake-mixing time and mixograph MID line peak integral; baking 400 absorption and mixograph MID line peak value; bread loaf volume and mixograph envelope left 401 slope; general mixograph pattern and mixograph MID line time * value; general mixograph 402 pattern and mixograph MID line peak width; general mixograph pattern and mixograph MID line 403 404 peak integral; mixograph envelope right slope and mixograph MID line peak time; mixograph 405 MID line peak time and mixograph MID line peak integral; and mixograph MID line peak integral; mixograph MID line time * value and mixograph MID line peak width; and mixograph 406 MID line time * value and mixograph MID line peak integral. In contrast, high negative 407 significant genetic and phenotypic correlations (correlation coefficient value lies between - 0.50 408 and -0.87) were found between bake-mixing time and mixograph envelope left slope; 409 mixograph envelope left slope and mixograph MID line peak time; and mixograph envelope 410 right slope and mixograph MID line peak value. Moderate positive significant genetic and 411 phenotypic correlations, where correlation coefficient value lies between + 0.30 and + 0.50 and 412 413 is significant at P < 0.01, were identified between grain protein content and mixograph MID line time * value; grain protein content and mixograph MID line peak width; bake-mixing time and 414 mixograph MID line time * value; bake-mixing time and mixograph MID line peak width; 415 416 baking absorption and mixograph envelope left slope; bread loaf volume and crust color; NLV and general mixograph pattern; bread loaf volume and mixograph MID line peak value; crust 417 418 color and general mixograph pattern; crust color and mixograph MID line peak value; crust

color and mixograph MID line time * value; crust color and mixograph MID line peak width ; 419 general mixograph pattern and mixograph MID line peak time; general mixograph pattern and 420 mixograph MID line peak value; mixograph envelope right slope and mixograph MID line peak 421 integral; mixograph MID line peak time and mixograph MID line time * value; and mixograph 422 MID line peak width and mixograph MID line peak integral. However, moderate negative but 423 424 highly significant genetic and phenotypic correlations (correlation coefficient value lies between - 0.30 and - 0.50) were detected between grain protein content and mixograph envelope right 425 426 slope; grain protein content and mixograph MID line peak time; bake-mixing time and 427 mixograph envelope left slope; baking absorption and mixograph MID line peak time; mixograph MID line peak time and mixograph MID line peak value. In other pairs of traits 428 genetic and phenotypic correlations were either low or not statistically significant at P < 0.05. 429 Correlations between the end-use quality traits are shown in more detail in Table 3. Differences 430 between genetic and phenotypic correlation coefficients (Table 3) could be due to low 431 heritability values; Hill and Thompson (1978) suggested higher heritability values could result in 432 the accuracy of genetic correlation estimates and greater similarity of genetic and phenotypic 433 correlation coefficients. The overall level of genetic correlation was greater than phenotypic 434 435 correlation, but the magnitude and pattern of genetic and phenotypic correlations were similar, suggesting phenotypic correlations would likely be fair estimates of their genetic correlations in 436 437 end-use quality traits (Table 3).

438 Genetic Linkage Map

Out of a total of 8,553 SNP markers, 7,963 markers were selected for genetic linkage
mapping according to criteria described in the materials and methods section (Supplementary

441	Material File S2). These markers were mapped onto 41 linkage groups covering all 21 wheat
442	chromosomes (Table 4 and Supplementary Material File S1 and File S2). The linkage maps
443	covered a total genetic length of 2,644.82 cM, with an average distance of 0.33 cM between any
444	two markers (Table 4 and Supplementary Material File S1). The linkage map consisted of 1,427
445	unique loci (~18%), with an average genetic distance of 1.85 cM between any two unique loci.
446	Altogether, the B-genome contained considerably more markers (4,807) than the A-genome
447	(2,549); notably fewer markers were mapped on the D-genome (607). The number of markers on
448	individual linkage groups varied from 10 (1B2) to 770 (3B1). Furthermore, the number of unique
449	loci in a linkage group ranged from 2 (3D1) to 113 (7A1) (Table 4). The map position of each
450	chromosome of Glenn/Traverse map was compared with the high-density SNP consensus map of
451	Wang et al. (2014). The results showed that the marker orders were fairly consistent with the
452	average Spearman's rank-order correlation coefficient of 0.83.
453	Quantitative Trait Loci Analysis
454	A total of 76 A-QTL and 73 DE-QTL were identified for the 16 end-use quality traits

455 evaluated in this study (Table 5; Table 6 and Supplementary Material File S1). These A-QTL

and DE-QTL were distributed across all wheat chromosomes except chromosomes 3D and 6A

457 for A-QTL, and 3D for DE-QTL. In terms of the genome-wide distribution of QTL, the B-

458 genome had the highest number of A-QTL (36), while the A-genome had the most DE-QTL

459 (46). This was followed by the A-genome with 25 A-QTL, the D-genome with 15 A-QTL, the B-

460 genome with 23 DE-, and the D-genome with four DE-QTL (Table 5 and Table 6). All of the A-

461 QTL and DE-QTL were identified in at least two environments and/or were associated with at

least two different end-use quality traits (Table 5 and Table 6). Out of the 76 A-QTL, a total of

463	43 A-OTL	(~57%)	explained more	e than 10%	of PV	and were	considered ma	jor A-C)TL,	while
-----	----------	--------	----------------	------------	-------	----------	---------------	---------	------	-------

- the remaining 32 A-QTL explained less than 10% of PV and were considered minor QTL (Table
- 465 5). Furthermore, a total of 12 A-QTL and three DE-QTL were identified in at least three
- 466 environments and were considered stable QTL.
- 467 Quantitative Trait Loci for Grain Protein Content
- 468 A total of 11 A-QTL and 18 DE-QTL were detected for grain protein content (Table 5;
- Table 6; Figure 2). The 11 A-QTL were located on chromosomes /linkage groups 1A1, 1B1,
- 470 2A1, 2B2, 3A2, 3B1, 4B, 5B, and 7A2. No A-QTL was found on the D-genome for grain protein
- 471 content in this study. Five A-QTL individually explained over 10% of PV and were considered
- 472 major A-QTL. The major A-QTL were located on chromosomes/linkage groups 1A1, 2A1, 3B1,
- 473 4B, and 5B (Table 5; Figure 2). Three A-QTL were detected in more than three environments
- 474 and were considered stable A-QTL. Two of these stable A-QTL, AQ.GPC.ndsu.1A and
- 475 AQ.GPC.ndsu.5B, explained up to13.69% and 20.18% of PV for grain protein content,
- 476 respectively, and were also considered major QTL. For this trait, both parental genotypes
- 477 contributed positive alleles, although the majority of the alleles (including the three stable A-
- 478 QTL) were contributed by the cultivar Glenn (Table 5; Figure 2). The QTL AQ.GPC.ndsu.7A
- 479 showed sequence similarity with wheat HMGB1 mRNA for high mobility globular protein.
- 480 Christov et al. (2007) suggested the wheat HMGB1 protein may have a specific function as a
- 481 general regulator of gene expression during cold acclimation in wheat.
- The results of digenic epistatic effects for grain protein content are shown in Table 6. The
 accumulated contribution of these nine epistatic interactions for grain protein content was
- ~16.38%. These DE-QTL were located on pairs of linkage groups 1A1/7D3, 1A1/7D3, 2B2/5B1,

485	3B1/2D2, 4A1/7B1, 4A1/6D2, 5A3/2B2, 5B/6D1, and 6B1/2D2. Unlike A-QTL, DE-QTL for
486	grain protein content were identified on the D-genome. The majority of these DE-QTL showed
487	negative values for digenic epistatic effects indicating the positive effects of recombinant
488	genotypic combinations on grain protein content. The AQ.GPC.ndsu.5B had the most important
489	main effect on grain protein content, and the AQ.BA.ndsu.6D had a significant main effect on
490	BA; the epistatic interaction between these A-QTL had a positive effect on grain protein content.
491	The parental genotypic combinations increased grain protein content through this interaction
492	(Table 6).

493 Quantitative Trait Loci for Flour Extraction and Mixograph-related Parameters

494 A total of 32 A-QTL and 51 DE-QTL were identified for flour extraction and mixograph-

related parameters (Table 5; Table 6; Figure 2). These 32 A-QTL were located across all 21

496 wheat chromosomes except chromosomes 1D, 2B, 3D, 5A, 6A, and 6D. A total of 19 A-QTL

497 individually explained more than 10% of PV and were considered major A-QTL. Out of these A-

498 QTL, five stable A-QTL were found for these traits, one stable A-QTL for flour extraction

499 (AQ.FE.ndsu.3B) and four stable A-QTL for mixograph MID line peak time

500 (*AQ.MMLPT.ndsu.1B*, *AQ.MMLPT.ndsu.5D*, *AQ.MMLPT.ndsu.3B.2*, and *AQ.MMLPT.ndsu.2D*).

501 For all of these stable A-QTL, except the AQ.MMLPT.ndsu.1B, the alleles were contributed

through the Traverse cultivar. The AQ.MMLPT.ndsu.1B A-QTL was identified in six out of nine

503 environments and explained up to 24.35% of PV for MMPLT. This A-QTL was considered the

most stable A-QTL, which had the highest effect on MMLPT (Table 5).

505 The results of DE-QTL for flour extraction and mixograph-related parameters are shown 506 in Table 6. A total of 49 DE-QTL were detected on all wheat chromosomes expect chromosome

- 3D. The individual epistatic interactions explained ~0.77% to ~8.15% of PV for flour extraction
- and mixograph parameters. Three stable digenic epistatic interactions were found for these traits:
- one DE-QTL (*DEQ.FE.ndsu.5A1/1D1*) for flour extraction and two DE-QTL
- 510 (*DEQ.MMLPT.ndsu.2A2/4B1* and *DEQ.MMLPT.ndsu.4A1/5A1*) for mixograph MID line peak
- time. The *DEQ.FE.ndsu.5A1/1D1* DE-QTL explained only up to 3.84% of PV for flour
- 512 extraction. The parental genotypic combinations of this DE-QTL had a positive effect on the
- 513 increase of flour extraction. The DEQ.MMLPT.ndsu.2A2/4B1 and DEQ.MMLPT.ndsu.4A1/5A1
- 514 DE-QTL explained only up to 2.19% and 1.66% of PV for mixograph MID line peak time,
- respectively. The parental genotypic combinations increased MMPLT through the
- 516 *DEQ.MMLPT.ndsu.4A1/5A1* stable DE-QTL, whereas recombinant genotypic combinations
- 517 increased MMPLT through the *DEQ.MMLPT.ndsu.2A2/4B1* stable DE-QTL. Overall, both
- 518 parental and recombinant genotypic combinations almost equally contributed to the increase of
- flour extraction and improvement of the mixograph-related parameters (Table 6).
- 520 Quantitative Trait Loci for Baking Properties

A total of 31 A-QTL and 15 DE-QTL were detected for baking-related properties in this 521 study (Table 5; Table 6; Figure 2). These 31 A-QTL individually explained ~2.14% to ~28.06% 522 523 of PV for the associated traits. These A-QTL were located on 17 wheat chromosomes excluding 1A, 2B, 3D, and 6A. A total of 19 major A-QTL with PV values over 10% were found for the 524 525 baking-related properties. Three stable A-QTL were identified in this study: two A-QTL for 526 baking absorption (AQ.BA.ndsu.4D.1 and AQ.BA.ndsu.1B) and one A-QTL (AQ.BMT.ndsu.5D) 527 for bake-mixing time. Although the Glenn cultivar contributed over 60% of the desirable alleles for the baking-related properties in this study, the cultivar Traverse contributed the desirable 528

529 alleles for these three stable A-QTL. The AQ.BA.ndsu.4D.1 stable A-QTL associated with baking absorption had the highest PV (~28.06%) for end-use quality traits in this study (Table 5). 530 The results of digenic epistatic interactions for the baking-related properties are presented 531 in Table 6. Out of the six baking-related properties evaluated in this study, digenic epistatic 532 effects were only identified for baking absorption, bread loaf volume, and bake-mixing time 533 534 traits with one, one, and 13 digenic epistatic interactions, respectively. The DE-QTL, DEQ.BA.ndsu.1A1/1A1 and DEQ.BLV.ndsu.6D1/7D3, explained ~6.94% and ~3.37% of PV for 535 baking absorption and bread loaf volume, respectively. The accumulated contribution of the 13 536 537 DE-QTL for bake-mixing time was ~26.29%. Both parental and recombinant genotypic combinations contributed to the increase of bake-mixing time, whereas only the parental 538 genotypic combinations had positive effects on baking absorption and BLV (Table 6). 539 540 **Co-Localized Quantitative Trait Loci** A total of 19 additive co-localized (closely linked or pleiotropic) QTL, and four epistatic 541 co-localized QTL were found in this study (Table 5; Table 6; Figure 2). These 19 additive co-542 localized QTL were mainly located on the A- and B-genomes (Table 5; Figure 2). Positive 543 pleiotropy was shown in 14 out of 19 additive co-localized QTL, where the additive effects of a 544 545 locus on multiple traits were of the same sign. In contrast, negative pleiotropic effects were

observed for five co-localized QTL on chromosomes/linkage groups 1A1, 2A1, 2A1, 4A, and 4D

harboring major A-QTL, respectively, for grain protein content and flour extraction; grain

548 protein content and bake-mixing time; grain protein content and mixograph MID line peak time;

flour extraction, mixograph MID line time * value, and baking absorption; and mixograph

envelope left slope, mixograph envelope right slope, and baking absorption. Overall,

551	approximately 63% of A-QTL with close linkage or pleiotropic effects on the integrated set of
552	traits (Table 5; Figure 2) were considered major A-QTL. Additive co-localized QTL for the end-
553	use quality traits are shown in more detail in Table 5.
554	In addition to additive co-localized QTL, four epistatic co-localized QTL ("epistatic pleiotropy,"
555	Wolf et al., 2005) were identified in this study (Table 6). These epistatic co-localized QTL were
556	located on pairs of linkage groups 1A1/7A1, 5A1/7D3, 1A1/7D3, and 1B1/7B1 associated with
557	general mixograph pattern and mixograph MID line time * value; mixograph MID line peak
558	time, mixograph MID line peak integral, and mixograph MID line time * value; grain protein
559	content and mixograph envelope right slope; and mixograph MID line peak value and mixograph
560	MID line time * value, respectively (Table 6). All epistatic co-localized QTL except one
561	(1A1/7D3 for the integrated set of grain protein content and mixograph envelope right slope
562	traits) showed positive pleiotropic effects (Table 6).

563 Discussion

564 **Phenotypic Evaluation**

It is well documented that end-use quality traits in wheat are complex and are influenced by a combination of environmental conditions and genetic factors (Rousset et al. 1992; Peterson et al. 1998; Tsilo et al. 2011; Simons et al. 2012). The power and accuracy of QTL detection are highly dependent on choosing the parental lines (Jansen 2001). In other words, power of accuracy depend on allelic polymorphism and phenotypic variation between parental lines (Mason et al. 2013). In the current study, the RIL population was developed from a cross between Glenn (PI 639273) and Traverse (PI 642780). Glenn has excellent end-use quality characteristics. By comparison, Traverse has a high grain yield but poor end-use quality
characteristics. As expected, our results showed significantly different values between the
parental lines for most of the end-use quality traits. The RIL population showed continuous
variation and transgressive segregation for all the end-use quality characteristics, suggesting the
polygenetic inheritance and contribution, particularly of positive alleles for the end-use quality
traits by both parental lines.

578 Our results showed a wide range of broad-sense heritability (0.23 - 0.77) for mixographrelated parameters, suggesting environmental effects had a wide range of influences on the 579 580 phenotypic values of the mixograph-related parameters. These results were in agreement with those of Patil et al. (2009), who also reported a wide heritability range of 0.17 to 0.96 for 581 582 mixograph-relative parameters. In contrast to our results, Tsilo et al. (2011) and Prashant et al. 583 (2015) found high broad-sense heritability for most of the end-use quality traits in wheat. 584 Similarly, the current study, Echeverry-Solarte et al. (2015) reported very high broad-sense heritability for flour extraction and MMLPT. 585

The genetic and Pearson correlation analyses revealed most of the end-use quality traits were associated with each other. Several previous studies have also reported similar results (Patil et al. 2009; Tsilo et al. 2011; Prashant et al. 2015; Echeverry-Solarte et al. 2015). Our results showed differences between genetic and phenotypic correlation coefficients for end-use quality traits. These differences could be due to low heritability values for these traits as was reported by Hill and Thompson (1978). Notably, although there were differences between the genetic and phenotypic correlation coefficients, the pattern and magnitude of these coefficients were similar.

28

593 These similarities suggest the phenotypic correlation could be a fair estimate of the genetic594 correlation for end-use quality traits in wheat.

595 High-Density Linkage Map

Genetic linkage maps have played important roles in detecting QTL, MAS, cloning 596 genes, and genome structure analysis (Maccaferri et al 2014; Jin et al. 2016). In the present 597 598 study, the wheat Illumina 90K iSelect assay was used to genotype Glenn and Traverse and all 599 127 RILs derived from these two parents. Our study resulted in a much higher genome coverage 600 and resolution compared to the most of the previous genetic linkage maps for the genetic 601 dissection of end-use quality traits in wheat (Groos et al. 2003; Echeverry-Solarte et al. 2015; Boehm et al. 2017). Marker density of 0.33 cM between any two markers indicated a significant 602 603 improvement over earlier genetic maps developed with either microsatellite markers (Tsilo et al. 604 2010; Simons et al. 2012), DArT markers (Echeverry-Solarte et al. 2015), or SNP makers 605 (Boehm et al. 2017). The genetic map length of 2,644.82 cM improved significantly the genome 606 coverage compared to the other developed map for the genetic analysis of end-use quality traits in wheat using the wheat Illumina 90K iSelect assay (Boehm et al. 2017), where the map size 607 was 1813.4 cM. 608

609 Genetics of Grain Protein Content

Improving grain protein content is one of the principal objectives of most wheat breeding
programs. Previous studies have reported few major and several minor QTL for grain protein
content, suggesting the polygenic nature and quantitative inheritance of this trait (Jonhson et al.
1978; Bogard et al. 2013; Echeverry-Solarte et al. 2015; Li et al. 2016). The most significant AQTL in this study, *AQ.GPC.ndsu.5B*, identified on chromosome 5B, was also involved in a

615 digenic epistatic interaction. Previous studies have reported an A-QTL associated with grain protein content on the long arm of chromosome 5B (Kulwal et al. 2005; Bordes et al. 2013; 616 Echeverry-Solarte et al. 2015). However, unlike previous studies, this study identified the 617 AQ.GPC.ndsu.5B A-QTL on the short arm of chromosome 5B, suggesting the novelty of this 618 major A-QTL. Similar to our results, Prasad et al. (2003) and Groos et al. (2003) reported an A-619 620 QTL for grain protein content on chromosome 7A (Table 5). It is worthwhile to note that the minor stable A-QTL, AQ.GPC.ndsu.7A, showed nucleotide sequence similarity with the wheat 621 622 HMGB1 protein. Christov et al. (2007) reported the wheat HMGB1 protein may play a major 623 role in controlling general aspects of gene expression through chromatin structure modification. In addition to this significant role, Christov et al. (2007) also mentioned this protein possibly has 624 a specific function as a general regulator of gene expression during cold stresses. Further studies 625 626 are needed to elucidate the similarity between the AQ.GPC.ndsu.7A A-QTL and the wheat HMGB1 protein. As it was expected, most of the alleles for increased grain protein content were 627 contributed by the cultivar Glenn. 628

629 Genetics of Flour Extraction Rate and Mixograph-related Parameters

Flour extraction rate and mixograph-related parameters are important end-use quality
traits for the milling industries. Both flour extraction and mixograph-related parameters are
quantitative traits controlled by multiple genes (Campbell et al. 2001; Breseghello et al. 2005;
Breseghello and Sorrells 2006; Simons et al. 2012; Echeverry-Solarte et al. 2015). This study
found one stable A-QTL (*AQ.FE.ndsu.3B*) on chromosome 3B for flour extraction. Similarly,
Carter et al. (2012) and Ishikawa et al. (2015) also reported a stable A-QTL with a minor effect
on chromosome 3B for flour extraction (Table 5). Besides the A-QTL, this study also identified a

637 stable DE-OTL (DEO.FE.ndsu.5A1/1D1) for flour extraction. In addition, the AO.BLV.ndsu.5A A-QTL, which showed a significant main effect for bread loaf volume, was involved in the 638 epistatic interaction of the DEQ.FE.ndsu.5A1/1D1 DE-QTL. Xing et al. (2014) indicated 639 epistatic interactions could play an important role in the genetic basis of complex traits. Xing et 640 al. (2002) and Yu et al. (1997) also mentioned epistatic effects should be much more sensitive to 641 642 environmental effects than to main effects, making the detection of a stable QTL with an epistatic effect more difficult. This study is likely the first to report that a stable QTL with an 643 epistatic effect for flour extraction. The majority of the positive alleles for flour extraction were 644 645 contributed from the Traverse cultivar. Previous studies have shown the effects of HMW-GS and LMW-GS on mixograph-related 646 647 parameters (Payne et al. 1981; Brett et al. 1993; Gupta and MacRitchie 1994; Ruiz and Carrillo 1995; Maucher et al. 2009; Zhang et al. 2009; Branlard et al. 2001; He at el. 2005; Liu et al. 648 2005; Mann et al. 2009; Jin et al. 2013; Echeverry-Solarte et al. 2015; Jin et al. 2016). In the 649 current study, a stable A-QTL (AO.MMLPT.ndsu.1B) with a major effect on mixograph MID 650 line peak time was detected on chromosome 1B, close to the location of the Glu-B1 gene 651 encoding for HMW-GS. Similarly, a recent study reported a major stable A-QTL for mixograph 652 653 MID line peak time in the same region close to the Glu-B1 gene (Jin et al. 2016). The favorable 654 alleles for this A-QTL were contributed through the Glenn cultivar. The three stable A-QTL 655 (AQ.MMLPT.ndsu.2D, AQ.MMLPT.ndsu.3B.2, and AQ.MMLPT.ndsu.5D) for mixograph MID 656 line peak time on chromosomes 2D, 3B, and 5D, respectively, seem to be novel, with Traverse contributing the desirable alleles. In addition to the A-QTL, this study identified two novel stable 657 658 epistatic DE-QTL (DEQ.MMLPT.ndsu.2A2/4B1 and DEQ.MMLPT.ndsu.4A1/5A1) for

659 mixograph MID line peak time on pairs of linkage groups 2A2/4B1 and 4A1/5A1, respectively.

660 In another study, El-Feki et al. (2013) identified a significant epistatic interaction between the

661 Glu-B1 locus on chromosome B1 and a QTL region near the microsatellite marker *Xwmc76* on

chromosome 7B for mixograph MID line peak time in a doubled haploid hard winter wheat

663 population.

664 Genetics of Baking Properties

665 Baking quality evaluations are the final assessments to allow breeders to determine the 666 appropriateness of a new wheat line to be released and accepted by the end users. Despite the

667 importance of baking quality, limited information is available on the genetic control of baking

668 properties. Previous studies have indicated the effects of HMW-GS on baking properties

(Campbell et al. 2001; Rousset et al. 2001; Huang et al. 2006; Mann et al. 2009; Tsilo et al.

670 2010). In the current study, the locations of two major A-QTL (AQ.BMT.ndsu.1B and

671 AQ.BMT.ndsu.1B.2) for bake-mixing time were found to be close to the location of the Glu-B1

gene. Besides these two A-QTL, three stable A-QTL were detected for baking properties,

673 AQ.BA.ndsu.4D.1, AQ.BA.ndsu.1B, and AQ.BMT.ndsu.3A. Similar to the AQ.BMT.ndsu.1B and

674 AQ.BMT.ndsu.1B.2 A-QTL for bake-mixing time, the favorable allele for the AQ.BMT.ndsu.3A

675 A-QTL was contributed by Glenn cultivar. Conversely, the favorable alleles for the

676 AQ.BA.ndsu.4D.1 and AQ.BA.ndsu.1B A-QTL were contributed by Traverse cultivar. Similar

results were reported by Kuchel et al. (2006) and Tsilo et al. (2011) who found A-QTL for

baking absorption on chromosome 1B (Table 5). The previous studies reported A-QTL for bread

loaf volume on every wheat chromosome except chromosomes 3D, 4A, 5A, and 6A (Mann et al.

680 2009; Simons et al. 2012; Tsilo et al. 2012). Unlike these reports, our study found a major A-

681 OTL (AO.BLV.ndsu.5A) for bread loaf volume on chromosome 5A. This study found one A-QTL with minor effect (AQ.CBCL.ndsu.6B) on chromosome 6B for crumb color. This A-QTL 682 was located very close to the position of the A-QTL (gwm193) that Groos et al. (2007) reported 683 for crumb grain score. In the current study, for the first time, a stable A-QTL (AQ.BMT.ndsu.5D) 684 was identified on chromosome 5D for bake-mixing time. Two novel major A-OTL 685 686 (AQ.CTCL.ndsu.6B.1 and AQ.CTCL.ndsu.7A) on chromosomes 6B and 7A were detected for crust color. To our knowledge, there is no previous works reporting the digenic epistatic 687 interaction effects for baking properties. Our study showed a total of 15 DE-QTL were identified 688 689 addressing this issue confirming the complex nature of inheritance of the baking properties of wheat flour. 690

691 Closely Linked or Pleiotropic Effects

Pleiotropic QTL could be valuable in the simultaneous improvement of several traits. Our 692 results showed most of the end-use quality traits were associated with each other. Thus, it was 693 expected to be able to identify co-localized (closely linked or pleiotropic) QTL controlling these 694 traits. A total of 19 additive co-localized QTL were identified for the end-use quality traits in the 695 current study. This is results is in agreement with previous studies (Cheverud 2000; Leamy et al. 696 697 2002; Wolf et al. 2006) who reported that most of these additive co-localized QTL (~74%) showed positive pleiotropy. The loci controlling functionally integrated groups of traits are 698 known to show positive pleiotropy (Cheverud 2000; Leamy et al. 2002; Wolf et al. 2006). 699 700 However, five additive pleiotropic loci showed negative pleiotropy in the current study. These five additive co-localized QTL harbored A-QTL for grain protein content and flour extracion; 701 grain protein content and bake-mixing time; MMPLT and grain protein content; flour extraction, 702

703 baking absorption, and mixograph MID line time * value; and baking absorption, mixograph envelope right slope, and mixograph envelope left slope on chromosomes 1A, 1B, 2A, 4A, and 704 4D, respectively. Similar results were reported by Echeverry-Solarte et al. (2015) who found a 705 706 co-localized QTL with negative pleiotropy on chromosome 5B for three integrated sets of traits 707 (grain protein content, mixograph envelope peak time, and mixograph MID line peak time, 708 where alleles from the exotic parent (WCB617) increased grain protein content, but decreased mixograph envelope peak time and mixograph MID line peak time. In the current study, the most 709 important co-localized QTL was identified on chromosome 1B, which harbored two major A-710 711 QTL (AO.BMT.ndsu.1B.2 and AQ.MMLPT.ndsu.1B) for bake-mixing time and mixograph MID line peak time, respectively. Moreover, this co-localized QTL was located very close to the 712 location of the Glu-B1 gene. Furthermore, this showed positive pleiotropy, where the desirable 713 714 alleles were contributed through the Glenn cultivar. This positive pleiotropy indicated that a 715 simultaneous improvement of bake-mixing time and MMPLT would be possible through selection. Besides the additive co-localized QTL, four epistatic co-localized QTL were identified 716 in the current study. It is generally accepted that additive pleiotropic effects are more common 717 than epistatic pleiotropic effects (Wolf et al. 2005 and 2006). Thus, as expected, the frequency of 718 719 epistatic co-localized QTL was less than the frequency of additive co-localized QTL. The current 720 study appears to be the first to report for epistatic co-localized QTL for end-use quality traits in wheat. Furthermore, all epistatic showed positive pleiotropy effect except one, which harbored 721 722 A-QTL on pairs of linkage group 1A1/7D3 for grain protein content and mixograph envelope right slope. This negative pleiotropy is in contrast with previous findings; Wolf et al. (2005) 723

suggested positive pleiotropy might be generally expected in epistatic pleiotropic analyses ofintegrated sets of traits.

726 Conclusion

The current study suggests that flour extraction, mixograph envelope right slope,
mixograph MID line peak time, and bake-mixing time can be used for the evaluation of the enduse quality traits in wheat breeding programs due to their high broad-sense heritability values.
Overall, both parental lines (Glenn and Traverse) contributed desirable alleles that had positive
effects on the end-use quality traits, suggesting both parental lines could be excellent resources
to improve end-use quality traits in wheat breeding programs.

In the current study, a much improved high-density SNP-based linkage map was
constructed and used to identify QTL for end-use quality traits in wheat. It is worthwhile to note
the use of the wheat Illumina 90K iSelect assay resulted in a better improvement in genome
coverage, marker density, and identification of QTL compared to previous studies for end-use
quality traits in wheat.

This study identified 12 stable major main effect QTL and three stable digenic epistatic interactions for the end-use quality traits in wheat. This suggests that both additive and digenic epistatic effects should be considered for these traits in molecular wheat breeding programs, such as MAS. Furthermore, a total of 23 closely-linked or pleiotropic loci were identified in this study. The co-localized QTL could be valuable to simultaneously improve the end-use quality traits via selection procedures in wheat breeding programs. The information provided in the

- current study could be used in molecular wheat breeding programs to enhance selection
- ration efficiency and to improve the end-use quality traits in wheat.

746			
747			
748			
749			
750			
751			
752			
753			
754			
755			
756			
757			
758			
759			

760 Acknowledgments

761	The authors would like to thank Dr. J.J. Hammond, Dr. A. Green, Dr. A. El-Fatih
762	ElDolfey, J. Underdahl, M.Abdallah, A.Walz, T. Selland, D. Olsen, K. McMonagle, C.Cossette,
763	K. Dickey, K. Whitney, and K. Beck for their help and support.
764	
765	
766	
767	
768	
769	
770	
771	
772	
773	
774	
775	
776	
777	

References

779	AACC International. Approved Methods of Analysis, t.E., Approved November 3, 1999a
780	Method-10-09-01. Basic Straight-Dough Bread-Baking Method Long Fermentation.
781	AACC International, St. Paul, MN, U.S.A.
782	AACC International. Approved Methods of Analysis, t.E., Approved November 3, 1999b
783	Method-39-10-01. Near-Infrared Reflectance Method for Protein Determination in Wheat
784	Flour. AACC International, St. Paul, MN, U.S.A.
785	AACC International. Approved Methods of Analysis, t.E., Approved November 3, 1999c
786	Method-54-40-02. Mixograph Method. AACC International, St. Paul, MN, U.S.A.
787	AACC International. Approved Methods of Analysis, t.E., Approved November 3, 1999
788	Method-26-50-01. Brabender Quadrumat Jr. (Quadruplex) Method. AACC International,
789	St. Paul, MN, U.S.A.
790	Alamri, M.S., F.A. Manthey, M. Mergoum, E.M. Elias, and K. Khan, 2009a Assessing Spring
791	Wheat Quality using the Glutograph Instrument, pp. 124-131, Cereal Foods World.
792	Alamri, M.S., F.A. Manthey, M. Mergoum, E.M. Elias, and K. Khan, 2009b Use of the
793	Glutograph Instrument in Durum Wheat Quality Evaluation, pp. 23-32, Plant Sciences
794	Research.
795	Arbelbide, M., and R. Bernardo, 2006 Mixed-model QTL mapping for kernel hardness and
796	dough strength in bread wheat. Theoretical and Applied Genetics 112 (5):885-890.

797	Bogard, M., V. Allard, P. Martre, E. Heumez, J.W. Snape et al., 2013 Identifying wheat genomic
798	regions for improving grain protein concentration independently of grain yield using
799	multiple inter-related populations. Molecular Breeding 31 (3):587-599.
800	Boehm, J.D., M.I. Ibba, A.M. Kiszonas, D.R. See, D.Z. Skinner et al. 2017 Identification of
801	genotyping-by-sequencing sequence tags associated with milling performance and end-
802	use quality traits in elite hard red spring wheat (Triticum aestivum L.). Journal of Cereal
803	Science 77:3–83.
804	Bordes, J., C. Ravel, J.P. Jaubertie, B. Duperrier, O. Gardet et al., 2013 Genomic regions
805	associated with the nitrogen limitation response revealed in a global wheat core
806	collection. Theoretical and Applied Genetics 126 (3):805-822.
807	Branlard, G., M. Dardevet, R. Saccomano, F. Lagoutte, and J. Gourdon, 2001 Genetic diversity
808	of wheat storage proteins and bread wheat quality. Euphytica 119 (1-2):59-67.
809	Breseghello, F., P.L. Finney, C. Gaines, L. Andrews, J. Tanaka et al., 2005 Genetic loci related
810	to kernel quality differences between a soft and a hard wheat cultivar. Crop Science 45
811	(5):1685-1695.
812	Breseghello, F., and M.E. Sorrells, 2006 Association mapping of kernel size and milling quality
813	in wheat (Triticum aestivum L.) cultivars. Genetics 172 (2):1165-1177.

814	Brett, G.M., E.N.C. Mills, A.S. Tatham, R.J. Fido, P.R. Shewry et al., 1993 Immunochemical
815	identification of lmw subunits of glutenin associated with bread-making quality of wheat
816	flours. Theoretical and Applied Genetics 86 (4):442-448.
817	Campbell, K.G., P.L. Finney, C.J. Bergman, D.G. Gualberto, J.A. Anderson et al., 2001
818	Quantitative trait loci associated with milling and baking quality in a soft x hard wheat
819	cross. Crop Science 41 (4):1275-1285.
820	Carter, A.H., K. Garland-Campbell, C.F. Morris, and K.K. Kidwell, 2012 Chromosomes 3B and
821	4D are associated with several milling and baking quality traits in a soft white spring
822	wheat (Triticum aestivum L.) population. Theoretical and Applied Genetics 124 (6):1079-
823	1096.
824	Cheverud, J.M., 2000 Detecting epistasis among quantitative trait loci pp. 58-81 in Epistasis and
825	the evolutionary process, edited by E.D.B. Jason B. Wolf, Michael John Wade. Oxford
826	University Press.
827	Christov, N.K., S. Yoneyama, Y. Shimamoto, and R. Imai, 2007 Differential expression of wheat
828	genes during cold acclimation. Cytology and Genetics 41 (3):142-150.
829	Deng, Z.Y., S.N. Hu, F. Chen, W.J. Li, J.S. Chen et al., 2015 Genetic dissection of interaction
830	between wheat protein and starch using three mapping populations. Molecular Breeding
831	35 (1).

40

832	Doyle, J.J., and J.L. Doyle, 1987 A rapid DNA isolation procedure for small quantities of fresh
833	leaf tissue, pp. 11-15, Phytochemical Bulletin.

- Echeverry-Solarte, M., A. Kumar, S. Kianian, S. Simsek, M.S. Alamri et al., 2015 New QTL
- alleles for quality-related traits in spring wheat revealed by RIL population derived from
- supernumerary x non-supernumerary spikelet genotypes. Theoretical and Applied
- 837 Genetics 128 (5):893-912.
- 838 El-Feki, W.M., P.F. Byrne, S.D. Reid, and S.D. Haley, 2015 Registration of CO940610/'Platte'
- Wheat Doubled Haploid Mapping Population. Journal of Plant Registrations 9 (3):419423.
- Fatokun, C.A., D.I. Menanciohautea, D. Danesh, and N.D. Young, 1992 Evidence for
 orthologous seed weight genes in cowpea and mung bean based on rflp mapping.
 Genetics 132 (3):841-846.
- Galande, A.A., R. Tiwari, J.S.S. Ammiraju, D.K. Santra, M.D. Lagu et al., 2001 Genetic analysis
 of kernel hardness in bread wheat using PCR-based markers. Theoretical and Applied
 Genetics 103 (4):601-606.
- Gras, P.W., R.S. Anderssen, M. Keentok, F. Bekes, and A. R., 2001 Gluten protein functionality
 in wheat flour processing: a review, pp. 1311–1323. Australian Journal of Agricultural
 Research.

850	Groos, C., N. Robert, E. Bervas, and G. Charmet, 2003 Genetic analysis of grain protein-content,
851	grain yield and thousand-kernel weight in bread wheat. Theoretical and Applied Genetics
852	106 (6):1032-1040.
853	Gupta, R.B., and F. Macritchie, 1994 Allelic variation at glutenin subunit and gliadin loci, glu-1,
854	glu-3 and gli-1 of common wheats .2. Biochemical basis of the allelic effects on dough
855	properties. Journal of Cereal Science 19 (1):19-29.
856	Hallauer, A.R., and J.B. Miranda, 1987 Quantitative genetics in maize breeding: Iowa State
857	University Pres. Ames.
858	He, Z.H., L. Liu, X.C. Xia, J.J. Liu, and R.J. Pena, 2005 Composition of HMW and LMW
859	glutenin subunits and their effects on dough properties, pan bread, and noodle quality of
860	Chinese bread wheats. Cereal Chemistry 82 (4):345-350.
861	Hill, W.G., and R. Thompson, 1978 Probabilities of non-positive definite between-group or
862	genetic covariance matrices. Biometrics 34 (3):429-439.
863	Holland, J.B., 2006 Estimating genotypic correlations and their standard errors using
864	multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop
865	Science 46 (2):642-654.
866	Holland, J.B., W.E. N., and C.T. CM., 2003 Estimating and interpreting heritability for plant
867	breeding: an update, pp. 9-112 in Plant breeding reviews.

868	Huang, X.Q., S. Cloutier, L. Lycar, N. Radovanovic, D.G. Humphreys et al., 2006 Molecular
869	detection of QTLs for agronomic and quality traits in a doubled haploid population
870	derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied
871	Genetics 113 (4):753-766.
872	Ishikawa, G., K. Nakamura, H. Ito, M. Saito, M. Sato et al., 2014 Association Mapping and
873	Validation of QTLs for Flour Yield in the Soft Winter Wheat Variety Kitahonami. Plos
874	One 9 (10).
875	Jansen, J., A.G. de Jong, and J.W. van Ooijen, 2001 Constructing dense genetic linkage maps.
876	Theoretical and Applied Genetics 102 (6-7):1113-1122.
877	Jin, H., W. Wen, J.D. Liu, S.N. Zhai, Y. Zhang et al., 2016 Genome-Wide QTL Mapping for
878	Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant
879	Inbred Line Population. Frontiers in Plant Science 7.
880	Jin, H., Y. Zhang, G.Y. Li, P.Y. Mu, Z.R. Fan et al., 2013 Effects of allelic variation of HMW-
881	GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread
882	qualities in a set of Aroona near-isogenic wheat lines. Journal of Cereal Science 57
883	(1):146-152.
884	Johnson, V.A., K.D. Wilhelmi, S.L. Kuhr, P.J. Mattern, and J.W. Schmidt, 1978 Breeding
885	progress for protein and lysine in wheat, pp. 825-835 in Proc. V. International Wheat
886	Genet. Symp, New Dehli, India.

887	Kosambi, D.D., 1944 The estir	nation of map distances	from recombination	values, pp. 172	-175.
888	Ann Eugen t2.				

Kuchel, H., P. Langridge, L. Mosionek, K. Williams, and S.P. Jeffries, 2006 The genetic control
of milling yield, dough rheology and baking quality of wheat. Theoretical and Applied
Genetics 112 (8):1487-1495.

Kulwal, P., N. Kumar, A. Kumar, R. Gupta, H. Balyan et al., 2005 Gene networks in hexaploid
wheat: interacting quantitative trait loci for grain protein content. Functional &
Integrative Genomics 5 (4):254-259.

Kumar, A., E.E. Mantovani, R. Seetan, A. Soltani, M. Echeverry-Solarte et al., 2016 Dissection
of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite x Nonadapted
Cross using a High Density SNP Linkage Map. Plant Genome 9 (1).

Kunert, A., A.A. Naz, O. Dedeck, K. Pillen, and J. Leon, 2007 AB-QTL analysis in winter
wheat: I. Synthetic hexaploid wheat (*T turgidum* ssp dicoccoides x *T tauschii*) as a source
of favourable alleles for milling and baking quality traits. Theoretical and Applied
Genetics 115 (5):683-695.

202 Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly et al., 2009 MAPMAKER: An

- 903 interactive computer package for constructing primary genetic linkage maps of
- experimental and natural populations (vol 1 pg 174, 1987). Genomics 93 (4):398-398.

44

905	Leamy, L.J., D. Pomp, E.J. Eisen, and J.M. Cheverud, 2002 Pleiotropy of quantitative trait loci
906	for organ weights and limb bone lengths in mice. Physiological Genomics 10 (1):21-29.
907	Li, C.L., G.H. Bai, S.M. Chao, B. Carver, and Z.H. Wang, 2016 Single nucleotide
908	polymorphisms linked to quantitative trait loci for grain quality traits in wheat. Crop
909	Journal 4 (1):1-11.
910	Li, J., F. Cui, A.M. Ding, C.H. Zhao, X.Q. Wang et al., 2012a QTL detection of seven quality
911	traits in wheat using two related recombinant inbred line populations. Euphytica 183
912	(2):207-226.
913	Li, Y., Y. Song, R. Zhou, G. Branlard, and J. Jia, 2009 Detection of QTLs for bread-making
914	quality in wheat using a recombinant inbred line population. Plant Breeding 128 (3):235-
915	243.
916	Li, Y.L., R.H. Zhou, J. Wang, X.Z. Liao, G. Branlard et al., 2012b Novel and favorable QTL
917	allele clusters for end-use quality revealed by introgression lines derived from synthetic
918	wheat. Molecular Breeding 29 (3):627-643.
919	Liu, L., Z.H. He, J. Yan, Y. Zhang, X.C. Xia et al., 2005 Allelic variation at the Glu-1 and Glu-3
920	loci, presence of the 1B.1R translocation, and their effects on mixographic properties in
921	Chinese bread wheats. Euphytica 142 (3):197-204.

922	Maccaferri, M., A. Ricci, S. Salvi, S.G. Milner, E. Noli et al. 2014 A high-density, SNP-based
923	consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat
924	genomics and breeding. Plant Biotechnol. J. 13: 648-663.
925	Mann, G., S. Diffey, B. Cullis, F. Azanza, D. Martin et al., 2009 Genetic control of wheat
926	quality: interactions between chromosomal regions determining protein content and
927	composition, dough rheology, and sponge and dough baking properties. Theoretical and
928	Applied Genetics 118 (8):1519-1537.
929	Maucher, T., J.D.C. Figueroa, W. Reule, and R.J. Pena, 2009 Influence of Low Molecular
930	Weight Glutenins on Viscoelastic Properties of Intact Wheat Kernels and Their Relation
931	to Functional Properties of Wheat Dough. Cereal Chemistry 86 (4):372-375.
932	Mergoum, M., R.C. Frohberg, R.W. Stack, T. Olson, T.L. Friesen et al., 2006a Registration of
933	'Glenn' wheat. Crop Science 46 (1):473-474.
934	Patil, R.M., M.D. Oak, S.A. Tamhankar, and V.S. Rao, 2009 Molecular mapping of QTLs for
935	gluten strength as measured by sedimentation volume and mixograph in durum wheat
936	(Triticum turgidum L. ssp durum). Journal of Cereal Science 49 (3):378-386.
937	Payne, P.I., 1987 Genetics of wheat storage proteins and the effect of allelic variation on bread-
938	making quality. Annual review of Plant Physiology and Plant Molecular Biology 38:141-
939	153.

46

940	Payne, P.I., L.M. Holt, and C.N. Law, 1981 Structural and genetic-studies on the high-
941	molecular-weight subunits of wheat glutenin .1. Allelic variation in subunits amongst
942	varieties of wheat (<i>triticum-aestivum</i>). Theoretical and Applied Genetics 60 (4):229-236.
943	Peterson, C.J., R.A. Graybosch, D.R. Shelton, and P.S. Baenziger, 1998 Baking quality of hard
944	winter wheat: Response of cultivars to environment in the great plains (Reprinted from
945	Wheat: Prospects for global improvement, 1998). Euphytica 100 (1-3):157-162.
946	Prasad, M., N. Kumar, P.L. Kulwal, M.S. Roder, H.S. Balyan et al., 2003 QTL analysis for grain
947	protein content using SSR markers and validation studies using NILs in bread wheat.
948	Theoretical and Applied Genetics 106 (4):659-667.
949	Rousset, M., P. Brabant, R.S. Kota, J. Dubcovsky, and J. Dvorak, 2001 Use of recombinant
950	substitution lines for gene mapping and QTL analysis of bread making quality in wheat.
951	Euphytica 119 (1-2):81-87.
952	Rousset, M., J.M. Carrillo, C.O. Qualset, and D.D. Kasarda, 1992 Use of recombinant inbred
953	lines of wheat for study of associations of high-molecular-weight glutenin subunit alleles
954	to quantitative traits .2. Milling and bread-baking quality. Theoretical and Applied
955	Genetics 83 (4):403-412.
956	Ruiz, M., and J.M. Carrillo, 1995 Relationships between different prolamin proteins and some
957	quality properties in durum-wheat. Plant Breeding 114 (1):40-44.
958	SAS, I., 2012 SAS 9.3 for Windows. SAS Institute.

- Simons, K., J.A. Anderson, M. Mergoum, J.D. Faris, D.L. Klindworth et al., 2012 Genetic
 Mapping Analysis of Bread-Making Quality Traits in Spring Wheat. Crop Science 52
 (5):2182-2197.
- 962 Simsek, S., The NDSU Wheat Quality and Carbohydrate Research Lab protocol
- Souza, E. J., Graybosch, R. A., and Guttieri, M. 2002 Breeding wheat for improved milling and
 baking quality. J. Crop Prod. (5):39–74.
- Stone, P.J., and R. Savin, 1999 Grain quality and its physiological determinants. Wheat: ecology
 and physiology of yield determination:85-120.
- 967 Tiwari, C., H. Wallwork, B. Arun, V.K. Mishra, G. Velu et al., 2016 Molecular mapping of
 968 quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat.
 969 Euphytica 207 (3):563-570.
- Tsilo, T.J., G.A. Hareland, S. Simsek, S.M. Chao, and J.A. Anderson, 2010 Genome mapping of
 kernel characteristics in hard red spring wheat breeding lines. Theoretical and Applied
 Genetics 121 (4):717-730.
- Tsilo, T.J., S. Simsek, J.B. Ohm, G.A. Hareland, S.M. Chao et al., 2011 Quantitative trait loci
 influencing endosperm texture, dough-mixing strength, and bread-making properties of
 the hard red spring wheat breeding lines. Genome 54 (6):460-470.
- 976 Vachal, K., and L. Benson, 2010 North Dakota Grain and Oilseed Transportation Statistics 2009977 10. Fargo, N.D. Upper Great Plains Transportation Institute.

978	Voorrips, R.E., 2002 MapChart: Software for the graphical presentation of linkage maps and
979	QTLs. Journal of Heredity 93 (1):77-78.

- 980 Wang, G.M., J.M. Leonard, A.S. Ross, C.J. Peterson, R.S. Zemetra et al., 2012 Identification of
- 981 genetic factors controlling kernel hardness and related traits in a recombinant inbred
- population derived from a soft x 'extra-soft' wheat (*Triticum aestivum* L.) cross.
- 983 Theoretical and Applied Genetics 124 (1):207-221.
- 984 Wang, S.C., D.B. Wong, K. Forrest, A. Allen, S.M. Chao et al., 2014 Characterization of
- polyploid wheat genomic diversity using a high-density 90 000 single nucleotide
- polymorphism array. Plant Biotechnology Journal 12 (6):787-796.
- Wang, Y., K. VandenLangenberg, T.C. Wehner, P.A.G. Kraan, J. Suelmann et al., 2016 QTL
 mapping for downy mildew resistance in cucumber inbred line WI7120 (PI 330628).
 Theoretical and Applied Genetics 129 (8):1493-1505.
- Wolf, J.B., L.J. Leamy, E.J. Routman, and J.M. Cheverud, 2005 Epistatic pleiotropy and the
- genetic architecture of covariation within early and late-developing skull trait complexesin mice. Genetics 171 (2):683-694.

Wolf, J.B., D. Pomp, E.J. Eisen, J.M. Cheverud, and L.J. Leamy, 2006 The contribution of
epistatic pleiotropy to the genetic architecture of covariation among polygenic traits in
mice. Evolution & Development 8 (5):468-476.

996	Wu, Y., P.R. Bhat, T.J. Close, and S. Lonardi, 2008 Efficient and Accurate Construction of
997	Genetic Linkage Maps from the Minimum Spanning Tree of a Graph. PLOS Genetics 4
998	(10):e1000212.

Xing, W., H.W. Zhao, and D.T. Zou, 2014 Detection of main-effect and epistatic QTL for yield-999 related traits in rice under drought stress and normal conditions. Canadian Journal of 1000 Plant Science 94 (4):633-641. 1001

1002 Xing, Y.Z., Y.F. Tan, J.P. Hua, X.L. Sun, C.G. Xu et al., 2002 Characterization of the main

1003 effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theoretical and Applied Genetics 105 (2-3):248-257. 1004

- Yu, S.B., J.X. Li, Y.F. Tan, Y.J. Gao, X.H. Li et al., 1997 Importance of epistasis as the genetic 1005 basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of 1006 Sciences of the United States of America 94 (17):9226-9231. 1007
- 1008 Zanetti, S., M. Winzeler, C. Feuillet, B. Keller, and M. Messmer, 2001 Genetic analysis of 1009 bread-making quality in wheat and spelt. Plant Breeding 120 (1):13-19.
- Zhang, Y.L., Y.P. Wu, Y.G. Xiao, J. Yan, Y. Zhang et al., 2009 QTL mapping for milling, 1010
- 1011 gluten quality, and flour pasting properties in a recombinant inbred line population
- derived from a Chinese soft x hard wheat cross. Crop & Pasture Science 60 (6):587-597. 1012

- 1013 Zhao, L.A., K.P. Zhang, B. Liu, Z.Y. Deng, H.L. Qu et al., 2010 A comparison of grain protein
- 1014 content QTLs and flour protein content QTLs across environments in cultivated wheat.
- 1015 Euphytica 174 (3):325-335.

Location	Year	LAT ^a	LNG ^b	ALT	Planting date	TGS	PGS
				(m) ^c	-	$({}^{0}C)^{d}$	(mm) ^e
Prosper	2012	46°57'46.90"N	97°1'11.31"W	275	05.15.2012	21	148.8
Carrington	2012	47°27'11.56"N	99°9'15.15"W	491	04.23.2012	19	225.0
Casselton	2012	46°51'18.26"N	97°12'39.83"W	283	05.10.2012	21	144.0
Prosper	2013	46°57'46.90"N	97°1'11.31"W	275	05.30.2013	20	318.0
Carrington	2013	47°27'11.56"N	99°9'15.15"W	491	04.30.2013	18	83.2
Minot	2013	48°13'58.68"N	101°17'32.25"W	514	05.14.2013	19	425.0
Prosper	2014	46°57'46.90"N	97°1'11.31"W	275	05.24.2014	19	216.9
Carrington	2014	47°27'11.56"N	99°9'15.15"W	491	05.02.2014	17	203.2
Minot	2014	48°13'58.68"N	101°17'32.25"W	514	05.22.2014	17	347.7

Table 1 Description of the environments and planting date to evaluate spring wheat end-use quality traits in a recombinant inbred lines (RIL) population derived from a cross between Glenn and Traverse (NDAWN, 2000-2016).

^a Latitude in degrees and minutes; ^b Longitude in degrees and minutes; ^c Altitude in meters; ^d Mean temperature during growing season in degrees Celsius (May-October); ^e Mean precipitation in growing season in millimeters.

	Parental	lines			RIL population			
Trait ^a	Glenn	Traverse	Mean	S.D. ^c	Range ^d	Q_2^e	H ^{2f}	Class of trait H ^{2g}
GPC	15.76 /0.51*b	14.49 /-0.76	15.25 /0.00	0.50	-1.12 to 1.52	-0.02	0.29	L
BMT	4.08 /0.98*	2.68 /-0.42	3.10/-0.03	0.26	-0.53 to 0.76	-0.01	0.65	HI
BA	62.44 /1.42*	60.33 /-0.69	61.02 /-0.02	0.75	-1.44 to 2.93	-0.09	0.4	М
BLV	200.83 /6.37*	185.86 /-8.6	194.46 /-0.13	4.67	-10.56 to 17.77	-0.26	0.26	L
CBCL	7.68 /-0.01	7.65 /-0.04	7.69 /0.01	0.12	-0.40 to 0.28	0.02	0.11	L
CTCL	9.63 /-0.01	9.53 /-0.11	9.64 /0.00	0.04	-0.11 to 0.06	0.01	0.05	L
FE	53.51 /0.87	54.07 /1.43	52.64 /-0.01	1.21	-2.91 to 2.89	0.07	0.55	HI
MIXOPA	6.22 /2.93*	2.19 /-1.1	3.29 /-0.04	0.39	-1.19 to 0.82	-0.05	0.42	М
MELS	23.68 /-0.40*	23.70 /-0.38	24.08 /0.19	2.40	-4.64 to 7.18	-0.25	0.38	М
MERS	-10.07 /0.24	-12.44 /-2.13	-10.31 /-0.08	1.21	-3.45 to 2.35	0.01	0.5	HI
MMLPT	5.68 /1.53*	3.10 /-1.05	4.15 /-0.05	0.70	-1.53 to 2.08	-0.09	0.77	VH
MMLPV	60.45 /1.73	55.94 /-2.78	58.72 /0.05	1.85	-6.82 to 5.50	0.16	0.31	М
MMLTV	56.72 /4.23*	45.63 /-6.86	52.49 /-0.06	2.38	-6.52 to 6.48	-0.47	0.41	М
MMLPW	20.79 /2.81*	15.93 /-2.05	17.98 /-0.01	0.96	-2.18 to 2.19	-0.12	0.23	L
MMLPI	185.17 /43.41*	114.29 /-27.47	141.76 /-0.61	13.7	-30.86 to 35.98	-0.77	0.43	М
DO	8.88 /-0.35	8.71 /-0.52	9.23 /0.01	0.16	-0.44 to 0.27	0.01	0.22	L

Table 2 Phenotypic performance of Glenn, Traverse and their recombinant inbred lines (RILs) based on average / BLUP values and broad-sense heritability (H²) for end-use quality traits across all environments.

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak integral; DO: dough character; ^{b*}A significant difference between parental lines at P < 0.05; ^c Standard deviation; ^d Range is estimated based on BLUP values; ^e The second quartile or median; ^f broad-sense heritability coefficient according to Holland (2006); ^g Class of broad-sense heritability according to Hallauer and Miranda (1988), VH = very high = H² > 0.70, HI = high = 0.50 < H² < 0.70, M = medium = 0.30 < H² < 0.50, L = low = H² < 0.30.

Table 3 Genetic and Pearson's rank correlations of end-use quality traits for the recombinant inbred lines (RILs) population derived from a cross between Glenn
and Traverse across all environments. Values in bold displayed above the diagonal indicate genetic correlation coefficients, and values under the diagonal show
Pearson correlation coefficients.

Trait ^a	GPC	BMT	BA	BLV	CBCL	CTCL	FE	МІХОРА	MELS	MERS	MMLPT	MMLPV	MMLTV	MMLPW	MMLPI	DO
GPC	-	-0.29**c	0.42**	0.76**	0.18	0.48**	-0.31**	0.25**	0.70**	-0.49**	-0.35**	0.74**	0.34**	0.40**	0.11	0.10
BMT	-0.29**b	-	-0.17	-0.29**	-0.05	0.27**	-0.02	0.73**	-0.60**	0.69**	0.90**	-0.11	0.69**	0.50**	0.89**	0.27**
BA	0.33**	-0.12	-	0.22*	0.21*	0.14	-0.53**	0.31**	0.61**	-0.36**	-0.46**	0.80**	0.37**	0.32**	0.01	0.07
BLV	0.59**	-0.24**	0.16	-	0.29**	0.97**	-0.08	0.43**	0.76	-0.37**	-0.22*	0.70**	0.38**	0.48**	0.24**	0.01
CBCL	0.13	-0.06	0.10	0.23**	-	0.39**	-0.41**	0.10	0.24**	0.13	-0.05	0.08	0.10	-0.03	0.13	-0.30**
CTCL	0.21*	0.06	0.06	0.34**	0.07	-	-0.49**	0.65**	0.48**	0.10	0.16	0.62**	0.71**	0.71**	0.65**	-0.65**
FE	-0.24**	-0.04	-0.36**	-0.05	-0.20*	-0.16	-	-0.20*	-0.18	-0.02	0.07	-0.25**	-0.25**	-0.35**	-0.16	-0.13
MIXOPA	0.24**	0.57**	0.22*	0.30**	0.07	0.37**	-0.14	-	-0.13	0.58**	0.58**	0.45**	0.97**	0.83**	0.92**	0.08
MELS	0.57**	-0.48**	0.41**	0.46**	0.14	0.17	-0.11	0.01	-	-0.87**	-0.79**	0.79**	-0.03	0.09	-0.43**	0.03
MERS	-0.48**	0.55**	-0.27**	-0.26**	0.01	0.02	-0.03	0.25**	-0.67**	-	0.83**	-0.67**	0.33**	0.16	0.61**	-0.02
MMLPT	-0.35**	0.85**	-0.39**	-0.19*	-0.06	0.05	0.04	0.44**	-0.64**	0.68**	-	-0.48**	0.45**	0.36**	0.97**	0.24**
MMLPV	0.62**	-0.11	0.48**	0.39**	0.01	0.30**	-0.14	0.42**	0.61**	-0.54**	-0.31**	-	0.49**	0.83**	-0.03	-0.21*
MMLTV	0.33**	0.48**	0.26**	0.24**	0.02	0.33**	-0.17	0.79**	0.08	0.11	0.36**	0.67**	-	0.96**	0.80**	0.11
MMLPW	0.35**	0.31**	0.20*	0.27**	0.02	0.35**	-0.19*	0.66**	0.13	-0.04	0.18*	0.60**	0.71**	-	0.71**	-0.17
MMLPI	0.04	0.67**	0.03	0.10	0.04	0.14	-0.17	0.62**	-0.29**	0.41**	0.75**	0.01	0.53**	0.34**	-	0.56**
DO	0.13	0.09	0.02	0.03	-0.03	-0.09	-0.04	0.11	0.05	-0.11	0.14	0.05	0.15	0.04	0.24**	-

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak integral; DO: dough character; ^b Genetic correlation coefficient according to Holland (2002); ^c Pearson correlation based on BLUP values. * and ** Significant at P < 0.05 and 0.01, respectively; ^{ns} not significant at P < 0.05.

Table 4 Distribution of markers and marker density across linkage groups in the bread wheat (*Triticum aestivum* L.) genetic map developed by using the recombinant inbred line (RIL) population of a cross between Glenn (PI-639273) and Traverse (PI-642780).

Linkage group	No. of markers	No. of unique loci	Map distance (cM)	Map density (cM/marker)	Map density (cM/locus)
	345	70	131.08	0.38	1.87
1A1 1A2		70 24	30.79	0.38	
	108				1.28
2A1 2A2	215 52	74 11	142.28	0.66	1.92
			14.30	0.28	1.30
3A1	221	41	87.52	0.40	2.13
3A2	91	18	60.99	0.67	3.39
4A1	278	57	150.56	0.54	2.64
5A1	78	21	80.58	1.03	3.84
5A2	197	42	59.79	0.30	1.42
5A3	29	14	32.84	1.13	2.35
6A1	173	33	72.94	0.42	2.21
6A2	173	23	16.24	0.09	0.71
7A1	525	113	196.80	0.37	1.74
7A2	64	18	17.14	0.27	0.95
1B1	529	58	68.48	0.13	1.18
1B2	10	5	19.69	1.97	3.94
1B3	43	10	11.10	0.26	1.11
2B1	461	54	40.33	0.09	0.75
2B2	614	106	181.12	0.29	1.71
3B1	770	70	77.38	0.10	1.11
3B2	78	21	31.31	0.40	1.49
3B3	27	9	16.27	0.60	1.81
3B4	103	29	18.45	0.18	0.64
4B1	273	58	111.08	0.41	1.92
5B1	395	88	241.74	0.61	2.75
6B1	794	103	144.16	0.18	1.40
6B2	104	22	73.09	0.70	3.32
7B1	555	88	134.67	0.24	1.53
7B2	51	14	11.12	0.22	0.79
1D1	111	24	78.26	0.71	3.26
2D1	131	7	13.48	0.10	1.93
2D2	47	16	14.09	0.30	0.88
2D3	11	10	22.03	2.00	2.20
3D1	33	2	9.62	0.29	4.81
4D1	17	7	6.21	0.37	0.89
5D1	118	12	21.32	0.18	1.78
6D1	40	14	73.50	1.84	5.25
6D2	31	10	10.75	0.35	1.08
7D1	31	14	35.44	1.14	2.53
7D2	22	5	9.89	0.45	1.98
7D3	15	12	76.40	5.09	6.37
A genome	2549	559	1093.86	0.43	1.96
B genome	4807	735	1179.99	0.25	1.61
D genome	607	133	370.97	0.61	2.79
Whole genome	7963	1427	2644.82	0.33	1.85

Table 5 QTL detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780).

Trait ^a	A-QTL name ^b	Other associated traits	Env. ^c	Chromosome/linkag e group	Left marker	Right marker	Positio n (cM) ^d	LOD ^e	Additiv e effect ^e	PV(%)	Confidence intervals	Previously identified A-QTL in the same chromosom e region
FE	AQ.FE.ndsu.1A.1	-	I, X	1A1	BS00084022_51	RAC875_c9700_989	50	8.7788	-0.4935	14.491 1	48.5-50.5	-
FE	AQ.FE.ndsu.1A.2	GPC	VII	1A1	wsnp_Ra_c15564_2399908 4	wsnp_BG263358A_Ta_2_ 3	94	7.6547	-1.061	19.401 2	92.5-95.5	-
GPC	AQ.GPC.ndsu.1A	FE	III, V, VIII, VIIII	1A1	wsnp_Ra_c15564_2399908 4	wsnp_BG263358A_Ta_2_ 3	95	4.6476	0.2376	13.694 1	93.5-96.5	-
BMT	AQ.BMT.ndsu.1B	MMLPI	IV, VIII, VIIII	1B1	TA015141-0717	wsnp_JD_c4444_5575748	13	4.7945	0.1736	12.907 5	12.5-13.5	-
BMT	AQ.BMT.ndsu.1B.1	-	VI, X	1B1	Kukri_c33561_564	wsnp_Ku_c16938_259162 60	14	13.618 4	0.1303	12.085	13.5-14.5	-
BMT	AQ.BMT.ndsu.1B.2	MMLPT	I, V	1B1	RAC875_c75885_302	Tdurum_contig28305_106	20	6.5489	0.1804	12.504 3	19.5-20.5	-
GPC	AQ.GPC.ndsu.1B.1	MIXOPA	VII	1B1	BS00064162_51	Excalibur_rep_c101787_89	57	3.9039	0.2683	8.1766	56.5-58.5	-
MIXOP A	AQ.MIXOPA.ndsu.1B. 1	GPC	IV	1B1	BS00064162_51	Excalibur_rep_c101787_89	57	3.9039	0.2683	7.7358	56.5-58.5	-
MMLPI	AQ.MMLPI.ndsu.1B.1	BMT	VI, VIII, X	1B1	TA015141-0717	wsnp_JD_c4444_5575748	13	7.5203	10.7587	15.904 8	12.5-13.5	-
MMLPI	AQ.MMLPI.ndsu.1B.2	MMLPT; MMLTV; BMT	IV	1B1	RAC875_c75885_302	Tdurum_contig28305_106	20	14.329 6	33.5754	16.644 1	19.5-20.5	-
MMLPT	AQ.MMLPT.ndsu.1B	BMT	I, IV, V, VI, VII, VIII, VIII, X	1B1	RAC875_c75885_302	Tdurum_contig28305_106	20	15.200 2	0.3698	24.426 7	19.5-20.5	Jin et al. 2016
MMLP W	AQ.MMLPW.ndsu.1B	-	V, X	1B1	wsnp_Ex_c2569_4780450	Tdurum_contig65853_534	62	4.6175	0.3643	11.457 8	60.5-65.5	-
MMLTV	AQ.MMLTV.ndsu.1B	MMLPI; MMLPT; BMT	IV	1B1	RAC875_c75885_302	Tdurum_contig28305_106	20	4.3062	12.1355	1.6784	19.5-20.5	-
BA	AQ.BA.ndsu.1B	-	I, IV, VIII, III	1B3	BS00093275_51	BobWhite_c12960_138	0	3.6756	-0.4042	8.1774	0-2.5	Tsilo et al. 2011
BMT	AQ.BMT.ndsu.1D	-	VIII, X	1D1	RAC875_rep_c105196_53 2	BS00038418_51	76	25.036 6	0.1984	27.792 3	74.5-76.5	-
BMT	AQ.BMT.ndsu.2A.1	GPC	Ι	2A1	Excalibur_c27279_699	Kukri_c44255_832	37	8.2391	-0.204	12.840 3	34.5-38.5	-
FE	AQ.FE.ndsu.2A.1	MMLPT	V	2A1	BS00022903_51	Ra_c34214_1320	20	7.9438	0.8736	10.354 4	19.5-22.5	-
GPC	AQ.GPC.ndsu.2A.1	BMT	IV,V	2A1	Kukri_c44255_832	RAC875_c13861_1248	38	6.2687	0.4351	13.19	37.5-39.5	-
GPC	AQ.GPC.ndsu.2A.2	MMLPT	III, X	2A1	wsnp_Ex_c28204_3734916 4	Kukri_c77188_798	18	4.939	0.1596	8.0024	17.5-19.5	-
MMLPT	AQ.MMLPT.ndsu.2A. 1	GPC	I, III	2A1	wsnp_Ex_c28204_3734916 4	Kukri_c77188_798	18	5.2543	-0.5361	16.345 9	17.5-19.5	-
MMLPT	AQ.MMLPT.ndsu.2A. 2	FE	III	2A1	BS00022903_51	Ra_c34214_1320	20	7.9438	0.8736	10.022 3	19.5-22.5	-

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPV: mixograph MID line peak width, MMLPI: mixograph MID line peak integral, DO: dough character; ^b I: Prosper 2012, II: Carrington 2014, VIII: Carrington 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^e Phenotypic variation.

Trait ^a	A-QTL name ^b	Other associated traits	Env. ^c	Chromosome/linkage group	Left marker	Right marker	Position (cM) ^d	LOD ^e	Additive effect ^e	PV(%) ^g	Confidence intervals	Previously identified A-QTL in the same chromosome region
GPC	AQ.GPC.ndsu.2B	-	I, III	2B2	BS00064658_51	RAC875_c1755_971	27	4.6386	-0.1599	8.7567	23.5-27.5	-
BLV	AQ.BLV.ndsu.2D.1	-	II, X, III	2D2	Kukri_c31121_1460	Kukri_c44769_750	7	3.8365	4.4342	9.7413	5.5-8.5	-
BLV	AQ.BLV.ndsu.2D.2	-	VII, VIII	2D2	BobWhite_c6365_965	D_GDS7LZN02FDZX8_269	4	3.6217	8.5516	12.8348	3.5-4.5	Tsilo et al. 2011
MMLPT	AQ.MMLPT.ndsu.2D	-	II, IV, VII, X	2D3	BS00011109_51	wsnp_Ku_c8712_14751858	20	4.3893	-0.1918	6.5246	13.5-22	-
BMT	AQ.BMT.ndsu.3A	MMLPT	I, V,VIIII, X	3A2	BobWhite_c38444_238	Kukri_c10751_1031	47	12.0827	0.1218	10.2537	46.5-48.5	-
GPC	AQ.GPC.ndsu.3A	-	III, V, X	3A2	BS00022058_51	Excalibur_c39808_453	26	5.9339	-0.334	9.3796	21.5-28.5	-
MMLPT	AQ.MMLPT.ndsu.3A.1	BMT	IV, VIIII, X	3A2	Kukri_c10751_1031	wsnp_Ex_c1533_2930233	49	6.8915	0.2345	9.5047	47.5-51.5	-
GPC	AQ.GPC.ndsu.3B.1	MMLPV	Х	3B1	wsnp_Ex_c47078_52393295	D_GB5Y7FA01EIDVZ_263	25	7.5082	0.206	13.0023	22.5-27.5	-
MMLPV	AQ.MMLPV.ndsu.3B.1	GPC	VIII	3B1	RFL_Contig1456_842	wsnp_Ex_c47078_52393295	24	5.3548	2.4546	7.5943	22.5-27.5	-
FE	AQ.FE.ndsu.3B	-	I, V, VII, X	3B1	Tdurum_contig82214_79	wsnp_BE499016B_Ta_2_1	68	8.5226	-0.5046	15.2959	64.5-69.5	Carter et al. 2012
BMT	AQ.BMT.ndsu.3B.1	-	II, V, X	3B2	Tdurum_contig12455_385	Excalibur_c21708_555	0	4.9225	0.0716	3.5988	0-0.5	-
BMT	AQ.BMT.ndsu.3B.2	MMLPI; MMLTV	I, VIII	3B2	Excalibur_rep_c102270_677	Kukri_c2227_583	6	7.7153	0.1939	11.5294	5.5-6.5	-
MMLPI	AQ.MMLPT.ndsu.3B.2	BMT; MMLTV;	IV	3B2	Excalibur_rep_c102270_677	Kukri_c2227_583	6	4.9406	8.976	9.6693	5.5-6.5	-
MMLPT	AQ.MMLPT.ndsu.3B.2	-	IV, VI, VIII, X	3B2	Tdurum_contig15928_135	BobWhite_c9424_243	5	3.8931	0.1712	5.1946	4.5-5.5	-
MMLTV	AQ.MMLTV.ndsu.3B.2	BMT; MMLTV;	v	3B2	Excalibur_rep_c102270_677	Kukri_c2227_583	6	3.4132	2.3331	9.894	5.5-6.5	-
BA	AQ.BA.ndsu.4A	FE; MMLTV	IV, VI, X	4A1	BS00022395_51	BS00021957_51	147	6.6931	0.2547	11.552	144.5-148.5	Jin et al. 2016
MMLPV	AQ.MMLPV.ndsu.4A	-	VII, X	4A1	TA004912-0408	Kukri_c17417_797	150	5.821	0.8158	13.7424	149.5-150	-
MMLTV	AQ.MMLTV.ndsu.4A	FE; BA	IV, V, X	4A1	Kukri_c35451_857	BS00022395_51	143	3.5732	0.7363	7.8228	141.5-145.5	-
FE	AQ.FE.ndsu.4A.1	MMLTV;BA	Х	4A1	Kukri_c18346_556	Kukri_c35451_857	142	4.5021	-0.3776	6.9089	141.5-144.5	-
BLV	AQ.BLV.ndsu.4B.1	BMT	VI, X	4B1	RAC875_c39339_400	RAC875_c17026_714	97	4.0885	-1.3594	7.4436	94.5-97.5	-
BMT	AQ.BMT.ndsu.4B.1	BLV	III, X	4B1	RAC875_c39339_400	RAC875_c17026_714	97	4.0885	-1.3594	6.7181	94.5-97.5	-

Table 5 QTL detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) (continued).

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak integral, DO: dough character; ^b I: Prosper 2012, II: Carrington 2014, VIII: Carrington 2014, VIII: Minot 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^c Phenotypic variation.

Trait ^a	A-QTL name ^b	Other associated traits	Env. ^c	Chromosome/linkage group	Left marker	Right marker	Position (cM) ^d	LOD ^e	Additive effect ^e	PV(%) ^g	Confidence interval	Previously identified A- QTL in the same chromosome region
GPC	AQ.GPC.ndsu.4B1	-	I, II	4B1	BobWhite_c47144_153	Tdurum_contig10302_187	94	6.6325	-0.2086	15.0008	93.5-94.5	-
BA	AQ.BA.ndsu.4B.1	MIXOPA	V	4B1	Excalibur_c39876_403	Kukri_c19909_733	70	4.7301	-0.6243	11.2395	69.5-73.5	-
MIXOPA	AQ.MIXOPA.ndsu.1B.1	BA	п	4B1	Excalibur_c39876_403	Kukri_c19909_733	70	5.0876	-0.2838	12.3347	69.5-70.5	-
BA	AQ.BA.ndsu.4D.1	MELS; MERS	I, III, V, VIIII, X	4D1	wsnp_JD_rep_c51623_35119179	Ra_c350_837	1	14.2653	-0.3725	28.0617	0-1.5	-
MELS	AQ.MELS.ndsu.4D.1	BA; MERS	III, X	4D1	wsnp_JD_rep_c51623_35119179	Ra_c350_837	1	6.6917	-3.0005	18.0403	0-1.5	-
MERS	AQ.MERS.ndsu.4D.1	BA; MELS	IV, X	4D1	wsnp_JD_rep_c51623_35119179	Ra_c350_837	1	3.6362	0.4349	13.0994	0-2.5	-
BLV	AQ.BLV.ndsu.5A	-	IV,VI	5A1	Kukri_c28555_114	wsnp_Ku_c18023_27232712	36	6.9598	-5.0049	15.8001	30.5-42.5	-
BLV	AQ.BLV.ndsu.5B	GPC	Х	5B1	BS00064297_51	wsnp_BE499835B_Ta_2_5	25	5.5542	18.5451	2.1438	11.5-35.5	-
FE	AQ.FE.ndsu.5B	-	V, X	5B1	Kukri_c3070_72	BS00021993_51	240	3.4037	0.2971	5.1324	238.5-241	-
GPC	AQ.GPC.ndsu.5B	BLV	I, II, IV, V, VII, VIIII, X	5B1	BS00032003_51	wsnp_BE499835B_Ta_2_5	14	10.3662	0.3196	20.1838	9.5-20.5	-
MIXOPA	AQ.MIXOPA.ndsu.5B	-	II, III	5B1	wsnp_Ex_c2582_4804223	Tdurum_contig10268_1000	153	3.5364	0.3448	12.2996	152.5-153.5	-
MMLPT	AQ.MMLPT.ndsu.5B	-	I, VII	5B1	RAC875_c33933_350	JD_c9261_426	49	3.7684	-0.2447	7.2642	48.5-63.5	-
BMT	AQ.BMT.ndsu.5D	MMLPT	IV, V, X	5D1	BS00110953_51	Excalibur_c16573_197	18	4.5987	-0.0698	3.4365	9.5-19.5	-
MMLPT	AQ.MMLPT.ndsu.5D	BMT	IV, VI, VIII, VIIII, X	5D1	BS00110953_51	Excalibur_c16573_197	19	7.4008	-0.1963	15.3925	12.5-19.5	-
BLV	AQ.BLV.ndsu.6B	CTCL	II, III	6B1	BobWhite_c10140_297	BobWhite_c8571_699	52	6.1493	5.56	15.4305	51.5-52.5	-
CBCL	AQ.CBCL.ndsu.6B	-	II, X	6B1	CAP8_c1678_709	Kukri_c23433_416	46	4.4927	0.0378	3.1303	44.5-46.5	Groos et al. 2007
CTCL	AQ.CTCL.ndsu.6B.1	BLV	ш	6B1	BobWhite_c10140_297	BobWhite_c8571_699	52	5.5319	0.2905	16.3676	51.5-52.5	-
FE	AQ.FE.ndsu.6B	-	II, IV, X	6B1	BobWhite_c30500_527	Excalibur_c31379_71	95	5.4465	-0.3753	8.367	94.5-95.5	-
BA	AQ.BA.ndsu.6D	-	II, VIII	6D1	wsnp_Ex_c23383_32628864	BobWhite_c13435_700	43	4.6326	-1.3204	3.7619	41.5-44.5	-
BLV	AQ.BLV.ndsu.7A.1	-	IV, X	7A1	Excalibur_rep_c109881_701	Tdurum_contig16202_319	59	4.5713	1.439	8.3454	58.5-59.5	-

Table 5 QTL detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) (continued).

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak integral, DO: dough character; ^b I: Prosper 2012, II: Carrington 2014, VIII: Carrington 2014, VIII: Minot 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^c Phenotypic variation.

Trait ^a	A-QTL name ^b	Other associated traits	Env. ^c	Chromosome/linkage group	Left marker	Right marker	Position (cM) ^d	LOD ^e	Additive effect ^e	PV(%) ^g	Confidence intervals	Previously identified A- QTL in the same chromosome region
BLV	AQ.BLV.ndsu.7A.2	-	IV, X	7A1	RAC875_c9012_276	BobWhite_c15497_199	118	6.5815	1.7646	12.6133	116.5-118.5	-
BMT	AQ.BMT.ndsu.7A	-	IV, X	7A1	Excalibur_c44794_122	RAC875_c55351_223	5	5.5287	0.0764	4.1206	1.5-6.5	-
CTCL	AQ.CTCL.ndsu.7A	MMLPV	III, X	7A1	Excalibur_c33589_373	RAC875_rep_c111778_387	86	5.6857	0.016	15.7116	85.5-86.5	-
GPC	AQ.GPC.ndsu.7A.1	MMLPT	Π	7A1	BobWhite_c23261_226	BS00022970_51	24	4.2443	0.1848	6.5514	22.5-24.5	-
MMLPT	AQ.MMLPT.ndsu.7A.1	GPC	VIII	7A1	BobWhite_c23261_226	BS00022970_51	24	3.6069	-0.2228	5.9423	23.5-24.5	-
MMLPV	AQ.MMLPV.ndsu.7A.1	CTCL	IV	7A1	Excalibur_c33589_373	RAC875_rep_c111778_387	86	4.1338	1.8898	11.2755	84.5-86.5	-
GPC	AQ.GPC.ndsu.7A	-	IV, VII,VIII, X	7A2	BobWhite_c55693_396	BS00023003_51	16	4.6188	0.1507	7.1353	15.5-17	Christov et al 2007
BLV	AQ.BLV.ndsu.7B	-	V, X	7B1	BobWhite_c41356_62	wsnp_CAP7_c44_26549	33	3.7635	3.4251	10.7091	31.5-39.5	-
MMLPT	AQ.MMLPT.ndsu.7B	-	I, III	7B1	BobWhite_c44404_312	CAP12_c1816_325	42	4.3413	-0.3644	3.6894	41.5-50.5	-
BMT	AQ.BMT.ndsu.7D	-	I,V	7D1	Kukri_c23468_590	Kukri_c16416_647	12	3.4443	0.1253	4.8285	7.5-13.5	-
FE	AQ.FE.ndsu.7D	-	IV, VI	7D2	RAC875_c39217_314	Excalibur_c16580_388	1	3.518	0.7611	11.1963	0-3.5	-
DO	AQ.DO.ndsu.7D	-	VI, X	7D3	wsnp_BE490643D_Ta_2_1	BobWhite_rep_c65034_450	71	4.1343	-0.0572	13.6687	70.5-72.5	-
MMLPT	AQ.MMLPT.ndsu.7D	-	I, III	7D3	IAAV6265	BobWhite_c7263_337	27	3.544	0.315	3.0233	25.5-32.5	-

Table 5 QTL detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) (continued).

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope ight slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPV: mixograph MID line peak width, MMLPI: mixograph MID line peak integral, DO: dough character; ^b I: Prosper 2012, II: Carrington 2014, VIII: Carrington 2014, VIII: Minot 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^e Phenotypic variation.

Trait ^a	DE-QTL Name ^b	Env.	Other associate d traits	Chrom.1 name	Position 1	Left Marker1	Right Marker 1	Chrom.2 name	Position 2	Left Marker2	Right Marker2	Associated A- QTL	LO D	PV(%)	Additive by Additive Effects
BA	DEQ.BA.ndsu.1A1/1A1	II, VI, X	-	1A1	5	Kukri_c13513_759	RAC875_c50463_808	1A1	30	RFL_Contig1703_695	Excalibur_rep_c92985_61 8	-	3.86	6.94	1.28
BMT	DEQ.BMT.ndsu.1A1/1A1	VI, X	-	1A1	0	Kukri_c13513_759	RAC875_c50463_808	1A1	120	BobWhite_c27541_67	IAAV2729		3.64	2.10	0.06
BMT	DEQ.BMT.ndsu.1A1/4D1	V, X	-	1A1	120	BobWhite_c27541_67	IAAV2729	4D1	0	wsnp_JD_rep_c51623_351191 79	Ra_c350_837	AQ.BA.ndsu.4D. 1	3.58	1.90	-0.12
MMLPT	DEQ.MMLPT.ndsu.1A1/4D 1	I, VIIII, X	-	1A1	5	Kukri_c13513_759	RAC875_c50463_808	4D1	0	wsnp_JD_rep_c51623_351191 79	Ra_c350_837	AQ.BA.ndsu.4D. 1	4.54	2.32	-0.22
MMLP W	DEQ.MMLPW.ndsu.1A1/5A 1	II, X	-	1A1	35	RFL_Contig1703_695	Excalibur_rep_c92985_618	5A1	60	IAAV3916	RAC875_c54693_298	-	5.08	2.56	-1.20
MIXOP A	DEQ.MIXOPA.ndsu.1A1/7 A1	VIII, X	MMLTV	1A1	125	BobWhite_c27541_67	IAAV2729	7A1	170	wsnp_Ex_c6354_11053460	BS00053365_51		4.87	1.27	0.15
MMLTV	DEQ.MMLTV.ndsu.1A1/7A 1	VIII, VIIII	MIXOPA	1A1	130	BobWhite_c27541_67	IAAV2729	7A1	180	Excalibur_c48973_1688	IACX6080	-	3.60	2.23	2.13
MMLP W	DEQ.MMLPW.ndsu.1A1/7B 1	Ι, Χ	-	1A1	0	Kukri_c13513_759	RAC875_c50463_808	7B1	0	Tdurum_contig57324_104	Excalibur_c21252_227	-	3.51	1.35	0.81
GPC	DEQ.GPC.ndsu.1A1/7D3	II, V	MERS	1A1	15	Excalibur_c5139_198	wsnp_Ex_c1358_2601510	7D3	20	Kukri_c37793_135	Kukri_c9804_462	-	4.73	1.30	-0.30
GPC	DEQ.GPC.ndsu.1A1/7D3	I, X	-	1A1	30	RFL_Contig1703_695	Excalibur_rep_c92985_618	7D3	25	IAAV6265	BobWhite_c7263_337	-	3.51	1.90	-0.13
MERS	DEQ.MERS.ndsu.1A1/7D3	V, X	GPC	1A1	15	Excalibur_c5139_198	wsnp_Ex_c1358_2601510	7D3	20	Kukri_c37793_135	Kukri_c9804_462	-	5.74	3.16	1.30
MMLPV	DEQ.MMLPV.ndsu.1B1/7B 1	VII, VIII	MMLTV	1B1	0	RAC875_c4385_1628	wsnp_Ra_c23758_33291657	7B1	50	CAP12_c1816_325	BobWhite_c14812_828	-	3.88	8.15	2.56
MMLTV	DEQ.MMLTV.ndsu.1B1/7B 1	VII, VIII	MMLPV	1B1	5	RAC875_c4385_1628	wsnp_Ra_c23758_33291657	7B1	45	CAP12_c1816_325	BobWhite_c14812_828	-	4.80	3.46	3.20
MMLPT	DEQ.MMLPT.ndsu.1D1/5D 1	V, X	-	1D1	20	RAC875_c16352_594	CAP8_c2401_433	5D1	0	wsnp_Ku_c44483_51751682	wsnp_JD_c825_1223454	-	3.96	1.90	0.33
MMLPI	DEQ.MMLPI.ndsu.2A1/2B1	IV, VIIII	-	2A1	5	Excalibur_c51876_189	wsnp_Ku_c10302_17079851	2B1	30	TA002233-0872	Ku_c36209_204	-	4.06	0.92	7.74
MMLPT	DEQ.MMLPT.ndsu.2A1/2B 2	I, II, X	-	2A1	10	wsnp_JD_rep_c48914_331685 44	wsnp_Ex_rep_c102538_876822 73	2B2	20	GENE-0592_352	BS00064658_51	-	5.59	1.87	-0.61

Table 6 Digenic epistatic QTL (DE-QTL) detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780).

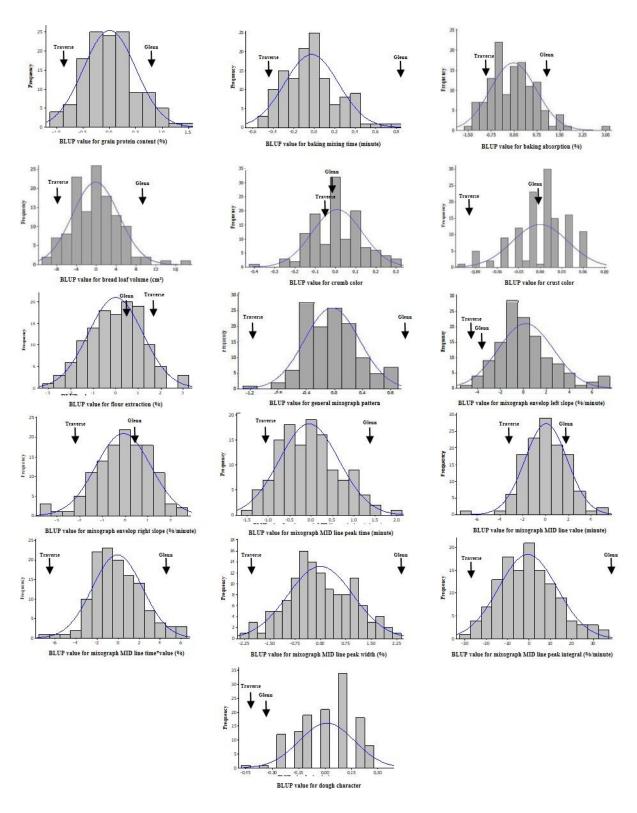
^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak integral, DO: dough character; ^b I: Prosper 2012, II: Carrington 2014, VIII: Carrington 2014, VIII: Minot 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^c Phenotypic variation.

Trait ^a	DE-QTL Name ^b	Env.	Other associate d traits	Chrom.1 name	Position 1	Left Marker1	Right Marker1	Chrom.2 name	Position 2	Left Marker2	Right Marker2	Associated A- QTL	LO D	PV(%)	Additive by Additive Effects
FE	DEQ.FE.ndsu.2A1/3A2	II, X	-	2A1	105	BobWhite_rep_c50285_61 6	Tdurum_contig67827_98	3A2	0	Ex_c35861_1382	Tdurum_contig42150_3190	-	3.35	1.72	-0.27
MIXOP A	DEQ.MIXOPA.ndsu.2A1/3A 2	VIIII, X		2A1	45	Excalibur_c65910_246	RAC875_c81899_216	3A2	45	BobWhite_c38444_238	RAC875_c15109_106	AQ.BMT.ndsu.3 A	3.75	1.20	-0.41
MIXOP A	DEQ.MIXOPA.ndsu.2A1/5B	VIII, X	-	2A1	115	IAAV880	CAP12_c575_105	5B	225	GENE-2471_259	Kukri_c9285_762	-	4.20	2.59	-0.31
MMLPT	DEQ.MMLPT.ndsu.2A1/6D 1	I, X	-	2A1	0	wsnp_Ex_c5412_9565527	Ra_c10616_265	6D1	35	wsnp_Ex_c23383_3262886 4	BobWhite_c13435_700	AQ.BA.ndsu.6D	4.13	1.91	-0.63
MERS	DEQ.MERS.ndsu.2A1/7A1	IV, X	-	2A1	125	CAP8_c3129_381	Tdurum_contig92425_3144	7A1	185	Excalibur_c1142_724	Tdurum_contig54832_139	-	4.04	2.71	0.42
MMLPT	DEQ.MMLPT.ndsu.2A2/4B 1	II, III, VII, VIIII	-	2A2	0	Excalibur_c29231_932	RAC875_c8069_1709	4B1	55	wsnp_Ex_c26285_3553244 0	RAC875_rep_c119568_20 3	-	5.00	2.19	-0.21
MELS	DEQ.MELS.ndsu.2B1/2B2	I, II	-	2B1	10	BobWhite_c19554_544	Kukri_c9785_1557	2B2	95	BobWhite_c23046_293	wsnp_Ex_c3695_6740339	-	5.49	1.87	-6.74
BMT	DEQ.BMT.ndsu.2B2/1D1	VI, VIII	-	2B2	15	BobWhite_rep_c64429_66 0	Kukri_c53810_315	1D1	60	CAP8_c1305_148	BS00022168_51	-	3.37	0.89	-0.13
MMLPT	DEQ.MMLPT.ndsu.2B2/1D 1	II, VI	-	2B2	100	BobWhite_c23046_293	wsnp_Ex_c3695_6740339	1D1	45	CAP8_c1305_148	BS00022168_51	-	4.37	1.99	-0.74
FE	DEQ.FE.ndsu.2B2/2D2	I, X		2B2	170	Excalibur_c15671_87	Excalibur_c29221_311	2D2	5	Kukri_c9478_2764	Kukri_c65380_490	-	3.11	1.75	0.27
BMT	DEQ.BMT.ndsu.2B2/5B	IV, VI	-	2B2	100	BobWhite_c23046_293	wsnp_Ex_c3695_6740339	5B	30	BS00064297_51	wsnp_BE499835B_Ta_2_5	AQ.GPC.ndsu.5B	8.45	2.50	-0.20
GPC	DEQ.GPC.ndsu.2B2/5B	II, X	-	2B2	0	BS00070900_51	GENE-1343_315	5B	125	Kukri_c34173_169	wsnp_Ku_c3201_5970486	-	5.09	1.51	-0.28
BMT	DEQ.BMT.ndsu.2B2/6B1	V, X	-	2B2	25	GENE-0592_352	BS00064658_51	6B1	135	wsnp_Ex_c9038_15058444	Tdurum_contig43335_1397	-	4.27	3.25	-0.16
FE	DEQ.FE.ndsu.2B2/7D1	II, X	-	2B2	65	Excalibur_c45094_602	BS00040959_51	7D1	15	wsnp_Ex_c17914_2668183 7	RAC875_c11933_885	-	4.13	2.45	-0.31
MMLPT	DEQ.MMLPT.ndsu.2B2/7D 3	V, X	-	2B2	50	RFL_Contig996_818	Tdurum_contig30989_79	7D3	15	Kukri_c37793_135	Kukri_c9804_462	-	3.44	1.82	0.17
MMLPT	DEQ.MMLPT.ndsu.3A1/2D 1	IV, VIIII, X		3A1	0	Tdurum_contig74920_757	CAP8_rep_c3652_80	2D1	10	RAC875_c110838_423	Kukri_c12032_508	-	4.35	1.69	-0.17
MMLPT	DEQ.MMLPT.ndsu.3A1/6A 1	І, П	-	3A1	65	BS00077819_51	Kukri_c51666_401	6A1	55	BobWhite_c1131_328	Excalibur_c29639_65	-	3.52	2.33	0.33
MMLPT	DEQ.MMLPT.ndsu.3A1/7A 1	I, IV	-	3A1	50	TA002540-0938	RAC875_c52195_324	7A1	45	BS00065020_51	tplb0024a09_2106	-	4.03	1.31	0.51
GPC	DEQ.GPC.ndsu.3B1/2D2	VII, X	-	3B1	45	wsnp_Ex_c26128_3537465 2	Excalibur_c45968_83	2D2	10	Excalibur_rep_c104620_18 3	wsnp_BE426620D_Ta_2_2	-	5.42	2.23	0.15
BMT	DEQ.BMT.ndsu.3B2/4B1	V, X	-	3B2	30	CAP12_c1468_114	JD_c37202_67	4B1	45	wsnp_CAP12_c1101_56978 3	BS00042105_51	-	5.54	2.13	0.07
FE	DEQ.FE.ndsu.3B3/4B1	II, X	-	3B3	5	BS00087695_51	BS00003884_51	4B1	100	wsnp_Ra_c10988_1793292 2	RAC875_rep_c82932_428	-	3.41	1.92	0.29
BMT	DEQ.BMT.ndsu.3B4/5B	II, VIII	-	3B4	5	BS00022154_51	wsnp_Ex_rep_c66766_6512394 1	5B	180	Excalibur_c12395_467	wsnp_Ex_c32488_4113438 8		3.25	1.44	0.15

Table 6 Digenic epistatic QTL (DE-QTL) detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) (continued).

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crunb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak time, MMLPV: mixograph MID line peak time, MMLPV: mixograph MID line peak width, MMLPI: mixograph MID line peak time, MMLPV: mixograph MID line peak time, 2012, II: Carrington 2012, II: Carrington 2014, VIII: Carrington 2014, VIII: Minot 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^c Phenotypic variation.

Traitª	DE-QTL Name ^b	Env.	Other associated traits	Chrom.1 name	Position 1	Left Marker1	Right Marker1	Chrom.2 name	Position 2	Left Marker2	Right Marker2	Associated A- QTL	LO D	PV(%)	Additive by Additive Effects
MIXOP A	DEQ.MIXOPA.ndsu.4A1/1 B1	I, X	-	4A1	10	BS00035307_51	RAC875_c16277_737	1B1	60	RAC875_c61512_173	wsnp_Ex_c9091_15135511	-	3.56	1.21	-0.15
MERS	DEQ.MERS.ndsu.4A1/1D1	IV, VI, X	-	4A1	95	wsnp_Ku_c4924_8816643	Tdurum_contig42526_994	1D1	10	Excalibur_c35316_137	RAC875_c16352_594	-	5.03	5.59	1.69
MMLPI	DEQ.MMLPI.ndsu.4A1/2D 2	IV, VI	-	4A1	55	RFL_Contig5998_745	RAC875_c65221_438	2D2	5	Kukri_c9478_2764	Kukri_c65380_490	-	4.78	1.44	11.39
MMLPT	DEQ.MMLPT.ndsu.4A1/5A 1	I, III, IV, V		4A1	90	Tdurum_contig47148_651	RAC875_c25124_182	5A1	30	Kukri_c28555_114	wsnp_Ku_c18023_27232712	AQ.BLV.ndsu.5 A	4.19	1.66	0.55
GPC	DEQ.GPC.ndsu.4A1/6D2	III,VIIII	-	4A1	85	Ex_c66324_1151	wsnp_Ex_c5470_9657856	6D2	0	BS00022523_51	Kukri_rep_c105352_281	-	3.29	1.04	-0.19
BMT	DEQ.BMT.ndsu.4A1/7B1	I, VI	-	4A1	35	wsnp_Ex_c22913_321306 17	CAP12_c2677_138	7B1	40	BobWhite_c41356_62	wsnp_CAP7_c44_26549	-	4.63	1.03	-0.20
GPC	DEQ.GPC.ndsu.4A1/7B1	VII, VIIII	-	4A1	5	BS00035307_51	RAC875_c16277_737	7B1	80	BobWhite_c6580_361	wsnp_Ex_c10550_17231294	-	3.60	3.49	0.30
MMLP W	DEQ.MMLPW.ndsu.4A1/7 B1	VIIII, X	-	4A1	80	Kukri_c27874_515	Ex_c66324_1151	7B1	5	Excalibur_c21252_227	Excalibur_c8486_471	-	3.97	1.63	0.30
MMLPT	DEQ.MMLPT.ndsu.4B1/2D 1	IV, VII	-	4B1	70	Excalibur_c39876_403	Kukri_c19909_733	2D1	10	RAC875_c110838_423	Kukri_c12032_508		4.03	1.00	0.18
BMT	DEQ.BMT.ndsu.4B1/5B	V, VII, X	-	4B1	90	wsnp_Ex_c15490_237765 60	IAAV8499	5B	0	BS00032003_51	BS00064297_51	AQ.GPC.ndsu.5 B	5.65	2.58	0.20
MMLTV	DEQ.MMLTV.ndsu.4B1/5D 1	VII, X	-	4B1	60	RAC875_rep_c119568_20 3	Tdurum_contig59914_323	5D1	20	wsnp_Ex_c5185_918918 4	D_GDS7LZN02F4FP5_176	-	3.70	1.96	2.38
FE	DEQ.FE.ndsu.5A1/1D1	II, IV, VI, VII	-	5A1	35	Kukri_c28555_114	wsnp_Ku_c18023_272327 12	1D1	25	RAC875_c16352_594	CAP8_c2401_433	AQ.BLV.ndsu.5 A	4.65	3.84	1.07
MMLPI	DEQ.MMLPI.ndsu.5A1/5A 2	IV, VI	-	5A1	35	Kukri_c28555_114	wsnp_Ku_c18023_272327 12	5A2	10	BS00022683_51	BobWhite_c17440_130	AQ.BLV.ndsu.5 A	4.61	1.85	-13.09
MMLPI	DEQ.MMLP1.ndsu.5A1/7B 1	IV, VI, X	-	5A1	20	wsnp_Ex_c31672_404350 01	Kukri_c28555_114	7B1	65	Kukri_c18749_968	Tdurum_contig12064_92	-	3.58	1.42	11.23
MMLPI	DEQ.MMLP1.ndsu.5A1/7D 3	IV, VIIII	MMLPT, MMLTV	5A1	75	BS00020605_51	BobWhite_c11539_336	7D3	50	Tdurum_contig46368_63 2	RAC875_c68368_99	-	4.72	1.52	-9.66
MMLPT	DEQ.MMLPT.ndsu.5A1/7D 3	I, IV	MMLTV, MMLPI	5A1	70	BS00020605_51	BobWhite_c11539_336	7D3	45	Tdurum_contig46368_63 2	RAC875_c68368_99	-	4.69	1.63	-0.23
MMLTV	DEQ.MMLTV.ndsu.5A1/7D 3	IV, X	MMLPT, MMLPI	5A1	70	BS00020605_51	BobWhite_c11539_336	7D3	55	Tdurum_contig46368_63 2	RAC875_c68368_99	-	3.17	2.98	-0.64
MMLPI	DEQ.MMLP1.ndsu.5A2/7A 1	VI, X	-	5A2	25	Kukri_c41797_393	Ex_c19057_965	7A1	80	wsnp_Ex_c5939_104170 52	wsnp_Ex_c39221_46569987	-	3.88	4.13	-4.30
GPC	DEQ.GPC.ndsu.5A3/2B2	I, X		5A3	5	BS00099534_51	Excalibur_c6714_246	2B2	5	IAAV5802	GENE-1676_1048	-	3.91	1.89	-0.16
MMLPT	DEQ.MMLPT.ndsu.5A3/3B 4	III, VII,X	-	5A3	5	BS00099534_51	Excalibur_c6714_246	3B4	5	BS00022154_51	wsnp_Ex_rep_c66766_651239 41	-	3.62	1.64	-0.15
BMT	DEQ.BMT.ndsu.5B/2D1	V, VII, X	-	5B	105	CAP12_c1419_574	RAC875_c14780_54	2D1	0	RAC875_c110838_423	Kukri_c12032_508	-	3.79	2.90	-0.07


Table 6 Digenic epistatic QTL (DE-QTL) detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) (continued).

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak integral, DO: dough character; ^b I: Prosper 2012, II: Carrington 2014, VIII: Carrington 2014, VIII: Minot 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^c Phenotypic variation.

Trait ^a	DE-QTL Name ^b	Env.	Other associate d traits	Chrom.1 name	Position 1	Left Marker1	Right Marker1	Chrom.2 name	Position 2	Left Marker2	Right Marker2	Associated A-QTL	LO D	PV(%)	Additive by Additive Effects
GPC	DEQ.GPC.ndsu.5B/6D1	VI, VIII	-	5B	30	BS00064297_51	wsnp_BE499835B_Ta_2_ 5	6D1	45	wsnp_Ex_c23383_32628864	BobWhite_c13435_700	AQ.GPC.ndsu.5B x AQ.BA.ndsu.6D	5.73	0.79	0.98
MELS	DEQ.MELS.ndsu.5B1/6B1	I, X	-	5B1	170	BobWhite_rep_c50349_1 39	Kukri_c10508_755	6B1	100	BS00037933_51	BS00063217_51	-	3.86	1.51	-0.74
BMT	DEQ.BMT.ndsu.5D1/6D1	IV, X	-	5D1	15	BS00110953_51	Excalibur_c16573_197	6D1	35	wsnp_Ex_c23383_32628864	BobWhite_c13435_700	AQ.BMT.ndsu.5D x AQ.BA.ndsu.6D	3.98	1.64	0.17
MMLPT	DEQ.MMLPT.ndsu.6A1/4 B1	IV, VI	-	6A1	5	RAC875_c32053_291	BobWhite_c44549_83	4B1	110	wsnp_Ku_c7838_13435765	Excalibur_c26571_370	-	4.43	0.77	0.40
MMLPT	DEQ.MMLPT.ndsu.6A2/5 B	I, X	-	6A2	10	B\$00110512_51	BS00065028_51	5B	40	BS00064297_51	wsnp_BE499835B_Ta_2_5	AQ.GPC.ndsu.5B	4.88	2.05	-0.59
GPC	DEQ.GPC.ndsu.6B1/2D2	II, VIIII	-	6B1	100	BS00037933_51	BS00063217_51	2D2	0	wsnp_RFL_Contig2659_2346 243	RAC875_c78404_242		4.89	2.22	-0.18
BLV	DEQ.BLV.ndsu.6D1/7D3	II, X	-	6D1	5	BobWhite_c14066_403	Ra_c32572_334	7D3	20	Kukri_c37793_135	Kukri_c9804_462		4.09	3.37	1.43
MIXOPA	DEQ.MIXOPA.ndsu.7A1/7 B1	VIIII, X	-	7A1	50	tplb0024a09_2106	Tdurum_contig98029_51 7	7B1	5	Excalibur_c21252_227	Excalibur_c8486_471		3.84	1.44	0.41
MMLPT	DEQ.MMLPT.ndsu.7A1/7 D1	I, VII	-	7A1	65	wsnp_Ex_c13337_210222 41	RAC875_c28842_99	7D1	20	BS00066128_51	BS00083421_51		4.04	2.20	-0.32
BMT	DEQ.BMT.ndsu.7A1/7D3	V, X	-	7A1	25	BS00106739_51	Excalibur_rep_c68458_15 36	7D3	70	wsnp_BE490643D_Ta_2_1	BobWhite_rep_c65034_450	-	5.08	2.28	0.07
MMLPT	DEQ.MMLPT.ndsu.7A1/7 D3	I, X	-	7A1	55	BS00011330_51	Tdurum_contig67992_23 8	7D3	75	BobWhite_rep_c65034_450	wsnp_CAP8_rep_c9647_4198 594		4.32	1.81	-0.17
MIXOPA	DEQ.MIXOPA.ndsu.7A2/7 B1	VIIII, X	-	7A2	10	Kukri_c40353_179	Excalibur_c59653_238	7B1	5	Excalibur_c21252_227	Excalibur_c8486_471	-	6.97	1.22	0.17
BMT	DEQ.BMT.ndsu.7B1/7D2	IV, VII	-	7B1	110	wsnp_Ra_c39394_471102 14	BobWhite_c26534_532	7D2	5	Excalibur_c16580_388	Kukri_c19321_416	-	3.62	1.65	0.14
MMLPI	DEQ.MMLPI.ndsu.7D1/7 D3	IV, VIIII	-	7D1	0	BS00051338_51	IAAV5917	7D3	40	BobWhite_c7263_337	Tdurum_contig46368_632	-	4.74	1.96	-13.80

Table 6 Digenic epistatic QTL (DE-QTL) detected for end-use quality traits in a bread wheat (*Triticum aestivum* L.) RIL population derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) (continued).

^a GPC: grain protein content, BMT: bake mixing time, BA: baking absorption, BLV: bread loaf volume, CBCL: crumb color, CTCL: crust color, FE: flour extraction rate, MIXOPA: the general mixograph pattern, MELS: mixograph envelope left slope, MERS: mixograph envelope right slope, MMLPT: mixograph MID line peak time, MMLPV: mixograph MID line peak value, MMLTV: mixograph MID line time * value, MMLPW: mixograph MID line peak width, MMLPI: mixograph MID line peak integral, DO: dough character; ^b I: Prosper 2012, II: Carrington 2014, VIII: Carrington 2014, VIII: Minot 2014, X: BLUP values across all locations; ^c centimorgan; ^d Log of the Odds; ^c Phenotypic variation.

Figure 1 Frequency distribution of BLUP values for end-use quality characteristics of a population of 127 recombinant inbred lines (RILs) derived from a cross between Glenn and Traverse across all environments. Estimates of the parental lines are indicated by arrows.

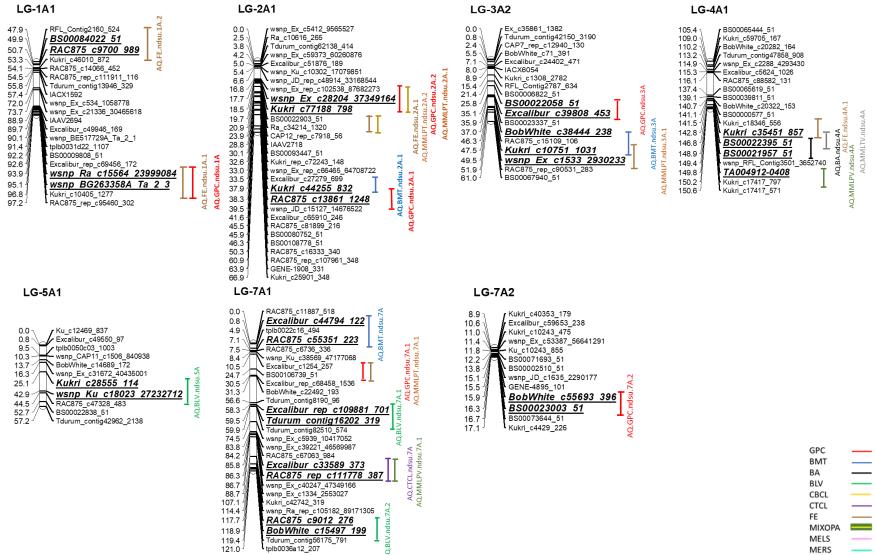


Figure 2 Additive and additive co-localized QTL for end-use quality traits in the Glenn × Traverse RIL population. QTL confidence intervals are indicated by vertical bars and bold and italic scripts.

MMLPT MMLPV MMLTV MMLPW MMLPI DO

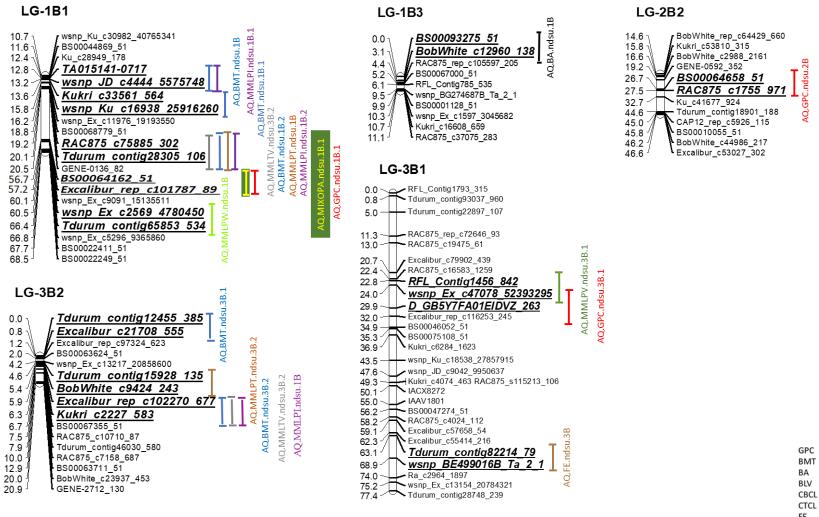
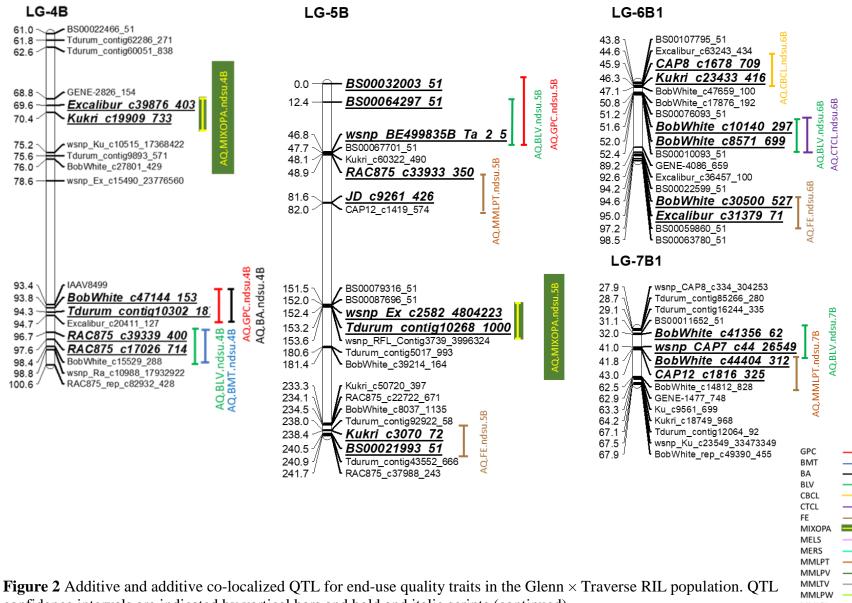



Figure 2 Additive and additive co-localized QTL for end-use quality traits in the Glenn \times Traverse RIL population. QTL confidence intervals are indicated by vertical bars and bold and italic scripts (continued).

confidence intervals are indicated by vertical bars and bold and italic scripts (continued).

MMLPI

DO

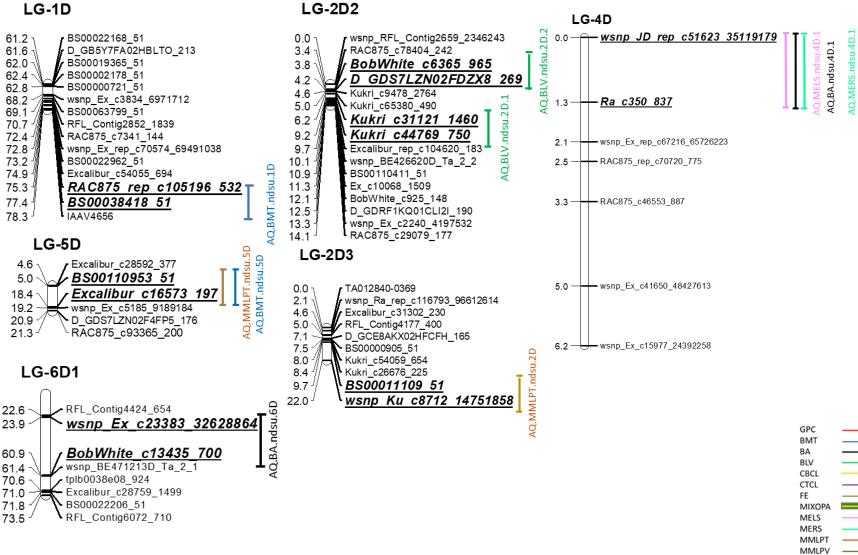
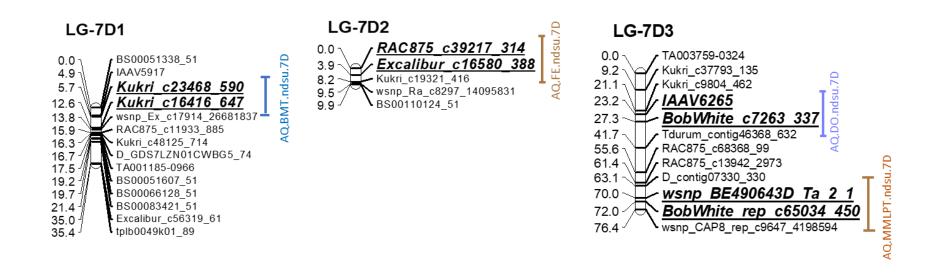



Figure 2 Additive and additive co-localized QTL for end-use quality traits in the Glenn × Traverse RIL population. QTL confidence intervals are indicated by vertical bars and bold and italic scripts (continued).

GPC BMT ΒA BLV CBCL CTCL FE MIXOPA MELS MERS MMLPT MMLPV MMLTV MMLPW MMLPI DO

Figure 2 Additive and additive co-localized QTL for end-use quality traits in the Glenn \times Traverse RIL population. QTL confidence intervals are indicated by vertical bars and bold and italic scripts (continued).