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Summary 

Meiotic nondisjunction and resulting aneuploidy can lead to severe health consequences in 

humans.  Aneuploidy rescue can restore euploidy but may result in uniparental disomy (UPD), 

the inheritance of both homologs of a chromosome from one parent with no representative copy 

from the other. Current understanding of UPD is limited to ~3,300 cases for which UPD was 

associated with clinical presentation due to imprinting disorders or recessive diseases. Thus, 

the prevalence of UPD and its phenotypic consequences in the general population are 

unknown. We searched for instances of UPD in over four million consented research 

participants from the personal genetics company 23andMe, Inc., and 431,094 UK Biobank 

participants. Using computationally detected DNA segments identical-by-descent (IBD) and runs 

of homozygosity (ROH), we identified 675 instances of UPD across both databases. Here we 

present the first characterization of UPD prevalence in the general population, a machine-

learning framework to detect UPD using ROH, and a novel association between autism and 

UPD of chromosome 22.  
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Introduction 

Meiotic nondisjunction can have severe consequences for human reproduction and health.  For 

example, nondisjunction can lead to aneuploidy, which is the leading cause of both 

spontaneous miscarriages and severe developmental disabilities1–5.  Because determining the 

etiology of aneuploidy is extremely difficult in humans, many studies have instead focused on 

either studying the consequences of aneuploidy in individual cases presenting in the clinic or 

studying recombination events using population-genomic datasets in order to understand 

meiotic processes3,6,7.  Recombination is an integral part of meiosis, facilitating alignment and 

then proper segregation of homologous chromosomes. Thus recombination at each 

chromosome pair in a human genome is generally regarded as necessary to prevent aneuploidy 

(with some exceptions3,6).   

  

However, viable, euploid humans can result from aneuploid gametes if trisomic rescue, 

monosomic rescue, or gametic complementation restore normal ploidy during early 

development8–12. These processes can result in uniparental disomy (UPD), which is the 

inheritance of both homologs of a chromosome from only one parent with no representative 

copy from the other parent (Figure 1).   

 

Since the first report of UPD in 198713,14, ~3,300 cases of UPD have been described in the 

scientific literature (http://upd-tl.com/upd.html10).  To date, UPD of each of the autosomes and 

the X chromosome has been documented10,12,15. UPD can cause clinical consequences by 

disrupting genomic imprinting, or by unmasking harmful recessive alleles in large blocks of 

homozygosity on the affected chromosome.  Detecting UPD is a useful diagnostic tool for 

specific imprinting disorders and for rare Mendelian diseases caused by homozygosity12,16–19. 

 UPD has also been implicated in tumorigenesis, particularly in cases of genome-wide UPD, 

which affects all the chromosomes in the genome11,20.  Thus, current understanding of UPD is 

based largely on case reports of individuals in which UPD is detected following suspicion of an 

imprinting or other clinical disorder, and, in some instances (typically <10 confirmed cases) 

within larger case-control studies12,16–19,21.   

 

There are three subtypes of UPD resulting from nondisjunction during different stages of 

meiosis (which we refer to as “meiotic-origin UPD”): isodisomy (“isoUPD”), heterodisomy 

(“hetUPD”) and partial isodisomy (“partial isoUPD”), which involves meiotic crossover (Figure 1). 

UPD can also be classified according to the parent of origin; when the disomic pair originates 
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from the mother, the resulting case is termed maternal UPD (“matUPD”), and when the disomic 

pair originates from the father, the case is termed paternal UPD (“patUPD”).  Despite the wealth 

of clinical UPD cases, prevalence and per-chromosome rates of UPD and its subtypes are not 

characterized in the general population.  Past estimates of UPD prevalence include rates of one 

in 3500 and one in 500010,22; these estimates were determined by extrapolation from UPD 

events causing clinical presentation and so do not account for variation in prevalence across 

chromosomes or for UPD associated with healthy phenotypes22.  Therefore, to obtain an 

accurate estimate of UPD prevalence, hundreds of thousands of samples from the general 

population are needed12.  And while chromosome recombination and segregation are regarded 

as highly constrained processes, population genetic datasets are now reaching large enough 

sizes to yield insight into normal variability in recombination within and among human genomes. 

 

To address this gap, we detected instances of UPD in consented research participants from the 

direct to consumer genetics company 23andMe, Inc., whose database consists of single-

nucleotide polymorphism (SNP) data from over 4.4 million individuals, and in 431,094 northern 

European UK Biobank participants.  Here we present the first estimates of UPD prevalence in 

the general population, a new machine learning method to identify UPD in individuals without 

parental genotypes, and previously unrecognized phenotypes associated with UPD.  We used 

both identity-by-descent (IBD) and a new supervised classification framework based on runs of 

homozygosity (ROH) to identify UPD while accounting for parental relatedness and differences 

in ROH length distributions between ancestral populations.  We found that UPD is twice as 

common in the general population (estimated rate: one in 2000 births) than was previously 

thought and that, contrary to expectation, many individuals with long isodisomy events (ranging 

between 12 - 227 Mb) appear to have healthy phenotypes. 

 

Results 

UPD prevalence estimated from parent-child genotypes 

Unlike typical parent-child pairs, individuals with UPD lack IBD segments across an entire 

chromosome with one parent; thus, we can use parent-child data to identify UPD cases.  In the 

23andMe dataset, we analyzed 916,712 parent-child pairs, which include 214,915 trios, to 

estimate the prevalence of UPD.  We found 199 cases of UPD distributed across all 23 

chromosomes except chromosome 18 (Figure 2A).  Within 214,915 trios, we found 105 cases of 

UPD and estimate that UPD occurs with an overall prevalence rate of roughly one in 2000 births 

(rate: 0.05%; 99% CI: [0.04%, 0.06%]).  Thus, we found that UPD is more common than 
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previously thought (previous estimate based on UPD15 cases: one in 3500 births or 0.03%)22.  

Of the 105 true positives observed in 23andMe trios, 26 are patUPD cases and 79 are matUPD, 

suggesting that maternal origin UPD is three times as prevalent as paternal origin UPD.  Within 

the 23andMe trios, four were “double UPD” cases, where two chromosomes in the same 

individual were inherited uniparentally; thus, we estimate that double UPD occurs at a rate of 

roughly one in 50,000 births.  We also found that paternal partial isoUPD is the least common 

UPD subtype, and we observed more hetUPD and partial isoUPD cases than isoUPD cases 

(Figure 2B). 

 

We compared the per-chromosome rates of UPD true positives in the 23andMe database to 

those from published reports of UPD in the literature (Supplementary Figure 1).  We found that, 

while UPD true positives in the 23andMe database occur most frequently on chromosomes 1, 4, 

16, 21, 22, and X, published UPD cases are most common on chromosomes 6, 7, 11, 14 and 

15, which each contain clusters of imprinted genes that cause clinical phenotypes (http://upd-

tl.com/upd.html10). We failed to reject the null hypothesis of independence between per-

chromosome rates of 23andMe UPD true positives and published UPD cases (Fisher’s exact 

test; p-value = 1), and the two per-chromosome distributions are not significantly correlated 

(Pearson’s correlation; p-value = 0.72).  Thus, we conclude that the clinical UPD cases are 

biased towards chromosomes where UPD causes clinical presentation, and do not represent 

the true distribution of UPD in the general population.     

  

New ROH-based UPD detection without parental genotypes 

In many studies, parental genotypes for all probands may be too costly or logistically difficult to 

generate, and so classification of putative UPD cases may be made based on singleton 

genotypes only.  Several clinical guidelines exist for prioritizing putative UPD cases for further 

analysis; all of these methods look for a large ROH confined to a single chromosome23.  

However, multiple population-genetic studies have shown that relatively large ROH (>1Mb) are 

common even in outbred populations24–27; we recapitulate this result in eight cohorts in the 

23andMe dataset (Supplementary Figure 2).  Thus, an effective ROH-based method for UPD 

detection must be able to identify UPD chromosomes in the presence of large ROH on non-

UPD chromosomes.  Further, such a method must be able to distinguish between partial 

isoUPD and ROH blocks resulting from consanguinity.  
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To address these challenges, here we introduce a new supervised logistic regression 

classification framework that accounts for ROH length distributions within ancestral populations 

and is able to identify partial isoUPD and isoUPD on all autosomes and the X chromosome. In 

simulations across five cohorts in the 23andMe dataset (northern European, southern 

European, Latino, African American and East Asian individuals), we demonstrated that our 

classifiers achieve high power while minimizing the false positive rate (auROC > 0.9 for all 

classifiers; Figure 3A, Supplementary Figure 3).  We also found that classifiers for larger 

chromosomes perform better than those for smaller chromosomes (Figure 3A; Supplementary 

Figure 3).  In three cohorts (Ashkenazi Jewish, Middle Eastern and South Asians), we found 

that our classifiers performed poorly on simulated genotype data (auROC < 0.9; Supplementary 

Figure 3); when analyzing individual genotype data from these three cohorts in the 23andMe 

dataset, we classified thousands of putative cases which appeared to be false positives.  

Therefore, we ignored these three cohorts for further ROH-based UPD detection.  As another 

form of validation, we applied our classifiers to northern European true positives (IBD-based 

UPD cases).  We found that our classifiers identify 67% of true positives with greater than 20% 

isodisomy across the chromosome (Supplementary Table 1).  In 1,371,138 singletons from five 

cohorts in the 23andMe dataset (northern European, southern European, Latino, African 

American and East Asian individuals), we classified 304 putative ROH-based UPD cases using 

our ROH-based method, 297 of which were newly discovered using ROH analysis (Figure 3B).  

The chromosome distribution of the ROH-based cases (Figure 3B) recapitulates the 

chromosome distribution of true positives identified through IBD analysis (Figure 2A; Pearson’s 

correlation = 0.67; p-value = 0.0005).      

  

We also applied these 23 classifiers to data from 431,094 northern European individuals from 

the UK Biobank Project and identified 172 ROH-based UPD cases, observing cases of each 

chromosome except chromosome 20 (Figure 3C).  The chromosome distribution of ROH-based 

cases (Figure 3C) in the UK Biobank also recapitulates the chromosome distribution of UPD 

cases identified through IBD analysis in the 23andMe database (Figure 2A; Pearson’s 

correlation = 0.74; p-value = 4.785 x 10-5).  Karyograms of ROH in the 172 putative UPD cases 

from the UK Biobank show large blocks of homozygosity ranging from 12.7 Mb to 231 Mb 

(Supplementary Figure 4; Supplementary File 1).  

 

Phenotypic Consequences of UPD 
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UPD can cause phenotypic consequences in multiple ways, including 1) disrupting imprinting 

and 2) uncovering recessive alleles in blocks of isodisomy.  We tested for phenotypic 

associations between UPD of each of the 23 chromosomes in true positives in the 23andMe 

dataset and 206 phenotypes across five categories (cognitive, personality, morphology, obesity 

and metabolic traits) obtained from self-reported survey answers. We found 23 nominally 

significant (p-value < 0.01) phenotype associations with UPD of chromosomes 1, 3, 6, 7, 8, 15, 

16, 21 and 22 (Supplementary Table 2).  While some of these 23 associations were driven by a 

single UPD case, three associations had multiple cases (or multiple measurements, in the case 

of quantitative traits), representing a more robust signal: we found that UPD6 is associated with 

lower weight (p-value = 0.0038) and shorter height (p-value = 0.0055), and UPD22 is associated 

with a higher risk for autism (p-value = 2.557 x 10-5) (Table 1).   

 

Variants Associated with UPD Incidence 

Although heritability of UPD, or chromosomal aneuploidy, has not been reported, there may be 

genetic variants that predispose individuals to produce aneuploid germ cells, thus increasing the 

likelihood of giving birth to an offspring with UPD. We tested this hypothesis by performing a 

genome-wide association study (GWAS) comparing 221 parents of UPD cases to 205,141 

parents of UPD true negatives from IBD analysis. We performed the analysis in all parents, 

adjusted for age, and stratified by parental sex. No association reached genome-wide 

significance (p-value = 5 x 10-8), and the heritability estimated by LD score regression28 was 

non-significant across all three analyses (Supplementary Figure 5; p-value > 0.05). Given the 

small sample size, this likely reflects our lack of power to detect genetic associations even for 

common variants associated with UPD.  

 

In order to further investigate the etiology of UPD, we assess the relationship between per-

chromosome UPD rates and per-chromosomes rates of aneuploidy in pre-implantation embryos 

(PGS).  We found that UPD rates in the 23andMe database are significantly correlated with 

published aneuploidy rates from PGS4 (Figure 4A; Pearson’s correlation = 0.49; p-value = 0.02). 

We also found that mothers who are parents of origin of UPD true positives in the 23andMe 

dataset are significantly older than those of UPD true negatives (Figure 4B; Wilcoxon p-value = 

0.00317), whereas paternal age does not show a robust association with UPD (Supplementary 

Figure 6; Wilcoxon p-value = 0.286). 

 

Discussion 
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The recombination process has long been studied by evolutionary, medical, molecular, and 

population geneticists, in part to gain insight into meiotic nondisjunction.  It is difficult to directly 

study meiotic nondisjunction in humans because errors in meiosis often lead to fetal loss or 

serious health consequences.  However, UPD is a detectable genomic signature of meiotic 

nondisjunction and aneuploidy in euploid, liveborn individuals.  In this study we show that, given 

large genomic datasets, detecting UPD offers new insight into recombination and meiosis in 

humans.  

 

Firstly, using 214,915 trios in the 23andMe customer database, we obtained the first estimate of 

UPD prevalence in the general population: one in 2000 births, 1.75 times higher than the current 

clinical estimate of one in 3500 births.  The current estimate of UPD prevalence is derived from 

UPD15 prevalence in clinical cohorts, which might not be representative of the general 

population and also does not account for differences in UPD prevalence between 

chromosomes22.  The 23andMe customer base comprises, for the most part, healthy individuals 

from the general population and so our estimate is more representative of overall UPD 

prevalence.  We also found that the per-chromosome prevalence rate of UPD is significantly 

correlated with per-chromosome aneuploidy rates calculated from published PGS data (Figure 

4A; Pearson’s correlation = 0.49; p-value = 0.02) whereas per-chromosome rates from clinical 

UPD cases are not (Supplementary Figure 7; Pearson’s correlation = 0.2; p-value = 0.34). 

 Since a liveborn individual with UPD results from the restoration of euploidy in an aneuploid 

zygote, we expect the true per-chromosome rates of UPD to be correlated with those of 

aneuploidy, providing further evidence that our estimated rates are closer to the true prevalence 

and per chromosome distribution of UPD than existing clinical rates.  We note that participation 

in 23andMe may be cost-prohibitive for many, and also that the customer base may be biased 

toward geographic regions or other covariates.  Furthermore, individuals with severe health 

problems may be unlikely or unable to participate in 23andMe, and so the UPD cases in this 

study may be depleted for UPD causing serious health consequences.    

  

Secondly, we have introduced a new method to find UPD cases using genomic data from 

singleton data only, without requiring parental genotypes.  Existing guidelines for classification 

of putative UPD cases without parental genotypes consist of a hard ROH length threshold for all 

chromosomes23.  These putative cases can then be further investigated by genotyping parents, 

cytogenetic techniques or DNA methylation studies.  However, ROH length distributions vary by 

1) the demographic history of an individual’s ancestral population(s), 2) the history of 
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consanguinity in the individual’s recent ancestors, and 3) by chromosome.  Our method learns 

the distributions of ROH lengths on each chromosome from simulated data based on each of 

eight global population cohorts in the 23andMe dataset while also modeling recent 

consanguinity and is able to classify UPD with high accuracy.  Using our method, we were able 

to find 297 additional UPD cases in 1,371,138 individuals in the 23andMe cohort.  Our 

classifiers can also be readily applied to other genomic datasets such as the UK Biobank29,30, in 

which we identified 172 additional ROH-based UPD cases (Figure 3C, Supplementary Figure 4, 

Supplementary File 1).  This underscores that an effective ROH-based method for UPD 

detection offers crucial insight into UPD when combined with large-scale genomic datasets.  

One limitation of our ROH-based detection method is that we can only identify isoUPD and 

partial isoUPD cases that contain large blocks of homozygosity (spanning greater than 30% of 

the chromosome).  In that respect, UPD per-chromosome rates estimated using our ROH-based 

method are conservative.  In order to minimize the false positive rate, we did not try to refine 

classification of small partial isoUPDs (Supplementary Table 1; FPR: 7 x 10-5).  Also, we were 

unable to identify UPD in populations that are historically known to practice endogamy and thus 

have higher than average levels of homozygosity (Ashkenazi Jewish, Middle Eastern and South 

Asian individuals; Supplementary Figure 3).  

  

Errors in recombination typically, with few exceptions3,6, lead to aneuploidy and severe health 

consequences, and so are largely viewed as deleterious.  However, the majority of UPD types, 

including the most common UPD (UPD16), did not show significant, plausible associations with 

deleterious traits in the 23andMe database (Table 1).  Our work challenges the typical view that 

errors in recombination are strongly deleterious, showing that even in extreme cases where 

individuals are homozygous for an entire chromosome, those individuals can be, to the best of 

our knowledge, phenotypically normal and healthy (Table 1).  We do find a novel association 

between autism and UPD22.  We note that phenotype data in the 23andMe database is self-

reported and so depends on customers answering surveys about their health and traits.  We 

also note that there has yet to be a prospective study of the long-term consequences of UPD 

since most current studies focus on special syndromes and recessive disorders that are 

apparent in childhood; future studies could extend our work in this direction. 

 

To interrogate the role of genetics in UPD etiology, we performed the first GWAS of UPD. 

 Though our results are mostly suggestive, with increased sample sizes or deep sequencing, 

future studies may find plausible, significant loci underlying UPD incidence.   
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Lastly, we expect the etiology of meiotic nondisjunction and UPD to be similar since UPD is 

caused by rescue of aneuploid zygotes.  Here, we found that UPD rates in the 23andMe 

database are significantly correlated with aneuploidy rates from PGS (Figure 4A; Pearson’s 

correlation = 0.49; p-value = 0.02). Also, similarly to aneuploidy, we found that mothers who are 

parents of origin of UPD true positives in the 23andMe dataset are significantly older than those 

of UPD true negatives (Figure 4B; Wilcoxon p-value = 0.00317).  Previous studies have shown 

elevated escape from crossover inference on certain chromosomes (8, 9, and 16) and 

especially in older mothers; future studies could test whether crossover interference rates vary 

between UPD cases and UPD true negatives7.  And though we focused in this study on meiotic-

origin UPD, future studies could also extend our work to characterize the prevalence and 

chromosomal distribution of segmental (or mitotic-origin) UPD cases in the general population; 

segmental UPD is also currently only studied in clinical settings8.   

 

Online Methods  

Samples 

In this study, we analyzed genome-wide SNP genotypes from 4,400,363 research participants 

from the 23andMe customer base; this research platform has been previously described31,32.  All 

research participants included in these analyses provided consent and answered surveys online 

according to a human subjects protocol approved by Ethical and Independent Review Services, 

an independent institutional review board (http://www.eanireview.com).  We also analyzed 

genotype data from 500,000 participants in the UK Biobank Project29,30 (www.ukbiobank.ac.uk). 

 Phenotype data for these individuals were collected through questionnaires, interviews, health 

records, physical measurements, and imaging carried out at assessment centers across the UK.  

 

Genotyping and Quality Control  

For the 23andMe dataset, DNA extraction and genotyping were performed on saliva samples by 

clinical laboratories at Laboratory Corporation of America, which is certified by Clinical 

Laboratory Improvement Amendments and accredited by College of American Pathologists. 

 Samples were genotyped on one of five Illumina platforms: 1) and 2) two versions of the 

Illumina HumanHap550+ BeadChip, plus about 25,000 custom SNPs selected by 23andMe 

(~560,000 SNPs total), 3) a variation on the Illumina OmniExpress+ BeadChip, with custom 

SNPs (~950,000 SNPs total), 4) a fully customized array, including a lower redundancy subset 

of v2 and v3 SNPs with additional coverage of lower-frequency coding variation (~570,000 
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SNPs total) and 5) a customized array based on Illumina’s Global Screening Array (~640,000 

SNPs total), supplemented with ~50,000 SNPs of custom content. Samples that failed to reach 

98.5% call rate were re-analyzed. Individuals whose analyses failed repeatedly were re-

contacted by 23andMe customer service to provide additional samples. For all ROH analyses, 

we limited our analyses to SNPs that are shared between the Illumina platforms 1 - 4 described 

above, and then we removed SNPs with a minor allele frequency (MAF) less than 5% and SNPs 

with genotyping rate less than 99%, resulting in 381,379 SNPs in total.  For IBD analyses, we 

analyzed 579,957 SNPs for all individuals.  

  

For the UK Biobank dataset, quality control was carried out as described in the UK Biobank 

genotyping quality control document30.  As was done in the 23andMe dataset, we then removed 

all SNPs with MAF less than 5% and SNPs with genotyping rate less than 99%, resulting in 

360,540 SNPs total. 

 

Ancestry Classification 

23andMe’s ancestry analysis has been described previously33. Briefly, the algorithm first 

partitions phased genomic data into short windows of about 300 SNPs. Within each window, a 

support vector machine (SVM) was used to classify individual haplotypes into one of 25 

reference populations (https://www.23andme.com/ancestry-composition-guide/). The SVM 

classifications are then fed into a hidden Markov model (HMM) that accounts for switch errors 

and incorrect assignments and gives probabilities for each reference population in each window. 

Finally, simulated admixed individuals were used to recalibrate the HMM probabilities so that 

the reported assignments are consistent with the simulated admixture proportions. The 

reference population data is derived from public datasets (the Human Genome Diversity Project, 

HapMap, and 1000 Genomes), as well as 23andMe research participants who have reported 

having four grandparents from a single country. 

 

Population Structure  

For population-specific analyses such as ROH detection in the 23andMe dataset, research 

participants were divided into eight cohorts based on genome-wide ancestry proportions from 

reference populations, as determined by 23andMe’s Ancestry Composition method: northern 

Europeans, southern Europeans, African Americans, Ashkenazi Jewish, East Asians, South 

Asians, Latino/as, and Middle Eastern individuals.  The classification criteria have been 

previously described in Campbell et al.7.  Briefly, individuals labeled as northern European met 
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all of the following criteria: greater than 97% European and Middle Eastern/northern African 

ancestry combined, greater than 90% European ancestry, and greater than 85% northern 

European ancestry.  Southern European individuals satisfied the following requirements: greater 

than 97% European and Middle Eastern/northern African ancestry combined, greater than 90% 

European ancestry, and greater than 85% southern European ancestry.  Ashkenazi Jewish 

individuals had greater than 97% European and Middle Eastern/northern African ancestry 

combined, greater than 90% European ancestry, and greater than 85% Ashkenazi Jewish 

ancestry.  Middle Eastern individuals had greater than 97% European and Middle 

Eastern/northern African ancestry combined and greater than 70% Middle Eastern/northern 

African ancestry.  East Asian individuals had greater than 97% East Asian and Southeast Asian 

ancestry combined. South Asians had greater than 97% South Asian ancestry.  Individuals were 

classified as African Americans or Latinos/Latinas if they had greater than 90% European and 

African and East Asian/Native American and Middle Eastern/northern African ancestry 

combined as well as greater than 1% African and American ancestry.  African Americans and 

Latino/as were distinguished using a logistic regression classifier trained on self-identified “Black 

African” and “Hispanic” individuals7. 

 

In the UK Biobank dataset, we focused our analyses on 431,094 individuals of northern 

European ancestry identified by principal components analysis (PCA) on the genotype data 

following QC. We arrived at this sample as follows: we first performed PCA using FlashPCA234 

(version: 2.0) on 2,504 individuals from the 1000 Genomes Project Phase 3 database35. We 

pruned the genotype data from the UK Biobank for linkage disequilibrium, resulting in 70,527 

SNPs, and we then projected genotype data from 431,102 UK Biobank participants who self-

identified as “white British” onto the principal components space derived from PCA of the 1000 

Genomes individuals.  Lastly, we removed eight individuals who were outliers in PCA with the 

following thresholds: first principal component value less than 0.03 (PC1 < 0.03), and second 

principal component value greater than 0.15 (PC2 > 0.15). These filtering steps resulted in 

431,094 northern European individuals.    

  

Identification of Parent-Child Duos from Identity-by-Descent Segments 

We identified identical-by-descent (IBD) DNA segments for every pair of individuals in the 

23andMe dataset, according to a method that has been previously described by Henn et al.36. 

 Briefly, we compared a pair of individuals’ genotypes at 579,957 SNPs and identified SNPs 
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where the individuals are homozygous for different alleles (also called “opposite homozygotes”).  

Long regions (>5 cM) lacking opposite homozygotes were characterized as “IBD segments”36.   

 

Pairs of individuals that share more than 85% of their genome IBD were classified as parent and 

child.  Theoretically, parent-child pairs should share 100% of their genome IBD on one 

homologous chromosome, but the threshold is lowered here to 85% to account for the 

possibility of UPD of chromosome 1, which accounts for ~10% of the genome, and for the 

possibility of error or lack of SNP coverage over ~5% of the genome.  Using these criteria, we 

identified 916,712 parent-child duos in the 23andMe database. 

 

Identification of Runs of Homozygosity  

We calculated runs of homozygosity (ROH) using GARLIC26,37.  Briefly, GARLIC implements a 

model-based method for identifying ROH and classifying ROH into length classes.  In this 

method, logarithm of the odds (LOD) scores for autozygosity are calculated in sliding windows 

of SNPs across the genome; SNP window sizes were chosen automatically by GARLIC based 

on SNP density.  The LOD scores are functions of a user-specified error rate to account for 

genotyping error and mutation rate, as well as population-specific allele frequencies.  The 

distribution of LOD scores is used to determine a threshold for ROH-calling.  After ROH are 

identified, contiguous ROH windows are concatenated.  Lastly, we performed Gaussian mixture 

modeling using the Mclust function from the mclust R package38 (Version 5.4) with the same 

parameters used by Kang et al.27 to classify ROH into three length classes: 1) Class A, which 

are the shortest ROH; 2) Class B; and 3) Class C, which are the longest (class boundaries 

shown in Supplementary Table 3). 

 

We applied GARLIC to the eight cohorts in the 23andMe database described earlier: 974,511 

northern Europeans, 34,508 southern Europeans, 90,349 African Americans, 70,144 Ashkenazi 

Jewish, 63,683 East Asians, 19,493 South Asians, 208,087 Latino/as, and 16,013 Middle 

Eastern individuals as well as 431,094 northern Europeans in the UK Biobank dataset.  In the 

23andMe dataset, we used a window size of 60 SNPs for autosomes and 30 SNPs for the X 

chromosome, which were automatically chosen by GARLIC as the best window size given SNP 

density, and an error rate of 0.001, which was used in previous studies of ROH26,37.  In the UK 

Biobank dataset, we used a window size of 60 SNPs for both autosomes and the X 

chromosome, which were automatically chosen by GARLIC as the best window size for these 

data.  In each dataset, only females were included in analyses of ROH on the X chromosome.  
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In the 23andMe database, population-specific allele frequencies were calculated from 

individuals who are true negatives for UPD (identified as described in “IBD-based UPD 

Detection”); sample sizes of true negatives in the 23andMe cohorts are as follows: 28,338 

northern Europeans, 1,018 southern Europeans, 1,500 African Americans, 2,066 Ashkenazi 

Jewish, 2031 East Asians, 982 South Asians, 7,639 Latino/as, and 437 Middle Eastern 

individuals.  In the UK Biobank cohort, we calculated allele frequencies for GARLIC from 

431,094 individuals of northern European ancestry.  All Class C ROH were then filtered for 

deletions as described in “Filtering of Deleted Genomic Regions”.  

 

IBD-based UPD Detection 

To detect UPD events in children, we looked for parent-child duos who lack IBD segments 

across an entire chromosome.  For the X chromosome, only the following parent-child pairs, 

which would normally be expected to share IBD on the X chromosome, were considered: 

mother-daughter pairs, father-daughter pairs, and mother-son pairs.  The putative UPD cases 

were then tested for a deletion spanning the putative UPD chromosome in both the parent and 

child according to the method described in “Filtering of Deleted Genomic Regions” below; we 

refer to children in parent-child pairs without deletion of the putative UPD chromosome as true 

positives for UPD.  IBD segments can also be used to determine true negatives for UPD; we 

identified children in trios who are completely half identical to both parents and refer to these as 

true negatives.  In order to calculate prevalence of UPD, we focus on trio data since only then 

can both parent-child pairs be tested for missing IBD. 

 

To distinguish between maternal UPD (matUPD; when the disomic chromosome pair originates 

from the mother) and paternal UPD (patUPD; when the disomic chromosome pair originates 

from the father), we labeled the older individual in a parent-child duo as the parent and the 

younger individual as the child using self-reported age data.  If an individual was missing IBD 

across a chromosome with the father, we labeled the case as maternal UPD (matUPD).  If an 

individual was missing IBD with their mother, we labeled the case as paternal UPD (patUPD). 

  

For UPD cases with a mother and father genotyped in the 23andMe database, we were able to 

use IBD with the parent-of-origin of the disomic chromosome pair to differentiate between the 

three subtypes of UPD: isodisomy (isoUPD), heterodisomy (hetUPD), and partial isodisomy 

(partial isoUPD).  IsoUPD chromosomes are completely half-identical to the parent-of-origin, 

and hetUPD chromosomes are completely identical to the parent-of-origin.  Partial isoUPD 
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chromosomes are some fraction half-identical and some fraction fully identical to the parent-of-

origin.  For UPD cases detected in parent-child duos and lacking genotype data for the parent-

of-origin, we use ROH to differentiate between the three subtypes.  UPD chromosomes with 

ROH spanning 100% of the chromosome are labeled isoUPD, UPD chromosomes with 0% 

Class C ROH are labeled hetUPD, and UPD chromosomes with between 0% and 100% Class 

C ROH are labeled partial isoUPD.   

   

Filtering of Deleted Genomic Regions 

Large deletions — which can arise from somatic events or be prevalent in low-quality saliva 

samples — can manifest in genotype data as large regions of homozygosity and missing IBD 

that confound UPD detection.  Thus, we screened all putative UPD cases for deletions.  We 

filtered for deletions in one of two ways: by testing for significantly decreased Log R Ratio (LRR) 

across an ROH, and by using the CNV caller in BCFtools39 (version: 1.4.1).  LRR, which is a 

measure of probe intensity, can be used to detect several types of copy number variants40. 

 Theoretically, LRR is 0 at all loci across the genome, and decreases across a deleted region. 

 Therefore, we tested whether the average LRR of a given region (i.e. a run of homozygosity) 

was significantly lower than the genome-wide average LRR using a two-sample t-test.  Runs of 

homozygosity with significantly lower LRR than the genome-wide average (p-value < 0.05) were 

filtered out of all ROH-based analyses.   

 

For a chromosome missing IBD between a parent-child pair, we used the CNV calling function 

of BCFtools to identify whole chromosome deletions and trisomies/mosaic trisomies in the 

parent and child at the putative UPD chromosome39.  The command line option “-l 0.8” was 

used to upweight LRR within the HMM model relative to BAF; when BAF is given equal weight 

with LRR, we found that blocks of isodisomy were called as deletions even without a 

corresponding decrease in LRR across the homozygous region.  If more than 40% of a putative 

chromosome in either parent or child is called with copy number of 1 (deletion), the pair was 

excluded from further analysis.  If more than 50% of the chromosome in either parent or child is 

called with copy number of 3 (trisomy), the pair was also excluded. 

 

Simulation of Training Data for ROH-based UPD Classifiers 

We generated training data for 23 logistic regression-based classifiers for eight cohorts 

(described in “Population Structure”) to detect UPD of each of the autosomes and the X 

chromosome without parental genotype data, as follows. We simulated 46,000 individuals, 
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consisting of 1,000 UPD cases and 1,000 controls for each chromosome for each of the eight 

cohorts, by randomly pairing 46,000 pairs of individuals across all cohorts.  Only individuals 

without any Class C ROH-length deletions and pairs sharing less than 930cM IBD were 

considered for selection as “parents” for the simulated children. To model consanguinity within 

our training data, we forced at least 100 pairs of 1000 controls for each chromosome to share 

between 100 and 930 cM IBD.  For our X chromosome classifiers, only female children were 

simulated since two X chromosomes are required to detect homozygosity on the X 

chromosome. 

 

We generated 2000 independent trios with one child each to train each classifier.  We randomly 

sampled recombination breakpoints according to a distribution of crossover probabilities for 

each locus.  The probability of at least one crossover between every pair of adjacent loci was 

calculated using Equation 1 below, in which we assume that crossovers are Poisson distributed 

with a rate equal to the difference in genetic distance in cM between two given loci multiplied by 

0.01 (since there is approximately one crossover event in 100 cM).   

                                                                                               (Eq.1) 

To calculate genetic distances, we used recombination maps ascertained from the 23andMe 

research cohort7.  The genetic maps are publicly available at the following URL: 

https://github.com/auton1/Campbell_et_al.  We then simulated meiosis by randomly choosing 

one homolog from each parent to be inherited by the child.  For each chromosome’s classifier, 

we simulated UPD cases by deriving both homologs of that chromosome from only one parent. 

 Lastly, we copied genotypes from parental homologs to generate genotypes for the child.   

 

We used GARLIC to detect ROH for each simulated child using the same parameters and 

population allele frequencies specified in “Identification of Runs of Homozygosity and Genomic 

Hot/Coldspots for ROH”.  We found that ROH length distributions were not significantly different 

between the simulated UPD cases and true positive UPD cases ascertained through IBD-based 

UPD detection (p-value > 0.05) (Supplementary Figure 8A).  However, the distribution of the 

number of class C ROH differed significantly between the simulated UPD cases and real UPD 

cases (p-value < 0.05), and thus, we did not use the number of Class C ROHs to train the 

classifiers (Supplementary Figure 8B).  Our simulations produced every subtype of UPD 

(Supplementary Figures 9-10). 

  

ROH-based UPD Detection and Performance Assessment 
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We developed 23 logistic regression classifiers, one for each autosome and the X chromosome, 

with two independent variables, trained on the simulations described in the previous section. 

 For a given chromosome �, where � � �1 … �� and � 	 23 in females and � 	 22 in males, let �� 

be the total class C ROH length in base pairs.  Also, let ���� be the �th order statistic for � class 

C ROH lengths across all chromosomes, where ���� is the maximum ROH length across all 

chromosomes.  The two variables we trained each classifier on are �� for � � �1 … �� and 

������ ����⁄ .  We focused on Class C ROH for training the classifiers because, in comparing the 

distributions of ROH lengths between true positives (UPD cases detected through IBD) and true 

negatives for UPD, we found that only Class C ROH length is significantly different (p-value < 

0.05) between the true positives and true negatives (Supplementary Figure 11).   

 

To assess the performance of our classifiers, we generated Receiver Operating Characteristic 

(ROC) curves by testing each classifier on: (1) a simulated set of 11,500 individuals, consisting 

of 250 cases and 250 controls for each chromosome, and independent from the training 

simulations described in the previous section; and (2) the set of true positives and true 

negatives for UPD ascertained from IBD-based UPD detection.  In testing, we found that 

performance of the classifiers, as measured by area under a ROC curve (auROC), increases 

with increased proportion of isodisomy on the UPD chromosome (Supplementary Figure 12).  

Specifically, detecting hetUPD without parental data is not possible due to the lack of large ROH 

blocks, and partial isoUPD detection is dependent on the size of the ROH.  Thus, we restricted 

the training set further to only comprise true positives with at least 30% isoUPD on the UPD 

chromosome and a randomly sampled set of simulated controls equal in number to the cases 

for a given chromosome.  We then chose initial probability cutoffs for each classifier from its 

ROC curve; we chose the probability threshold that minimized the False Positive Rate (FPR) 

and if there were multiple cutoffs that satisfied these criteria, we then chose the cutoff that also 

maximized the True Positive Rate (TPR).  We used these cutoffs to classify putative UPD cases 

of each chromosome and remove duplicate cases; this last step removes individuals with large 

blocks of ROH on multiple chromosomes due to recent consanguinity.  We then chose a final 

probability cutoff for our classifiers of 0.9 to classify ROH-based UPD cases; when applied to 

the known northern European true positives and true negatives, this cutoff allows us to minimize 

false positive rate (7 x 10-5) while maintaining a true positive rate of 67% for isoUPD spanning 

greater than 20% of the chromosome (Supplementary Table 1).   
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Phenotypic Association Studies (PheWAS) in the 23andMe dataset 

We regressed 206 phenotypes across five categories (cognitive, personality, morphology, 

obesity and metabolic traits) onto UPD status, using children with UPD (true positives detected 

using IBD analysis) as cases and true negatives for UPD as controls.  We tested each subtype 

of UPD (by chromosome and parent-of-origin) separately, and we restricted these analyses to 

individuals of European ancestry.  We performed logistic regression for binary traits and linear 

regression for quantitative traits with the following covariates: age, sex, genotyping platform and 

the first five principal components (see “Genome-Wide Association Studies (GWAS) in the 

23andMe dataset” section) to adjust for population substructure. We also tested for differences 

in parental age between UPD true positives and true negatives. 

 

Genome-Wide Association Studies (GWAS) in the 23andMe dataset 

We conducted GWAS on parents of UPD true positives identified by IBD-based analysis in 

order to find loci associated with the risk of giving birth to children with UPD.  The GWAS was 

performed on all SNPs that passed quality control by running a logistic regression model 

correcting for the effects of age, parental age at birth of the child with UPD, first five genetic 

principal components, and genotype platform, performed separately by sex of the parents 

(mother or father). For more details on GWAS, imputation, and PCA, please refer to the 

Supplementary Methods. 
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Figures and Tables 

Figure 1. Subtypes of UPD with example mechanisms and detectable genomic features 
for each UPD subtype. There are three subtypes of UPD: heterodisomy (hetUPD), isodisomy 
(isoUPD), and partial isodisomy (partial isoUPD). HetUPD is caused by nondisjunction in 
meiosis I, and an affected individual will inherit both homologs of a chromosome from the same 
parent. IsoUPD is caused by nondisjunction in meiosis II, and an affected individual will inherit 
two identical copies of one homolog from one parent. Partial isoUPD is caused by 
nondisjunction in either meiosis I or meiosis II after crossing over has happened, resulting in 
sections of isodisomy and heterodisomy on the UPD chromosome. Given genomic data from a 
parent-child pair, all UPD subtypes can be detected in the same way based on identity-by-
descent (IBD): a parent-child pair will be missing IBD across an entire chromosome. Lastly, 
isoUPD and some types of partial isoUPD will show large runs of homozygosity (ROHs), which 
can be detected computationally without the need for parental genotype data. 
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 B isoUPD hetUPD Partial isoUPD Total 

matUPD 20 45 69 134 

patUPD 35 31 5 71 

Total 55 76 74 205 

Figure 2. Using IBD-based UPD detection, we found 199 individuals with 205 incidences 
of UPD in 916,712 parent-child duos from the 23andMe dataset.  We identified six 
individuals with cases of double UPD, when two chromosomes in one individual are inherited 
uniparentally.  A) The per-chromosome distribution of true positives for UPD in the 23andMe 
dataset; in these true positives, UPD occurs most frequently on chromosomes 1, 4, 16, 21, 22 
and X.  We also observed three times as many maternal UPD (matUPD) cases as paternal UPD
(patUPD) cases.  B) We found that paternal partial isoUPD is the least common subtype of 
UPD. We also observed overall more hetUPD and partial isoUPD cases than isoUPD cases. 
 

 

D 
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Figure 3. Our per-chromosome simulation-based classification framework identified 304 
UPD cases using runs of homozygosity (ROH) across five cohorts (northern European, 
southern European, Latino, African American and East Asian individuals) in the 23andMe 
dataset and 172 ROH-based UPD cases in northern Europeans from the UK Biobank.  A) 
Receiver Operating Characteristic (ROC) curves show the performance of our per-chromosome 
UPD classifiers on simulated testing data, based on genotype data from northern Europeans in 
the 23andMe dataset.  Our classifiers identified UPD with high accuracy (area under the ROC 
curve (auROC) > 0.9; TPR between 0.75-0.98 when FPR is fixed at 0.01).  At fixed FPR, power 
is inversely related to chromosome length. B) The chromosome distribution of the ROH-based 
cases found in the 23andMe dataset recapitulates features of the chromosome distribution of 
true positives for UPD, which are identified through IBD analysis (Figure 2A; Pearson’s 
correlation = 0.67; p-value = 0.0005). C) The chromosome distribution of the ROH-based cases 
found in the UK Biobank also recapitulates features of the chromosome distribution of true 
positives for UPD identified through IBD analysis (Figure 2A; Pearson’s correlation = 0.74; p-
value = 4.79 x 10-5). We note that parent-of-origin cannot be identified for ROH-based cases. 
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UPD type Phenotype Effect Size (95% CI) P-values (Uncorrected) 

UPD6 Weight -2.02 (-3.38 -0.65) 0.0038 

UPD6 Height -1.99 (-3.40 -0.59) 0.0055 

UPD22 Autism Spectrum 3.61 (1.93 5.30) 2.557 x 10-5 

 
Table 1. PheWAS in the 23andMe dataset identified phenotypes significantly associated 
with UPD of chromosomes 6 and 22 (p-value < 0.01). Only traits with at least two cases (or 
two measurements for quantitative traits) are shown; the full list of all associations is shown in 
Supplementary Table 2.  Effect sizes shown are odd ratios.  We tested for association between 
UPD on each of the autosomes and 206 self-reported phenotypes across five categories 
(cognitive, personality, morphology, obesity and metabolic traits). We uncover novel 
associations between UPD of chromosome 6 and weight and height, and UPD of chromosome 
22 and autism spectrum (this last association remains significant after correcting for the number 
of self-reported phenotypes tested). 
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Figure 4. Aneuploidy rates and maternal age are correlated with UPD. A) The correlation 
between per-chromosome UPD rate in true positives from the 23andMe database and per 
chromosome aneuploidy rate in published pre-implantation genetic screening data4; 
chromosomes are colored by centromeric type: metacentric chromosomes are shown in red, 
submetacentric chromosomes in green and acrocentric chromosomes in blue.  These two rates 
are significantly correlated (Pearson’s correlation = 0.49; p-value = 0.02) and this correlation 
remains significant after correction for chromosome length and centromeric type (Pearson’s 
correlation = 0.73; p-value = 0.006), suggesting that meiotic nondisjunction occurs more 
frequently on some chromosomes (such as 15, 16, 21, and 22) than others, resulting in more 
instances of both UPD and aneuploidy on these chromosomes.  We also note that the 
acrocentric chromosomes have among the highest per-chromosome rates of both UPD and 
aneuploidy. B) The age distribution of mothers of UPD true negatives (blue) and that of mothers 
who are parents of origin of UPD true positives (matUPD cases, yellow) in the 23andMe 
dataset.  We find that mothers of UPD cases are significantly older than mothers of UPD true 
negatives (Wilcoxon p-value = 0.00948) and that this associations holds when restricted to 
cases of matUPD, where mothers are the parents of origin of the UPD cases (Wilcoxon p-value 
= 0.00317). 
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Supplementary Information for: “Characterization of prevalence and health 

consequences of uniparental disomy in four million individuals from the general 

population” 

 

Supplementary Figure 1. The per chromosome distribution of clinical UPD cases 
published in the literature to date (http://upd-tl.com/upd.html1, accessed 11/29/18).  More 
than one case has been observed on each autosome except 19 and the X chromosome. 
Published UPD cases seem to cluster on chromosomes 6, 7, 11, 14 and 15, which contain 
clusters of imprinted genes that cause clinical phenotypes.  There are 1869 matUPD cases in 
total and 881 patUPD cases in total, suggesting that matUPD is about twice as common as 
patUPD. 
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Supplementary Figure 2. Violin plots of ROH length distributions (in Mb) for eight cohorts 
in the 23andMe database.  The cohorts are colored by continental ancestry group: Middle 
Eastern (yellow), European (blue), South Asian (red), East Asian (pink), and admixed (grey). 
 ROH were identified using GARLIC, which divides inferred ROH into three classes based on 
length. These plots show A) all classes combined, B) class A, the shortest ROH, C) class B, 
intermediate length ROH, and D) class C, the longest ROH.  These plots recapitulate patterns of 
ROH length distributions seen in published analyses of ROH across global populations2,3. 
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Supplementary Figure 3. Receiver operating characteristic curves for 23 UPD classifiers 
(one per chromosome) trained on simulated individuals based on A) Latino cohorts (TPR 

A Latino Simulations

 

B Southern European Simulations

 

C African American Simulations D East Asian Simulations

E Ashkenazi Jewish Simulations F Middle Eastern Simulations

G South Asian Simulations
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between 0.76 and 0.98 when FPR is fixed at 0.01), B) South European cohorts (TPR between 
0.75 and 0.99 when FPR is fixed at 0.01), C) African American cohorts (TPR between 0.79 and 
0.99 when FPR is fixed at 0.01), D) East Asian cohorts (TPR between 0.74 and 1 when FPR is 
fixed at 0.01), E) Ashkenazi Jewish cohorts (TPR between 0.51 and 0.899 when FPR is fixed at 
0.01), F) Middle Eastern cohorts (TPR between 0.62 and 0.88 when FPR is fixed at 0.01), and 
G) South Asian cohorts (TPR between 0.63 and 0.84 when FPR is fixed at 0.01).  Plots A-D 
show ROC curves with auROC > 0.9, which lead to successful classification in real data, 
whereas plots E-G show classifiers that perform relatively poorly on simulated testing data 
(auROC < 0.9).  The cohorts in plots E-G, Ashkenazi Jewish, Middle Eastern and South Asian, 
are known to have practiced endogamy and so high levels of consanguinity may be confounding 
UPD detection for these classifiers. 
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Supplementary Figure 4.  Ideograms of ROH for 22 ROH-based UPD cases we identified 
in the UK Biobank.  We applied our ROH-based classifiers to 431,094 northern European 
individuals from the UK Biobank and identified 172 putative cases of UPD across 21 autosomes 
and the X chromosome (we did not classify any UPD cases on chromosome 20).  This figure 
shows ideograms of ROH for 22 of the 172 putative cases, randomly drawn to illustrate ROH 
patterns of UPD cases of each chromosome for which we classify UPD; blue rectangles along 
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the chromosomes represent Class A ROH, red rectangles represent Class B ROH, and green 
rectangles represent Class C ROH. 
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Supplementary Figure 5. Manhattan plots of GWAS of UPD incidence, stratified by 
parental sex. (A) GWAS of all parents of UPD cases (both mothers and fathers), adjusted for 

 

A

 

 

B

C
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sex; (B) GWAS of mothers of UPD cases only; and (C) GWAS of fathers of UPD cases only. 
There are no variants reaching genome-wide significance and the few hits reaching suggestive 
association level (p-value < 1x10-6) are likely false positives based on gene annotations. 
 

Supplementary Figure 6. The age distribution of fathers of UPD true negatives (blue) and 
that of fathers who are parents of origin of UPD true positives (patUPD cases, yellow) in 
the 23andMe dataset.  Fathers of UPD cases are significantly older than fathers of true 
negatives (Wilcoxon p-value = 3.29 x 10-5).  However, we do not observe a significant difference 
in paternal age when we restrict analysis to fathers who are parents of origin of UPD children 
(Wilcoxon p-value = 0.286). 
 

 

e 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540955doi: bioRxiv preprint 

https://doi.org/10.1101/540955


Supplementary Figure 7. Correlation between per-chromosome UPD rate in published 
clinical cases (http://upd-tl.com/upd.html1) and per-chromosome aneuploidy rate in 
published pre-implantation embryo data4. Chromosomes are colored by centromeric type: 
metacentric chromosomes are shown in red, submetacentric chromosomes in green and 
acrocentric chromosomes in blue.  In contrast to our results of correlation between per 
chromosome UPD rates in the 23andMe dataset and those from PGS data (Figure 4A), these 
two rates are not significantly correlated (Pearson’s correlation = 0.2; p-value = 0.34).  This is 
expected since clinical cases are likely biased towards chromosomes causing serious medical 
phenotypes. 
 

Supplementary Figure 8. Boxplots comparing A) log10 total Class C ROH lengths of UPD 
true positives in the 23andMe dataset, which are identified using IBD analysis (left) and 
of simulated UPD cases (right) (t-test p-value = 0.94) and B) total number of Class C 
ROHs of UPD true positives (left) and of simulated UPD cases (right) (t-test p-value = 
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0.04).  Because the number of Class C ROH differed significantly between real UPD cases and 
simulated UPD cases (panel B, t-test p-value < 0.05), we did not train on this variable in our 
classifiers and instead train on total Class C ROH length (panel A, t-test p-value > 0.05). 
 

 

Supplementary Figure 9. Distributions of isodisomy proportion in simulated UPD cases 
for each of 23 chromosomes.  We simulated 1000 cases of UPD for each chromosome for 
each cohort based on genotype data from 23andMe.  We see that, though the distribution of 
cases varies between chromosomes, every subtype of UPD (hetUPD, in which 0% isodisomy 
occurs; isoUPD, in which 100% isodisomy occurs; and partial isoUPD, in which an intermediate 
proportion between 0 and 100% isodisomy occurs) is produced on each chromosome by our 
simulation method. 
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Supplementary Figure 10. Example ideograms showing ROH locations (Class A ROH in 
blue, Class B ROH in red and Class C ROH in green). These were drawn from six simulated 
UPD cases and two simulated controls to illustrate the classification problem our ROH-based 
supervised classifiers faced. A) Ideogram of ROH in a control with unrelated parents, B) hetUPD 
of chromosome 1 with unrelated parents, C) partial isoUPD of chromosome 1 with unrelated 
parents, D) isoUPD of chromosome 1 with unrelated parents, E) control with related parents, F) 
hetUPD of chromosome 1 with related parents, G) partial isoUPD of chromosome 1 with related 
parents, and H) isoUPD of chromosome 1 with related parents.  These figures show that long 
ROH can occur in partial isoUPD and isoUPD cases as well as individuals with related parents, 
and further illustrate that hetUPD cannot be identified based on ROH. 
 

 

Supplementary Figure 11. Boxplots comparing log10 ROH lengths (in bp) between UPD 
true negatives (TN, blue) and UPD true positives (TP, red) in the 23andMe dataset across 
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the three length classes of ROH, from left to right: 1) Class A, the shortest ROH; 2) Class 
B, intermediate length ROH; 3) Class C, the longest ROH.  ROH length class boundaries for 
each cohort are determined by GARLIC using gaussian mixture modeling (Supplementary Table 
3).  Only Class C ROH lengths differ significantly between UPD true negatives and true 
positives (t-test p-value < 0.05). 
 

 

Supplementary Figure 12. Area under the ROC curve (auROC) versus isodisomy 
proportion on the simulated chromosome.  We found that auROC increases with isodisomy 
proportion on the simulated chromosome.  Our classifiers perform best when isodisomy spans 
at least 20-50% of the chromosome. 
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TP Subset # TP TPR FPR 

>0% ROH 13 0.5385 7.283 x 10-5 

>10% ROH 11 0.6364 7.283 x 10-5 

>20% ROH 9 0.6667 7.283 x 10-5 

>30% ROH 8 0.625 7.283 x 10-5 

>40% ROH 5 0.6 7.283 x 10-5 

>50% ROH 4 0.75 7.283 x 10-5 

>60% ROH 4 0.75 7.283 x 10-5 

>70% ROH 3 0.6667 7.283 x 10-5 

>80% ROH 2 1 7.283 x 10-5 

>90% ROH 2 1 7.283 x 10-5 

Supplementary Table 1. True Positive Rate (TPR) and False Positive Rate (FPR) when our 
classifier is applied to northern European true positives (TP) in the 23andMe dataset, 
identified from IBD analysis.  The TP are subdivided by ROH percent across the UPD 
chromosome.  We find that our classifiers have an TPR of 67% for cases with ROH spanning 
more than 20% of the chromosome while maintaining an FPR of 7 x 10-5. 
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UPD type Phenotype Effect Size (95% CI) P-values (Uncorrected) 

patUPD1 Any Bariatric Surgery 3.79 (1.39 6.20) 0.0020 

UPD1 Type 2 Diabetes 3.19 (0.87 5.50) 0.0070 

UPD3 Hyperglycemia 4.73 (2.32 7.13) 0.0001 

UPD3 Type 2 Diabetes 4.04 (1.08 7.00) 0.0076 

UPD6 Hyperglycemia 4.38 (1.60 7.15) 0.0020 

UPD6 Type 2 Diabetes 3.90 (1.12 6.68) 0.0060 

UPD6 Weight -2.02 (-3.38 -0.65) 0.0038 

UPD6 Height -1.99 (-3.40 -0.59) 0.0055 

UPD7 Self-rated attractiveness -4.20 (-7.08 -1.32) 0.0042 

UPD7 Life satisfaction -3.75 (-6.53 -0.97) 0.0081 

UPD8 Birth weight -5.31 (-8.21 -2.41) 0.0003 

UPD8 Autism 3.73 (1.36 6.11) 0.0021 

UPD8 Memory Loss 4.19 (1.37 7.02) 0.0036 

UPD8 Altitude Sickness -4.11 (-6.90 -1.32) 0.0038 

UPD8 Likes to play with ideas -8.36 (-14.59 -2.13) 0.0086 

UPD8 Autism Spectrum 3.14 (0.78 5.49) 0.0090 

matUPD15 Autism Spectrum 5.47 (2.42 8.51) 0.0004 

UPD15 Self-rated math ability -3.53 (-6.09 -0.96) 0.0071 

patUPD16 Type 2 Diabetes 7.72 (4.72 10.73) 4.596 x 10-7 

patUPD16 Hyperglycemia 6.05 (3.22 8.88) 2.778 x 10-5 

patUPD16 High Cholesterol 3.29 (0.84 5.74) 0.0084 

matUPD21 Feels left out of social activity -3.52 (-5.93 -1.11) 0.0042 

UPD22 Autism Spectrum 3.61 (1.93 5.30) 2.557 x 10-5 

Supplementary Table 2. Phenotypes significantly associated with UPD of chromosomes 
1, 3, 6, 7, 8, 15, 16, 21 and 22 (p-value < 0.01). Traits with at least two cases (or two 
measurements for quantitative traits) are shown in bold.  We tested for association between 
UPD of each of the chromosomes and 206 phenotypes across five categories (cognitive, 
personality, morphology, obesity and metabolic traits). Where possible, we also tested for 
association between matUPD and patUPD of each of the chromosomes separately.  Effect 
sizes shown are odds ratios. 
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Population Class A Lengths (bp) Class B Lengths (bp) Class C Lengths (bp) 

Northern European 
(23andMe) 

16,639-476,876 476,877-1,244,859 1,244,867-53,180,213 

Northern European 
(UK Biobank)  

2,308-808,025 808,026-2,398,796 2,398,803-137,730,942 

Southern European 24,862-554,584 554,589-1,590,178 1,591,210-18,452,311 

African American 27,649-591,299 591,321-1,720,202 1,721,681-47,567,224 

Ashkenazi Jewish 19,879-571,582 571,595-1,578,587 1,578,882-40,139,153 

East Asian 15,640-385,089 385,093-963,677 963,692-17,530,267 

Latino 10,032-561,786 561,789-1,616,663 1,616,842-38,806,880 

Middle Eastern 30,028-617,344 617,354-1,882,483 1,883,339-53,080,779 

South Asian 25,273-585,458 585,514-1,735,929 1,736,607-49,036,678 

Supplementary Table 3. Boundaries (in base pairs) for each of three length classes of 
ROH across nine cohorts in the 23andMe database and the UK Biobank.  Class boundaries 
were calculated using Gaussian mixture modeling on ROH length distributions in UPD true 
negatives from each of the eight cohorts in the 23andMe dataset and from all northern 
Europeans in the UK Biobank. 
 
Supplementary Methods 

Genome-Wide Association Study 

For the genome-wide association study (GWAS) of UPD, we restricted participants to a set of 

individuals who have European ancestry determined through an analysis of local ancestry 

described in the Methods section. A maximal set of unrelated individuals was chosen for each 

analysis using a segmental identity-by-descent (IBD) estimation algorithm5. Individuals were 

defined as related if they shared more than 700 cM IBD, including regions where the two 

individuals share either one or both genomic segments IBD. This level of relatedness (roughly 

20% of the genome) corresponds approximately to the minimal expected sharing between first 

cousins in an outbred population. When selecting individuals for case/control phenotype 

analyses, the selection process is designed to maximize case sample size by preferentially 

retaining cases over controls. Specifically, if both an individual case and an individual control 

are found to be related, then the case is retained in the analysis.  
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Imputation panels created by combining multiple smaller panels have been shown to give better 

imputation performance than the individual constituent panels alone6. To that end, we combined 

the May 2015 release of the 1000 Genomes Phase 3 haplotypes7 with the UK10K imputation 

reference panel8 to create a single unified imputation reference panel. To do this, multiallelic 

sites with � alternate alleles were split into � separate biallelic sites. We then removed any site 

whose minor allele appeared in only one sample. For each chromosome, we used Minimac39 to 

impute the reference panels against each other, reporting the best-guess genotype at each site. 

This gave us calls for all samples over a single unified set of variants. We then joined these 

together to get, for each chromosome, a single file with phased calls at every site for 6,285 

samples. Throughout, we treated structural variants and small indels in the same way as SNPs. 

 

In preparation for imputation we split each chromosome of the reference panel into chunks of no 

more than 300,000 variants, with 10,000 variants overlapping on each side. We used a single 

batch of 10,000 individuals to estimate Minimac3 imputation model parameters for each chunk. 

To generate phased participant data for the v1 to v4 platforms, we used an internally-developed 

tool at 23andMe, Inc., Finch, which implements the Beagle graph-based haplotype phasing 

algorithm10, modified to separate the haplotype graph construction and phasing steps. Finch 

extends the Beagle model to accommodate genotyping error and recombination, in order to 

handle cases where there are no consistent paths through the haplotype graph for the individual 

being phased. We constructed haplotype graphs for all participants from a representative 

sample of genotyped individuals, and then performed out-of-sample phasing of all genotyped 

individuals against the appropriate graph. For the X chromosome, we built separate haplotype 

graphs for the non-pseudoautosomal region and each pseudoautosomal region, and these 

regions were phased separately. For the 23andMe participants genotyped on the Illumina 

Global Screening Array-based platform (see “Genotyping and Quality Control” section), we used 

a similar approach, but using a new phasing algorithm, Eagle211. 

 

We imputed phased participant data against the merged reference panel using Minimac3, 

treating males as homozygous pseudo-diploids for the non-pseudoautosomal region. 

We computed association test results for the genotyped and the imputed SNPs. We assessed 

association by logistic regression assuming additive allelic effects. For tests using imputed data, 

we used the imputed dosages rather than best-guess genotypes. We also included covariates 

for age, gender, the top five principal components to account for residual population structure, 
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and indicators for genotype platforms to account for genotype batch effects. The association 

test p-value we report was computed using a likelihood ratio test, which in our experience is 

better behaved than a Wald test on the regression coefficient. For quantitative traits, association 

tests were performed by linear regression. Results for the X chromosome were computed 

similarly, with male genotypes coded as if they were homozygous diploid for the observed allele. 

 

Principal component analysis was performed independently for each ancestry, using ~65,000 

high quality genotyped variants present in all five genotyping platforms. It was computed on a 

subset of one million participants randomly sampled across all the genotyping platforms. PC 

scores for participants not included in the analysis were obtained by projection, combining the 

eigenvectors of the analysis and the SNP weights.  
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