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ABSTRACT 25 

 26 

In order to advance precision medicine, detailed clinical features ought to be described in 27 

a way that leverages current knowledge. Although data collected from biomedical 28 

research is expanding at an almost exponential rate, our ability to transform that 29 

information into patient care has not kept at pace. A major barrier preventing this 30 

transformation is that multi-dimensional data collection and analysis is usually carried 31 

out without much understanding of the underlying knowledge structure. In an effort to 32 

bridge this gap, Electronic Health Records (EHRs) of individual patients were connected 33 

to a heterogeneous knowledge network called Scalable Precision Medicine Oriented 34 

Knowledge Engine (SPOKE). Then an unsupervised machine-learning algorithm was 35 

used to create Propagated SPOKE Entry Vectors (PSEVs) that encode the importance of 36 

each SPOKE node for any code in the EHRs. We argue that these results, alongside the 37 

natural integration of PSEVs into any EHR machine-learning platform, provide a key 38 

step toward precision medicine.  39 

 40 

  41 
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INTRODUCTION 42 

The rate at which the ever growing body of world data is being transformed into 43 

information and knowledge in some areas (e.g. banking, e-commerce, etc.) far exceeds 44 

the pace of such process in the medical sciences. This problem is widely recognized as 45 

one of the limiting steps in realizing the paradigm of precision medicine, the application 46 

of all available knowledge to solve a medical problem in a single individual (National 47 

Research Council, 2011; Colijn et al. 2017).  48 

In order to address this issue, several efforts to integrate these data sources in a 49 

single platform are ongoing (Sinha et al, 2015; Chen et al., 2016). The basic premise of 50 

data integration is the discovery of new knowledge by virtue of facilitating the navigation 51 

from one concept to another, particularly if they do not belong to the same scientific 52 

discipline. One of the most promising approaches to this end makes use of heterogeneous 53 

networks. Heterogeneous networks are ensembles of connected entities with multiple 54 

types of nodes and edges; this particular disposition enables the merging of data from 55 

multiple sources, thus creating a continuous graph. The complex nature and 56 

interconnectedness of human diseases illustrates the importance of such networks 57 

(Barabási et al., 2011). Even bipartite networks, with only two types of nodes, have 58 

furthered our understanding on disease-gene relationships, and provided insight into the 59 

pathophysiological relationship across multiple diseases (Goh et al., 2007).  60 

In an attempt to address one of the most critical challenges in precision medicine, 61 

a handful of recent studies has started to merge basic science level data with phenotypic 62 

data encoded in electronic health records (EHRs) to get a deeper understanding of disease 63 

pathogenesis and their classification to enable rational and actionable medical decisions. 64 

One such project is the Electronic Medical Records and Genomics (eMERGE) Network. 65 

The eMERGE consortium collected both DNA and EHRs from patients at multiple sites. 66 

eMERGE and subsequent studies showed the advantages of using EHRs in genetic 67 

studies (Denny et al., 2010; Ritchie et al., 2010; Kho et al., 2011). Another project linked 68 

gene expression measurements and EHRs, an approach through which researchers were 69 

able to identify possible biomarkers for maturation and aging (Chen et al., 2008). While 70 

these studies illustrate the benefits of combining data from basic science with EHRs, no 71 

efforts connecting EHR to a comprehensive knowledge network have been yet reported. 72 
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This study builds upon these concepts and utilizes a heterogeneous network called 73 

Scalable Precision Medicine Oriented Knowledge Engine (SPOKE) to interpret data 74 

stored in electronic health records (EHR) of more than 800,000 individuals at UCSF. 75 

Currently, SPOKE integrates data from 29 publicly available databases and contains over 76 

47,000 nodes of 11 types and 2.25 million edges of 24 types, including disease-gene, 77 

drug-target, drug-disease, protein-protein, and drug-side effect (Himmelstein and 78 

Baranzini, 2015, Himmelstein et al, 2017).  79 

In this work we describe a method for embedding clinical features from EHRs 80 

onto SPOKE. By connecting EHRs to SPOKE we are providing real-world context to the 81 

network thus enabling the creation of biologically and medically meaningful “barcodes” 82 

(i.e. embeddings) for each medical variable that maps onto SPOKE. We show that these 83 

barcodes can be used to recover purposely hidden network relationships such as Disease-84 

Gene, Disease-Disease, Compound-Gene, and Compound-Compound. Furthermore, the 85 

correct inference of intentionally deleted edges connecting SideEffect to Anatomy nodes 86 

in SPOKE is also demonstrated. 87 

 88 

  89 
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RESULTS 90 

The main strategy of this work is to embed EHRs onto the SPOKE knowledge network 91 

utilizing a modified version of PageRank, the well-established random walk algorithm 92 

(Page et al., 1999). These embeddings, called Propagated SPOKE Entry Vectors (PSEVs) 93 

encode the importance of each node in SPOKE for every overlapping concept between 94 

the EHRs and SPOKE.  95 

 96 

Embedding EHR concepts in a knowledge network  97 

Deidentified EHR data from 816,504 patients was obtained from the UCSF 98 

medical center through the Bakar Computational Health Sciences Institute (BCHSI). The 99 

cohort was then filtered to only include patients that had been diagnosed with at least one 100 

of the 137 complex diseases currently represented in SPOKE, leaving 292,753 patients 101 

for further analysis. Select structured data tables (including medication orders, lab tests, 102 

and diagnoses) were used to create the PSEVs (see Methods). Each structured EHR table 103 

contains codes that can be linked to standardized medical terminology allowing direct 104 

links to SPOKE, referred to as SPOKE Entry Points (SEPs). There are currently 3,527 105 

SEPs and although this represents a sizable proportion (7.5%) of all nodes in SPOKE, 106 

most nodes are not directly reachable, thus potentially diluting the power of the network’s 107 

internal connectivity. Thus, a modified version of the random walk algorithm was used to 108 

propagate SEPs through the entirety of the knowledge network, thus creating a unique 109 

medical profile for each of the selected clinical features in the EHRs. 110 

In the original random walk algorithm, a walker is placed onto a given node in a 111 

network, and it can move from one node to another as long as there is an edge connecting 112 

them. The algorithm was adjusted in a way similar to topic-sensitive PageRank 113 

(Haveliwala 2002), by weighing the re-start parameter of the random walker towards 114 

nodes that are important for a given patient population.  115 

This modified version of PageRank can be applied to any patient cohort. To 116 

demonstrate that these vectors capture biologically meaningful information, PSEVs for 117 

Body Mass Index (BMI) (an ubiquitous variable in the EHR) were created. A patient’s 118 

BMI is recorded at each visit and is equivalent to their weight (kg) over their height (m) 119 

squared. BMI is typically used to classify patients into 4 main categories (underweight, 120 
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normal, overweight, and obese). Decades of research have provided deep insight into 121 

both the phenotypic and mechanistic manifestation of obesity. However, only the top-122 

level (phenotypic) information (i.e. BMI category) is captured in the EHRs. We 123 

hypothesized that by using this method it would be possible to integrate mechanistic and 124 

biological level data. 125 

When examining the distribution of BMIs across the UCSF patient population 126 

four groups are clearly distinguishable. Though these four groups align well with the 127 

standard categories, patients were separated in unbiased manner using k-means clustering 128 

in order to keep the algorithm blind to these pre-assigned classes (Figure 1A). Therefore, 129 

patient cohorts can be created without a priori knowledge of the standard classes. Figure 130 

1B illustrates the modified PageRank algorithm using patients in the high BMI cohort 131 

(BMI > 34). First, the records from all 73,237 patients in the high BMI cohort were 132 

extracted. Second, connections were created between each of those patients and all of 133 

their additional SEPs. By definition, this means connections to any medication, diagnosis, 134 

or laboratory result that is present in both that patient’s record and SPOKE. Third, a 135 

random walker is initialized and allowed to randomly jump back to the patient population 136 

with probability β (optimized β=0.1). Each iteration results in a rank vector that reflects 137 

the proportion of time the walker spends on each node in the network. In practice, for 138 

each iteration, this is calculated by taking the dot product of the transition probability 139 

matrix and the rank vector from the previous iteration (See Methods). Once the difference 140 

between the previous and current rank vector is less than some threshold (alpha=1E-3), 141 

the final PSEV is returned (bottom vector).  142 

One can imagine SPOKE as a set of interconnected water pipes and the SEPs as 143 

input valves. Then, the percentage of high BMI patients that have type 2 diabetes in their 144 

EHRs will determine how much water is allowed to flow through the type 2 diabetes SEP 145 

“valve”. Once all of the valves have been calibrated to fit the high BMI patient 146 

population, water can then flow to downstream nodes in SPOKE. Once the water reaches 147 

an almost steady state, differential water flow will highlight intersections of pipes 148 

(SPOKE nodes) that are significant for high BMI patients. 149 

 150 

Identifying Phenotypic Traits in PSEVs 151 
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The final PSEV is representative of how important each SPOKE node is for a 152 

given EHR concept based on both the connections in SPOKE and the patients with that 153 

concept in their EHR. To examine what this means, the prioritization of Disease elements 154 

in the PSEVs were compared for each of the four BMI cohorts. The top Diseases in the 155 

PSEV of the highest BMI cohort are obesity, hypertension, type 2 diabetes mellitus, and 156 

metabolic syndrome X. While not unexpected, the identification of these diseases as the 157 

most important conditions for this group of patients without any reference to the 158 

mechanisms underlying obesity present in the EHR, is noteworthy. These diseases are 159 

also well correlated with average BMI (r=0.75-0.95) and when their rank is plotted 160 

against average BMI, have some of the steepest slopes (slope=5.4-6.7), suggesting they 161 

are causally related.  162 

To learn more about the relationships between BMI and these diseases the plots of 163 

rank vs average BMI were further examined (Figure 2A). Hypertension becomes a top 164 

ranked Disease almost immediately (moving from rank 133 to 6 between BMI categories 165 

I and II). This makes sense given that hypertension is the most prevalent disease in UCSF 166 

cohort and many of the factors that contribute to hypertension risk are also related to 167 

increasing BMI. Metabolic syndrome X and obesity also display an abrupt rank change, 168 

on average 128 positions, between BMI categories II and III. This change suggests that 169 

metabolic syndrome X and obesity become associated with BMI once people have 170 

reached overweight status and that an increased BMI is one phenotypic manifestation of 171 

these conditions. Finally, type 2 diabetes mellitus becomes significantly ranked (position 172 

4) when patients reach overweight status. However, it differs in that progression in rank 173 

between BMI categories I and III is gradual suggesting increased BMI as a risk factor in 174 

type 2 diabetes mellitus. In contrast, celiac and Crohn’s disease progressively move down 175 

114 and 120 positions respectively between BMI categories I and IV. This trend could be 176 

explained by the fact that weight loss is symptomatic of both celiac and Crohn’s disease. 177 

Another Disease that shows a progressively moves down in rank with increased BMI is 178 

attention deficit hyperactivity disorder (ADHD). This negative correlation is due to the 179 

fact that most of the medications used to treat ADHD have side effects related to weight 180 

loss and loss of appetite. These results show that the algorithm correctly up-weights 181 
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phenotypes associated with high BMI in the PSEVs for Cohorts III and IV while also 182 

down-weighting those phenotypes in the low BMI Cohorts.  183 

It should be noted that up until this point, BMI has been treated as a continuous 184 

variable used to simply split patients into groups and the algorithm has been blind to the 185 

standardized classes associated to those groups. BMI was chosen to illustrate the utility of 186 

PSEVs because the consequences/traits of an abnormal BMI are very well known. 187 

However, since a PSEV can be created for any variable in the EHRs they can also be 188 

used to reveal phenotypic traits associated with less well-understood variables and 189 

phenotypes.      190 

 191 

PSEVs can Learn Genotypic Traits and Underlying Biological Mechanisms 192 

To test whether the same trend was seen at genotypic level, linear regressions 193 

were computed on the average BMI vs Gene rank. Again, the genes that positively 194 

correlated with average BMI were given the top prioritization in the high BMI PSEV. An 195 

example of a gene that is positively correlated with BMI is Alpha-Ketoglutarate 196 

Dependent Dioxygenase (FTO), also known as Fat Mass And Obesity-Associated 197 

Protein, is shown in Figure 2B. To check if these genes were genetically related to BMI, 198 

genes associated with increased BMI (not necessarily obesity, just an average increase) 199 

were extracted from the GWAS catalog (n=365) and compared them to the top 365 200 

ranked Genes in the PSEVs. Remarkably, BMI category IV was significantly enriched in 201 

known BMI associated genes (p=2.19E-10; Figure 2C). BMI category III was also 202 

significant while the BMI cohorts corresponding to underweight and normal BMIs 203 

showed no significant enrichment. Additionally, it was hypothesized that genes with 204 

altered expression would also be highly ranked. We found that 34% of dysregulated 205 

genes resided in the top 0.6% (n=119) of genes in the PSEV for cohort IV (p=9.28E-72; 206 

Figure 2D). This immense enrichment occurred because, unlike the GWAS catalog, 207 

datasets in the Gene Expression Omnibus (GEO) with just BMI as a phenotype (without 208 

any other major disease), had already been incorporated into SPOKE via obesity Disease-209 

UP(DOWN)REGULATES-Gene. Together these results illustrate that PSEVs can learn 210 

new relationships (GWAS) while also maintaining the known relationships in SPOKE 211 

(GEO). 212 
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 213 

PSEVs Preserve Original SPOKE Edges 214 

After identifying that the high BMI PSEV was able to preserve the known gene 215 

expression edges in SPOKE, we decided to check this in a high throughput manner. To 216 

do this, PSEVs were created for all of the concepts in the EHRs that directly mapped to a 217 

node in SPOKE (SEPs; n=3,233). Then the top ranked nodes (ranked per type) in each 218 

PSEV were examined (Supplementary Figure 1A-C). The majority of top ranked nodes in 219 

a given PSEV are also first neighbor relationships in SPOKE. For example, the Multiple 220 

Sclerosis (MS) Disease node is connected to 39 Anatomy nodes in SPOKE, if the top 39 221 

ranked Anatomy nodes are selected from the MS PSEV there is a 100% overlap with the 222 

MS Anatomy neighbors. Similarly, for Symptom nodes connected to MS, 80% of first 223 

neighbor relationships are maintained. This means that although most of the top nodes are 224 

the same, new relationships are prioritized based on the symptoms experienced by 225 

individual MS patients at UCSF. Next, the prioritizations of nodes that are not directly 226 

connected in SPOKE were considered (Supplementary Figure 1C). For instance, multiple 227 

nodes related to the response to interleukin-7 are ranked among the top 10 228 

BiologicalProcess nodes and the node for the structural constituent of myelin sheath in 229 

the top 10 MolecularFunction nodes. Though there is an abundance of evidence 230 

supporting these relationships, there is no direct relationship in SPOKE nor is this 231 

information stored in the EHRs, thus they must be learned during PSEV creation. These 232 

results illustrate the ability of PSEVs to preserve the original information from SPOKE 233 

while expanding its significance in a biologically meaningful manner by reaching out to 234 

more distant but biologically related nodes. Further, this demonstrates that PSEVs 235 

describe each EHR concept in multiple dimensions and is true to the hierarchical 236 

organization of complex organisms.       237 

 238 

After identifying and implementing a method to embed EHR onto the knowledge 239 

network, we sought to verify in a rigorous manner that the obtained vectors are 240 

biologically meaningful (i.e. that the expanded set of variables stemming from EHRs 241 

result in a network of related medical concepts). Next, we demonstrate that the PSEV 242 

ability to learn genetic relationships can be applied in a high throughput fashion. 243 
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Additionally, a series of benchmarks (supplemental text) shows that PSEVs ability to 244 

learn connections can be applied to other edge types such as Disease-Disease and 245 

Compound-Compound similarity, Compound to drug-protein (molecular targets), and 246 

SideEffect-Anatomy.  247 

 248 

Uncovering specific Disease-Gene Relationships in EHR embeddings. 249 

Because of the multitude of concepts present in SPOKE, multiple paths can 250 

connect any two nodes, thus providing redundancy. Thus, we hypothesized that unknown 251 

relationships, like the GWAS genes recovered in the high BMI PSEV, could still be 252 

inferred even if some of the information was missing because the random walker would 253 

traverse similar paths during PSEV computation. To address this point, all of the 254 

Disease-Disease and Disease-Gene edges in SPOKE were removed and the PSEVs were 255 

recomputed the Disease PSEVs (PSEVΔDD, ΔDG), ranking the Gene nodes in each Disease 256 

PSEV.  257 

The resulting PSEVs (PSEVΔDD, ΔDG) were visualized in a heatmap and clustered 258 

by Diseases and Genes (Fig 3A). Clearly defined groups of diseases can be identified in 259 

the heatmap, many of which are known to share associated or influential genes. For 260 

example, Disease Cluster 4 contains mainly neurological, diseases such as multiple 261 

sclerosis, Alzheimer's disease, narcolepsy, autistic disorder, and attention deficit 262 

hyperactivity disorder. The Gene cluster most characteristic of Disease Cluster 4 contains 263 

197 genes (Fig 3B). Within this Gene cluster, 96 Genes are associated with at least one 264 

Disease in Disease Cluster 4 (enrichment fold change=2.0), 33 Genes are associated with 265 

at least 2 diseases (enrichment fold change=3.9), and 15 Genes are associated with at 266 

least 3 diseases (enrichment fold change=5.4; Fig 3C-D). These results support the 267 

hypothesis that PSEVs encode deep biological meaning. 268 

To validate that the recomputed PSEVs (generated without the critical edges) 269 

were able to uncover genetic relationships among the complex diseases in SPOKE, a 270 

Disease-Gene networks (DG) using the top K Gene nodes for each Disease in PSEVΔDD, 
271 

ΔDG was created, where K is equal to the number of known gene associations for a given 272 

disease. In SPOKE, the ASSOCIATES_DaG edges represent known associations 273 

between Diseases and Genes and are obtained from the GWAS Catalog (MacArthur et 274 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540963doi: bioRxiv preprint 

https://doi.org/10.1101/540963
http://creativecommons.org/licenses/by-nc/4.0/


 11

al., 2017), DISEASES (Pletscher-Frankild et al., 2015), DisGeNET (Pin �ero et al., 2015; 275 

Pin �ero et al., 2016), and DOAF (Xu et al., 2012). DG networks were generated using 276 

either the original PSEVs (DGPSEV, Blue) or the incomplete, benchmarking PSEVΔDD, ΔDG 277 

(DG PSEVΔDD, ΔDG, Green Fig. 4A). These networks were compared against networks 278 

created using three random matrices as a way to generate a null distribution: 279 

PSEVRANDOM (DGRANDOM, Pink distribution Fig. 4A), PSEVSPOKE SHUFFLED (DGSPOKE 
280 

SHUFFLE, Red), and PSEVSEP SHUFFLED (Orange, DGSEP SHUFFLE). Next, the number of 281 

overlapping edges between each of the DG networks and the gold standard Disease-282 

ASSOCIATES_DaG-Gene (DGSPOKE) edges (n=12,623) in SPOKE were compared. 283 

When selecting the top K Genes using only Genes with at least one ASSOCIATES_DaG 284 

edge (n=5,392), both DGPSEV and DGPSEVΔDD, ΔDG shared significantly more edges with 285 

DGSPOKE than with any of the random networks (Fig 4A; average fold change 15.2 and 286 

2.4 accordingly). This suggests that redundancy in spoke paths can be used to infer 287 

genetic relationships even when the original (direct) associations are removed.  288 

These results were even more striking when selecting the top K genes using all 289 

genes in SPOKE (Fig 4A insert; n=20,945; average fold change 40.6 and 4.5 290 

accordingly). It should also be noted that, unlike PSEVΔDD, ΔDG, both PSEVSEP SHUFFLED 291 

and PSEVSPOKE SHUFFLED were created without deleting the Disease-Disease and Disease-292 

Gene edges from SPOKE, therefore the correct edges were present at least some of the 293 

time even in the permuted networks, thus providing a higher level of stringency. 294 

 295 

Learning Rate Differs Between Edge Types 296 

 One of the main challenges with knowledge networks is that as long as our 297 

knowledge is incomplete, the networks will suffer from missing edges. The benchmark 298 

shown here illustrates the most severe scenario in which 100% of our knowledge about 299 

the relationships among Diseases and between Diseases and Genes is removed. To 300 

evaluate performance of the algorithm as the network gains knowledge, edges were 301 

slowly added back to the network. We found that the PSEVs learned well-established 302 

(ASSOCIATES) Disease-Gene edges before the more noisy (REGULATES) edges 303 

(Figure 4B). This is most likely due to the fact that well-established (associated) Genes 304 

are necessarily drivers of (not reacting to) a Disease. In practice this would cause the 305 
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random walker keep going back to BiologicalProcess, CellularComponent, 306 

MolecularFunction, and Pathway nodes that are important for a given Disease and 307 

thereby push information to Genes involved in those activities. Alternatively, the random 308 

walker could travel to Anatomy nodes that express Genes that are associated with a 309 

Disease or through Compounds that are used to treat (or even those that exacerbate) a 310 

Disease. This further demonstrates that the relationships inferred within PSEVs are 311 

biologically meaningful. 312 

 313 

Retracing the path between SEP and Genes 314 

Finally, to understand how the patient population at UCSF influenced the PSEVs 315 

to correctly rank Disease-Gene associations the shortest paths were retraced between the 316 

significant SPOKE Entry points of a given Disease and the associated Gene (Fig 4C; 317 

Methods). For example, the locus containing CSMD1 is associated with Schizophrenia in 318 

the GWAS Catalog. Figure 4D shows why the gene CSMD1 was one of the top ranked 319 

Genes in the PSEVΔDD, ΔDG for Schizophrenia.  The weight from the EHRs of 320 

Schizophrenia patients at UCSF drives information towards Anatomy in which CSMD1 is 321 

expressed or regulated and Compounds that bind or regulate Genes that interact or 322 

regulate with CSMD1. The combined weight highlights CSMD1 as a gene that is 323 

associated with Schizophrenia. This example highlights the fact that inferences made 324 

with this method are not “black box” predictions, but the information used to make the 325 

inference can be traced back to the exact concepts. We believe that knowledge based 326 

“clear box” algorithms, such as the one presented here, will be pivotal in the 327 

advancement of precision medicine.   328 

 329 

 330 

 331 

  332 
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DISCUSSION  333 

Uncovering how different biomedical entities are related to each other is essential 334 

for speeding up the transformation between basic research and patient care. When 335 

deciding the best therapeutic management strategy for a patient, physicians often need to 336 

think about the symptoms they present, their internal biochemistry, and potential 337 

molecular impact and adverse events of drugs simultaneously. A well-trained and 338 

experienced doctor will likely prescribe the best course of action for that patient. 339 

However, significant heterogeneity is seen even across the best hospitals on what “best 340 

course of action” means for a given patient, resulting in poor consistency, a labyrinth of 341 

solutions, and ultimately lack of evidence-based medicine. Since it is naturally 342 

impossible for a single person to retain and recall all the necessary and relevant 343 

information, an efficient manner to incorporate this knowledge into the health care 344 

system is needed. We argue that since PSEVs can be created for any code or concept in 345 

the EHRs it is possible they could provide such solution. Using PSEVs we were able to 346 

integrate what we have learned from the last five decades of biomedical research into the 347 

codes used to describe patients in the EHRs. As a result, these embeddings serve as a first 348 

step to bridging the divide between basic science and patient data.  349 

Our method for the integration of EHRs and a comprehensive biomedical 350 

knowledge network is based on random walk. Random walk has been applied to a wide 351 

variety of biological topics such as protein-protein interaction networks (Can et al., 352 

2005), gene enrichment analysis (Subramanian et al., 2005), and ranking disease genes 353 

(Köhler et al., 2008; Valentini et al., 2014; Wang et al., 2015). Additionally, random walk 354 

has been used to infer missing relationships in large incomplete knowledge bases (Lao et 355 

al., 2011). Our method includes the generation of PSEVs, as a way to embed medical 356 

concepts onto the network. The entire patient population at UCSF was used to determine 357 

how important each node in SPOKE is for a particular code. Therefore, each PSEV 358 

describes EHR codes in both a high level phenotypic and deeper biological manner.  359 

We demonstrate that not only do PSEVs carry the original relationships in 360 

SPOKE, but also are able to infer new connections. This was illustrated by ability of 361 

PSEVs to recover deleted Disease-Disease, Disease-Gene, Compound-Compound, and 362 

Compound-Gene edges as well as to infer new relationships between SideEffect and 363 
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Anatomy nodes. Other than just showing that PSEVs can learn relationships between 364 

different types of nodes, these tests illustrated that PSEVs can learn relationships between 365 

nodes at a variety of lengths apart from one another. By inferring the Disease-Disease 366 

and Compound-Compound edges, we demonstrated that PSEVs could find SEP-, or 367 

EHR-level relationships. By inferring Disease-Gene and Compound-Gene edges, we 368 

verified that PSEVs could find SEP to SPOKE level relationships. Finally, by inferring 369 

SideEffect-Anatomy edges we proved PSEVs could find SPOKE-level relationships. 370 

These tests served as our proof of principle that PSEVs can learn multiple types of new 371 

relationships.  372 

Further, these results illustrate that, unlike black box methods, PSEVs are capable 373 

of embedding phenotypic traits such as risks, co-morbidities, and symptoms. Other 374 

vectorization methods like word2vec are able to learn relationships, however since the 375 

elements within the vector are unknown they cannot be traced back to a given trait in the 376 

EHRs. Similarly, though it is possible to identify these phenotypic traits using a statistical 377 

analysis of a single cohort, the benefit to using PSEVs is that these traits are identified in 378 

a high throughput fashion for every concept in the EHRs and outputs them in a format 379 

that can be used in machine learning platforms. PSEVs, and other clear box algorithms, 380 

allow us to integrate knowledge into data, therefore generating deeper, informed 381 

characterizations that can be understood by both humans and machines. 382 

 The potential uses of PSEVs are vast. We recognize that several associations in 383 

EHRs can be uncovered using clinical features alone, and several machine-learning 384 

approaches are already being utilized to that end (Shickel et al., 2018). However, since 385 

PSEVs describe clinical features on a deeper biological level, they can be used to explain 386 

why the association is occurring in terms of Genes, Pathways, or any other nodes in a 387 

large knowledge network like SPOKE. Consequently, PSEVs can be paired with machine 388 

learning to discover new disease biomarkers, characterize patients, and drug repurposing. 389 

With implementation of some of these features, we anticipate that PSEVs or similar 390 

methods will constitute a critical tool in advancing precision medicine. 391 

 392 

 393 

  394 
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MATERIALS AND METHODS 398 

 399 

Electronic Health Records 400 

The University of California, San Francisco (UCSF) supplied the Electronic 401 

Health Records (EHRs) in this paper through the Bakar Computational Health Sciences 402 

Institute. Almost one million people visited UCSF between 2011-2017. Out of 878,479 403 

patients 292,753 had at least one of the 137 complex diseases currently represented in 404 

SPOKE. The EHRs were de-identified to protect patients’ privacy. For this paper we 405 

collected the information on the cohort of patients with complex diseases using de-406 

identified LAB, MEDICATION_ORDERS, and DIAGNOSES tables. The LAB table 407 

contains the lab test orders and results, including the actual measurements and the 408 

judgment of whether the results were abnormal. The MEDICATION_ORDERS table 409 

contains prescriptions with dose, duration, and unit. The DIAGNOSES table contains 410 

diagnosis and symptoms with ICD9 and ICD10 codes. These tables are linked by Patient 411 

IDs (one unique ID for each patient) and Encounter IDs (one unique ID for each 412 

encounter a given patient has with our medical system). 413 

 414 

Scalable Precision Medicine Oriented Knowledge Engine  415 

Scalable PrecisiOn Medicine Knowledge Engine (SPOKE) is a heterogeneous 416 

knowledge network that includes data from 29 publicly available databases, representing 417 

a significant proportion of information gathered over five decades of biomedical research 418 

(Himmelstein et al. 2017). This paper was powered by the first version of SPOKE, which 419 

contains over 47,000 nodes of 11 types and 2.25 million edges of 24 types. The nodes 420 

(Anatomy, BiologicalProcess, CellularComponent, Compound, Disease, Gene, 421 

PharamacologicalClass, SideEffect, and Symptom) all use standardized terminologies 422 

and were derived from five different ontologies. The sources and counts of each node and 423 

edge type are detailed in Supplementary Tables 1A,B.  424 

 425 

Connecting EHRs To SPOKE 426 

EHRs were connected to SPOKE Disease, Symptom, SideEffect, Compound, and 427 

Gene nodes. To connect to Disease nodes, ICD9/10 (Steindel 2010) codes in the EHRs 428 
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were translated to Disease Ontology identifiers (Schriml et al., 2012; Kibbe et al., 2015). 429 

Since this relationship was used to select the patient cohort, we manually curated the 430 

mappings. The connection to Symptom and SideEffect nodes was also made from 431 

translating the ICD9/10 codes via MeSH identifiers and CUI respectively. The 432 

relationship between Compound nodes and EHRs was derived by mapping RxNorm to 433 

the FDA-SRS UNIIs (Unique Ingredient Identifiers) to DrugBank Identifiers. Lab tests 434 

were connected to multiple node types in SPOKE using the Unified Medical Language 435 

System (UMLS) Metathesaurus (Bodenreider, 2004). The LOINC (McDonald et al., 436 

2003) codes in the EHRs were mapped to CUI and then mapped to a second CUI (CUI2) 437 

using UMLS relationships. A connection between LOINC and SPOKE would be made if 438 

CUI2 could be translated to a node in SPOKE. CUIs with nonspecific relationships were 439 

excluded. There are 70,843 unique codes found in the Diagnosis, Medication Orders, and 440 

Labs tables in the UCSF EHRs, 70,842 of which mapped to 3,527 nodes in SPOKE. Of 441 

these, 3,233 were seen in the complex disease cohort and were used as the SPOKE Entry 442 

Points (SEPs). 443 

 444 

Generating Propagated SPOKE Entry Vectors 445 

First, we initialized a n x n SEP transition matrix (where n = the number of SEPs) 446 

and set every value to zero. Then for each patient in the complex disease cohort, we 447 

created a binary vector of the SEPs in their EHRs and divided it by the sum of the vector. 448 

This patient vector was then added to the rows of the SEP transition matrix that 449 

corresponded to the SEPs found in the patient’s EHRs. Once every patient was accounted 450 

for, the SEP transition matrix was transposed and divided by the sum of the columns.  451 

Next, we made an adjacency matrix using the edges in SPOKE to create a SPOKE 452 

transition probability matrix (TPM) in which each column sums to 1. The SPOKE TPM 453 

was then multiplied by 1-β where β equals the probability of random jump. An extra row 454 

was then added to the SPOKE TPM and filled with β. 455 

Last, the Propagated SPOKE Entry Vectors (PSEVs) were generated using a 456 

modified version of the PageRank algorithm (Page et al., 1999; Haveliwala 2002). In this 457 

version of PageRank, for each PSEV, the random walker traverses the edges of SPOKE 458 

until randomly jumping out of SPOKE (at probability β) to the given SEP. The walker 459 
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will then enter back into SPOKE through any SEP using the probabilities found in the 460 

corresponding column of the SEP transition matrix. The walker will continue this cycle 461 

until the difference between the rank vector in the current cycle and the previous cycle is 462 

less than or equal to a threshold (α). The final rank vector is the PSEV and contains a 463 

value for every node in SPOKE that is equivalent to the amount of time the walker spent 464 

on each given node.  465 

 466 

BMI GWAS 467 

Genes were selected from the GWAS Catalog if they were associated with an increase in 468 

BMI and were genome wide significant. 469 

 470 

Disease Benchmark 471 

Generating Disease PSEV matrix for benchmark 472 

We created Disease benchmark PSEV matrix (PSEVΔDD, ΔDG) by removing the 473 

Disease-Disease and Disease-Gene relationships in SPOKE prior to PSEV creation. We 474 

then used z-scores to normalize the PSEVΔDD, ΔDG and ranked the elements for each type 475 

of node.  476 

 477 

Random Disease matrix 478 

In order to test the importance of the edges between SEPs and SPOKE as well as 479 

SPOKE’s internal edges, we generated three types of random PSEVs. First, we created a 480 

completely random PSEV matrix by using the Fisher–Yates method to permute the 481 

SPOKE nodes for each Disease PSEV (PSEVrandom). Second, for each edge type in 482 

SPOKE, we randomly shuffled the edges prior to PSEV creation (PSEVshuffled_SPOKE). 483 

Third, we shuffled the edges between the SEPs and SPOKE prior to PSEV creation 484 

(PSEVshuffled_SEP). It should be noted that when creating PSEVshuffled_SEP, all SPOKE 485 

relationships were maintained. Additionally, SEP-SPOKE edges were only shuffled once 486 

and therefore any relationships coming directly from the merged EHRs to the SEPs 487 

would be conserved. Once random PSEVs were created they were normalized using z-488 

scores  489 

 490 
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Inferring Disease-Gene Relationships From PSEVs 491 

 In addition to looking at Disease-Disease relationships, we examined the ability 492 

of PSEVs to rank the Disease-ASSOCIATES_DaG-Gene relationships from SPOKE. 493 

The Disease-ASSOCIATES_DaG-Gene edges (n=12,623) in SPOKE come from four 494 

sources: the GWAS Catalog (MacArthur et al., 2017), DISEASES (Pletscher-Frankild et 495 

al., 2015), DisGeNET (Pin �ero et al., 2015; Pin �ero et al., 2016), and DOAF (Xu et al., 496 

2012).  497 

After z-score normalizing the PSEV matrix, within each Disease PSEV, Genes 498 

were ranked 1 to 5,392 or 20,945 when using only Genes that are associated with at least 499 

one Disease or the full set of Genes accordingly, such that a Gene ranked 1 would denote 500 

the most important Gene for a given Disease based on the PSEV matrix. Then for each 501 

Disease PSEV, K Genes were selected where K was equal to the number of Genes are 502 

associated with a given Disease. The p-values for ability of each Disease PSEV to 503 

correctly rank the associated Genes were then combined using Fisher’s method (Fisher 504 

1992). This evaluation was applied to the original PSEV, benchmark PSEV, and all three 505 

random networks (Figure 4A-B). 506 

 507 

Creating Disease-Gene heat map. 508 

 The PSEVΔDD, ΔDG matrix was filtered such that it only contained Disease PSEVs 509 

and the Gene elements that are associated with at least one Disease in SPOKE (m=137, 510 

n=5,392). This was then used as input into the seaborn clustermap package in python 511 

with the settings method='average' and metric='euclidean'.  512 

 513 

Shortest paths between SEP to target nodes. 514 

 To understand how the PSEVs were able to recover deleted relationships we 515 

traced from the target node back to the contributions of each SEP. To achieve this, we z-516 

score normalized the original SEP transition matrix used to calculate the PSEVs. Then we 517 

created a SPOKE only PSEV matrix (PSEVSPOKE-only) that forces the random walker to 518 

randomly restart (B=0.33) from a single SEP. The PSEVSPOKE-only matrix was create using 519 

SPOKE with deleted Disease-Disease and Disease-Gene edges or Compound-Compound 520 

and Compound-Gene edges when recovering the paths for PSEVΔDD, ΔDG and PSEVΔCC, 
521 
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ΔCG accordingly. The PSEVSPOKE-only matrix allows to identify the contribution of an 522 

individual SEP to any of the downstream nodes. We then took the product of a given 523 

Disease or Compound transposed vector from the SEP transition matrix with the 524 

PSEVSPOKE-only to generate contributions of each SEP to the target node. The most 525 

important SEP were selected if they were in the top 0.1 percentile of contributors. We 526 

then found the shortest paths between the important SEPs and the target node. 527 

 528 

  529 
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SUPPLEMENTARY TEXT 530 

 531 

Inferring Disease-Disease Relationships From PSEVs 532 

 Utilizing the normalized original matrix (PSEV), benchmark matrix (PSEVΔDD, 
533 

ΔDG) and the three random PSEV matrices, we checked to see if the deleted SPOKE 534 

Disease-RESEMBLES_DrD-Disease edges could be inferred directly from the PSEV 535 

matrices. The Disease-RESEMBLES_DrD-Disease edges in SPOKE were derived using 536 

MEDLINE co-occurrences (n=1,086). This evaluation mirrors that used to test the 537 

recovered Disease-Gene relationships. However, in this case the Diseases elements 538 

(n=129 using Diseases that resemble at least one other Disease or n=137 for entire set of 539 

Diseases in SPOKE) in each Disease PSEV were ranked such that the one ranked 1 540 

would denote the most similar to a given Disease. All PSEV matrices were evaluated 541 

using this method (Supplementary Figure 2). 542 

 543 

Recovering Deleted Disease Resembles Disease Relationships 544 

 We next used PSEV to create a Disease-Disease network (DDPSEV) as we did the 545 

Disease-Gene networks and used a similar strategy to build background networks as 546 

comparators (DDPSEVΔDD, ΔDG, DDRANDOM, DDSPOKE SHUFFLE, and DDSEP SHUFFLE) using the 547 

original, benchmark and three random PSEV matrices. These Disease-Disease networks 548 

were then evaluated by the number of edges they shared with the Disease-RESEMBLES_ 549 

Disease_(DrD)-network from SPOKE (DDSPOKE). The RESEMBLES_DrD edges in 550 

SPOKE were created using the most statistically significant MEDLINE term co-551 

occurrences (n=1,086, p<0.005; Himmelstein et al. 2017). Again, we found that DDPSEV 552 

(and even DDPSEVΔDD, ΔDG) was able to recover more of the deleted edges (on average 553 

4.7x and 3.7x accordingly) than any of the three random networks (Supplementary Figure 554 

2B). 555 

Interestingly, one of the three random networks (DDSPOKE SHUFFLE) performed 556 

significantly better than the other two. We hypothesize this is due to the fact that some 557 

Disease-Disease relationships are observable in the EHRs as co-morbidities and 558 

misdiagnoses. This information is then feed directly into the Disease SEPs, making 559 

Diseases that resemble other Diseases significant in the PSEVs. Since this relationship 560 
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does not always need to traverse paths in SPOKE, it is observable in the DDSPOKE SHUFFLE. 561 

In contrast, in DDSEP SHUFFLE the altered mappings between the SEPs and SPOKE disrupt 562 

observable relationships in the EHRs, which in turn inhibits the prioritization of Disease 563 

nodes. These results highlight the accuracy of the mappings between EHR concepts to 564 

nodes in SPOKE.  565 

Additionally, in order to learn how we are able to correctly identify related 566 

Diseases even after deleting Disease-Gene and Disease-Disease edges from SPOKE, we 567 

retraced the shortest paths between significant SEPs of a given Disease to its target 568 

related Disease(s). Figure 2A shows how Hypertension was ranked as a top Disease in 569 

the Type 2 Diabetes PSEVΔDD, ΔDG. The “pressure” from the EHRs of Type 2 Diabetes 570 

patients pushes the flow of information to the Anatomy in which Hypertension is 571 

localized, Symptoms presented by Hypertension, and Compounds that treat or palliate 572 

Hypertension. This flow of information makes Hypertension a top ranked Disease for 573 

Type 2 Diabetes. Further, this pattern of information flow, particularly through Anatomy 574 

and Symptom nodes, is very conserved in the shortest paths between Disease pairs. 575 

 576 

Compound Benchmark 577 

Compound-Compound PSEV Based Network 578 

We created Compound benchmark PSEVs (PSEVΔCC, ΔCG) by removing the 579 

Compound-Compound and Compound-Gene relationships in SPOKE prior to PSEV 580 

creation. We then used z-scores to normalize the PSEVΔCC, ΔCG. 581 

 582 

Random Compound PSEVs 583 

The three random Compound PSEV matrices were derived in the same way as the 584 

random Disease PSEV matrices. First, PSEVRANDOM was created by permuting the nodes 585 

in the Compound PSEVs using the Fisher–Yates method. Second, PSEVSPOKE Shuffle was 586 

created by shuffling the edges within SPOKE, by edge type. Third, PSEVSEP Shuffle was 587 

created by shuffling the edges between SEPs and SPOKE, by edge type. Neither 588 

Compound-Compound or Compound-Gene edges were deleted prior to random PSEV 589 

calculation. All random PSEV matrices were then z-score normalized. 590 

 591 
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Inferring Compound-Protein binding partners using EHR embeddings. 592 

 Employing the original matrix (PSEV), benchmark matrix (PSEVΔCC, ΔCG) and 593 

three random matrices (PSEVrandom, PSEVshuffled_SPOKE, and PSEVshuffled_SEP) we tested 594 

whether the molecular targets of a given compound were ranked higher in that 595 

Compound’s PSEV. To test this we used the Compound-BINDS_CbG-Gene edges in 596 

SPOKE which were derived from a Compound’s protein targets from BindingDB (Chen 597 

et al., 2001; Gilson et al., 2016), DrugBank (Law et al., 2014; Wishart et al., 2006), and 598 

DrugCentral (Ursu et al., 2017) (11,571 edges).   599 

Though this method of evaluation is very similar to the previous methods, it 600 

differed in that we selected a fixed number of top K ranked nodes to select from each 601 

Compound PSEV (K=150). The decision to choose a fixed K was based on the fact that 602 

the average number of Gene binding partners per Compound was much smaller than the 603 

average number of Genes that associate with Diseases. The value of K was calculated by 604 

finding the point at which the patient population no longer contributes positively to the 605 

rank of the target Gene. The simplest way to calculate patient contribution to the target 606 

Gene is through proportion of patients on a given Compound that have been diagnosed 607 

with a Disease that is related to the target Gene (Supplementary Fig 3C). This is 608 

computed by z-score normalizing the transition probability matrix and summing the 609 

values of Diseases that are related to the target Gene for a given Compound. We then plot 610 

the aggregated z-scores against rank to find the point in which the aggregated z-scores 611 

reaches zero (K=150; Supplementary Fig 3C).  612 

Interestingly, we found that the most significant negative information flow (right 613 

end of the plot) was associated with the worst ranked Genes and often corresponded to 614 

contraindications. For example, Tolmetin, a non-steroidal anti-inflammatory drug, targets 615 

PTGS1 - a gene known to be related to hypertension (Radi, Z., et al. 2007; Bruno, A., et 616 

al. 2014; Supplementary Fig 3A). However, Tolmetin is contraindicated for hypertension 617 

because it increases the risk of adverse cardiovascular events. As a result, within the 618 

population of patients that were prescribed Tolmetin, the number of patients that were 619 

also diagnosed with hypertension was fewer than expected. This causes negative 620 

information flow through PTGS1 in the Tolmetin PSEV. 621 

 622 
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Next, selecting the top 150 Genes per Compound PSEV, we built Compound-623 

Gene networks using the original (CGPSEV), benchmark (CGPSEVΔCC, ΔCG), and three 624 

random PSEV matrices (CGRANDOM, CGSPOKE SHUFFLE, and CGSEP SHUFFLE) respectively. 625 

We then compared the number of overlapping edges between the CGSPOKE, a Compound-626 

Gene network created with the Compound-BINDS_CbG-Gene edges in SPOKE, and the 627 

other CG networks. When selecting the top K Genes using only Genes that have at least 628 

one BINDS_DbG edge, we found that CGPSEVΔCC, ΔCG and CGPSEV shared on average 1.9x 629 

and 6.9x more edges than the three random networks (Supplementary Fig. 3B) and when 630 

selecting the top K from all Gene nodes in SPOKE, the sharing increased to 4.3x and 631 

51.5x respectively (Supplementary Fig. 3B insert). These results show that adding patient 632 

information from the EHRs enables the discovery of Compound-Gene relationships in 633 

SPOKE. 634 

Finally, to unravel how Compound binding partners are highly ranked in PSEVs 635 

even after Compound-Gene and Compound-Compound edges are deleted, we again 636 

retraced the shortest paths between significant SEPs and the target Gene. 637 

Ursodeoxycholic acid is a cholesterol-lowering medication that can also be used to 638 

dissolve gallstones and treat liver disorders and is known to target the protein ABCB11, a 639 

member of the superfamily of ATP-binding cassette (ABC) transporters (Green et al., 640 

2000; Schuetz et al., 2001; Mita et al., 2005). Supplementary Figure 3A shows how 641 

EHRs from patients prescribed Ursodeoxycholic acid guide the flow of information to 642 

ABCB11. The information is driven towards BiologicalProcess and Pathway nodes that 643 

ABCB11 participates in and Diseases that are localized in Anatomies that ABCB11 is 644 

expressed or regulated in. Since Gene nodes only represent a small fraction of SEPs, this 645 

pattern of flow from SEP to target Gene is not very common because it includes a Gene 646 

node (gamma-glutamyltransferase 1, GGT) as one of the SEPs. High levels of GGT are 647 

often associated with liver or bile duct diseases, which explains why patients may benefit 648 

from this drug, as well as informs the connection to ABCB11.  More commonly, the 649 

shortest paths will involve information flow through Disease, Anatomy, and occasionally 650 

Gene nodes. 651 

 652 

Compound fingerprint similarity in EHR embeddings. 653 
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Analogous to generating the Disease-Disease networks, we created Compound-654 

Compound networks using the top K ranked Compound nodes in the original (CCPSEV), 655 

benchmark (CCPSEVΔCC,ΔCG), or random PSEV (CCRANDOM, CCSPOKE SHUFFLED, and CCSEP 
656 

SHUFFLED) matrices, where K equals the number of similar Compounds to a selected 657 

Compound. Then we created a fingerprint-based Compound-Compound network 658 

(CCSPOKE) using the Compound-RESEMBLES_CrC-Compound edges (n=7,703) in 659 

SPOKE.  The Compound-RESEMBLES_CrC-Compound edges in SPOKE were derived 660 

using the similarity between two Compounds extended connectivity fingerprints (Rogers 661 

and Hahn, 2010; Morgan, 1965) and filtered based on their Dice coefficient (Dice, 1945; 662 

Himmelstein et al. 2017). Next, we computed the number of edges that were shared 663 

between CCSPOKE and the other Compound-Compound networks. We found that the 664 

observed number of shared edges in CCPSEVΔCC, ΔCG and CCPSEV were on average 665 

significantly higher than random (4.4x and 15.2x) when selecting from the set of 666 

Compounds that resembles at least one other Compound and even higher (4.9x and 667 

17.6x) when selecting from the entire set of nodes in SPOKE (Supplementary Figure 4B). 668 

Again the p-values in the figure were calculated using Fisher’s method to combine the p-669 

values for selecting the top K Compounds from each Compound PSEVΔCC, ΔCG. 670 

Just as when we inferred Disease-Disease relationships, we noticed that CCSPOKE 
671 

SHUFFLED performed better than the other two random networks. Again, this is likely 672 

because we attempted to predict relationships that can sometimes be observed without 673 

traversing SPOKE because they are observable in the EHRs. Therefore, shuffling the 674 

edges within SPOKE won’t greatly impact this prediction. Furthermore, these results also 675 

demonstrate that we are correctly mapping medication orders in the EHRs to Compound 676 

nodes in SPOKE.  677 

To elucidate how the benchmark PSEVs could infer whether two compounds 678 

were similar, we again found the shortest paths between the important SEPs and target 679 

(Compound) node. We found that in order to connect Compounds, the random walker 680 

usually followed one of two path patterns. In one pattern, the information from the patient 681 

population on a given Compound is “pushed” through shared SideEffects and 682 

PharmacologicalClasses. For example, Tioconazole resembles Sertaconazole 683 

(similarity=0.80) and in order to connect the two Compounds pressure from patients on 684 
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Tioconazole must move information flow through the SideEffects Pruritus, Erythema, 685 

Dry skin, and Application site reaction and the PharmacologicalClass Azoles 686 

(Supplementary Fig. 4A left). The other shortest path pattern for recovering similar 687 

Compounds is observed when two Compounds treat the same Disease. An example of 688 

this is seen when connecting Trihexyphenidyl to Procyclidine (similarity=0.98; 689 

Supplementary Fig. 4A right) which both are used to treat Parkinson’s disease (PD). 690 

Here, most of the weight from the EHRs of patients on Trihexyphenidyl is coming from 691 

PD and nodes related to PD:  Trihexyphenidyl (Compound treats PD), Dyskinesias 692 

(Symptom presented by PD), and Tremor (Symptom presented by PD). This results in 693 

significant information flow to the Procyclidine node. These results prove the PSEVs 694 

ability to identify Compounds with similar structures as well as illustrate what 695 

components of the EHRs and relationships of SPOKE are most critical to inform that 696 

decision. 697 

 698 

SideEffect to Anatomy Benchmark 699 

MEDLINE Co-occurrence Gold Standard 700 

 MEDLINE yearly publishes the co-occurrences of MeSH terms found on 701 

Pubmed publications. After converting Anatomy and SideEffect identifiers to MeSH IDs 702 

we created a counts matrix for co-occurring Anatomy and SideEffect terms. Out of the 703 

699,745 possible pairs, 222,224 had at least one co-occurrence). Then we preformed χ2 to 704 

determine the significance of the Anatomy-SideEffect MEDLINE relationships. Since 705 

51% of relationships had a p-value less than or equal to 0.05, we decided to strengthen 706 

the filter to the top 5% of p-values (p=7.4E-75) leaving 11,112 Anatomy-SideEffect pairs. 707 

 708 

PSEV Benchmark Anatomy-SideEffect Network 709 

 First, we used z-score to normalize the PSEV matrix. Then we transposed the 710 

PSEV matrix (PSEVT) to obtain a vector (n=3,233) for every node in SPOKE. This 711 

vector describes the importance of a given SPOKE node for each SPOKE Entry Point 712 

(SEPs). Next, vectors from PSEVT were then used to calculate the cosine similarity 713 

between Anatomy and SideEffect nodes. Finally, the similarities were ranked (1 to 714 
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699,745), such that a rank of 1 signified the most similar Anatomy-SideEffect pair in the 715 

matrix. 716 

 717 

Random Anatomy-SideEffect Networks 718 

 To create a random PSEVT matrix, the normalized benchmark PSEVT was 719 

shuffled using the Fisher–Yates method to randomly permute the rows of the matrix. The 720 

random PSEV matrix was then used to calculate the cosine similarity between the 721 

Anatomy-SideEffect pairs and ranked from 1 to 699,745 in the same way as the 722 

benchmark matrix.  723 

 724 

Overlapping Anatomy-SideEffect Links 725 

 Benchmark and random Anatomy-SideEffect networks were created using the top 726 

k (k=1 to 699,745, increasing in intervals of 5%) nodes in PSEV and PSEVRANDOM 727 

accordingly. Supplementary Figure 5 shows the overlapping counts and fraction between 728 

the RP networks and the 11,112 Anatomy-SideEffect pairs from MEDLINE. Inserts in 729 

Supplementary Figures 5A-C focus on k<= 11,112, corresponding the number of 730 

Anatomy-SideEffect pairs from MEDLINE. The highest fold changes 18.1 over random 731 

occurred in the top k=1,000 respectively (Supplementary Figure 5C insert). 732 

 733 

Recovering the major shortest paths between SideEffect and Anatomy nodes 734 

 First, we needed to find the nodes that contributed most weight to the similarity of 735 

the SideEffect- Anatomy pair. Since we used cosine similarity, which is equivalent to the 736 

dot product of two unit vectors, we simply multiplied the SideEffect and Anatomy 737 

transposed PSEVs and selected the highest 0.1% of nodes. Those nodes are labeled as top 738 

contributors in Supplementary Figures 5D-F. We then found the shortest paths between 739 

each top contributor node and the target SideEffect and Anatomy nodes. 740 

 741 

SideEffect-Anatomy relationships in embedded EHR concepts match MEDLINE co-742 

occurrences. 743 

Although it is natural to draw a connection between drug side effects and the 744 

anatomies they affect (e.g. a headache must somehow relate to the brain), SideEffect and 745 
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Anatomy nodes are not directly connected in SPOKE. In fact, in order to get from a 746 

SideEffect to an Anatomy node one must traverse a minimum of three edges. As a result, 747 

correctly inferring the relationships between Anatomy and SideEffect nodes would show 748 

that appropriate weights are assigned to distant nodes in the network. To test this, we 749 

created a gold standard SideEffect-Anatomy network using only highly significant 750 

relationships from MEDLINE co-occurrences (SeAMEDLINE) (p=7.4e-75; n=11,112; avg 751 

6.4 Anatomy per SideEffect). Next, we computed a SideEffect-Anatomy cosine similarity 752 

matrix using the transposed PSEV matrix (See methods). We then selected the most 753 

similar SideEffect-Anatomy pairs to create a PSEV-based SideEffect-Anatomy network 754 

(SeAPSEV). These relationships were also tested against a random network (SeARANDOM) 755 

that was generated by permuting each PSEV, as in the DDRANDOM networks 756 

(Supplementary Figure 5). 757 

In the first interval (k=1000), we observed 18.1 times more overlapping edges 758 

than expected by chance (Supplementary Figure 5C insert; binomial p value = 9.7E-251). 759 

By accurately ranking the relationships between SideEffect and Anatomy nodes, we 760 

further demonstrate that PSEVs are a valid strategy to infer missing links in SPOKE. This 761 

result is even more consequential given that SideEffect and Anatomy nodes are far away 762 

in SPOKE.  763 

 Similar to before when we found the shortest paths between SEPs and the target 764 

node to understand how deleted edges where recovered, we wanted to find the paths that 765 

enabled us to learn relationships between SideEffect and Anatomy nodes. To achieve this, 766 

we found the nodes in the transposed PSEVs that contributed the most to the SideEffect 767 

and Anatomy similarity. We then looked at the shortest paths between those nodes and 768 

the target SideEffect and Anatomy nodes. Supplementary Figures 5D-F show examples of 769 

these paths. The first example shows how Aggression connects to locus coeruleus (LC), a 770 

part of the brain that is involved in emotions, arousal, attention, and stress response 771 

(Benarroch E., 2009). The nodes that contribute the most to the similarity are Compounds 772 

and all have the SideEffect Aggression. Additionally, those Compounds bind or regulate 773 

Genes expressed or regulated in the LC as well as treat or palliate Diseases localized in 774 

the LC (Supplementary Fig 5D). Similarly, Supplementary Figure 5E shows the 775 

connection between Anxiety (SideEffect) and the LC (Anatomy). Interestingly, the 776 
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shortest paths between Anxiety or Aggression to the LC only share three nodes: alcohol 777 

dependence, epilepsy syndrome, and hypertension. The final example shows the 778 

connections between fetal heart rate (SideEffect) and the umbilical artery (Anatomy) 779 

(Supplementary Fig. 5F). This connection is centered on a set of genes that are associated 780 

or regulated by Diseases localized in umbilical artery. Those same Genes are also targets 781 

of or regulated by Compounds that impact fetal heart rate. These examples further show 782 

that PSEVs can be used to find related biomedical entities and further our understanding 783 

of how and why they are connected. 784 

 785 

 786 

 787 

  788 
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Captions for figures 943 

Figure 1 Embedding EHR concepts in a knowledge network. (A) Distribution of 944 

patient BMIs at UCSF. Four BMI cohorts were created using K-means clustering of 945 

BMI (boxes I-IV: <=19, 19.1-25.5, 25.6-34.2, and >34.2). Arrows at the bottom 946 

correspond to the BMIs that separate the standardize weight classes. (B) Step 1: 947 

find the overlapping concepts between SPOKE and the patient data (EHRs). These 948 

are called SPOKE Entry Points (SEPs). Step 2: choose any code or concept in the EHR 949 

to make cohort. Here we have chosen patients with a high BMI (Cohort IV). Then 950 

connect each patient in the cohort to all of the SEPs in their records. Step 3: perform 951 

PageRank such that the walker restarts in the patient cohort. Iterate until desired 952 

threshold is reached. Step 4: final node ranks are then used to create the weights in 953 

the Propagated SPOKE Entry Vector (PSEV).  954 

 955 

Figure 2 PSEVs contain phenotypic and genotypic information. (A) BMI Cohort 956 

vs Disease Rank. The top 4 ranked Diseases in the in Cohort IV’s PSEV are obesity, 957 

hypertension, type 2 diabetes mellitus, and metabolic syndrome X. All 4 show a positive 958 

relationship with BMI. The opposite trend is observed for celiac disease, Crohn’s disease, 959 

and attention deficit disorder which are highly ranked in Cohort I’s PSEV. (B) FTO gene 960 

is positively correlated with BMI. (C) The number of overlapping genes between the 961 

GWAS catalog for increased BMI and the top 365 of Genes in each BMI cohort PSEV. 962 

(D) The number of overlapping genes between BMI related GEO datasets and the top 119 963 

of Genes in each BMI cohort PSEV.   964 

 965 

Figure 3. Disease Cluster by Genetic Similarity. (A) Heat map generated with the 966 

Disease PSEVΔDD, ΔDG  (only using elements of Genes that associate with at least one 967 

Disease). Both Diseases (rows) and Genes (columns) are clustered. Disease Cluster 4 968 

(n=18) is enriched in neurological diseases and shown in dark purple. (B) Magnification 969 

of the 197 Genes found in a top Gene Cluster (Cluster 6) for Disease Cluster 4. Asterisks 970 

above Gene symbols indicate how many Diseases in Disease Cluster 4 are associated 971 

with that Gene. Color bar signifies how many Diseases were associated with a given 972 

Gene. (C) Expected distributions for the number of Genes that are associated with at least 973 
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one, two, or three Diseases (1000 random permutations of 18 Diseases and 197 Genes). 974 

Arrows show the observed number over Genes within Gene Cluster 6 that are associated 975 

with at least one, two, or three Disease in Disease Cluster 4 and greatly exceed the 976 

expected number of Genes (fold change=2.0, 3.9, and 5.4 accordingly). (D) 15 Genes that 977 

are within Gene Cluster 6 are associated with three or more Diseases in Disease Cluster 978 

4. 979 

 980 

Figure 4. Recovering deleted Disease-Gene edges. Prior to PSEVΔDD, ΔDG calculation all 981 

of the Disease-Gene and Disease-Disease edges were deleted from SPOKE. (A) The gold 982 

standard Disease-Gene network was made from the deleted edges in SPOKE. Plots show 983 

the number of Disease-Gene relationships using each of the PSEV matrices that overlap 984 

with the gold standard networks. The pink distributions show the results from the 985 

permuted PSEV matrices (PSEVRandom; 1000 iterations) while the arrows show the results 986 

from the original PSEV (blue), PSEVΔDD, ΔDG (green), PSEVSPOKE SHUFFLED (red), and 987 

PSEVSEP SHUFFLED (orange). (A) The top K Genes where selected from the set of Genes in 988 

the gold standard network or (A insert) the entire set of Gene nodes in SPOKE.  (B) The 989 

breakdown of top Disease-Gene relationships as knowledge (edges) is added back to the 990 

network.  (C) To uncover how the deleted Disease-Gene associations are recovered using 991 

the PSEVs we retraced the shortest path between the most important SPOKE Entry points 992 

(SEPs) and the desired Gene. Patients with Disease X put pressure on the SEPs (top). The 993 

SEPs that receive the most significant amount of pressure are colored by node type. 994 

Information then flows through other nodes in SPOKE (middle) before reaching the Gene 995 

that is genetically associated to Disease X (bottom). (D) In the GWAS catalog 996 

Schizophrenia and CSMD1 are associated. As outlined in B, the information flows from 997 

the significant SEPs of patients with Schizophrenia to CSMD1.  998 

 999 

 1000 

Figure 5 MEDLINE Anatomy-SideEffect Relationships are Top Ranked Nodes in 1001 

PSEV. Fraction (A), count (B), and fold change (C) of overlapping edges MEDLINE 1002 

Anatomy-SideEffect network and PSEV Anatomy-SideEffect network (blue) or random 1003 

PSEV Anatomy-SideEffect network (red) for different thresholds of PSEV disease 1004 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540963doi: bioRxiv preprint 

https://doi.org/10.1101/540963
http://creativecommons.org/licenses/by-nc/4.0/


 38

similarity. A-C Are shown in 5% similarity intervals of ranked nodes starting with the 1005 

most similar 5% left and all nodes (100%) right. The inserts in A-C focus on the top 1006 

0.14-1.6% of ranked nodes. D-F Examples shortest paths connecting the nodes that 1007 

contribute the most to the Anatomy-SideEffect similarity to the target SideEffect and 1008 

Anatomy nodes. 1009 

 1010 

 1011 

 1012 

 1013 

  1014 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/540963doi: bioRxiv preprint 

https://doi.org/10.1101/540963
http://creativecommons.org/licenses/by-nc/4.0/


 39

SUPPLEMENTARY FIGURE LEGENDS AND TABLES 1015 

 1016 

Supplementary Figure 1. PSEVs embed first neighbors in SPOKE and learn new 1017 

relationships. Imagine the SPOKE network as a set of water pipes and the SEPs as 1018 

input valves. Pressure from the patient population determines how much water can 1019 

flow through the valves. The water can then reach downstream SPOKE nodes. The 1020 

amount of water that flows through each SPOKE node will be specific to the selected 1021 

patient population. (A) Distribution of ranks in PSEV vectors for first neighbors 1022 

(blue) and non-first neighbors (red). (B) Multiple sclerosis first neighbors that 1023 

overlap with top PSEV rank (blue edges) or not in top PSEV rank (red). (C) The top 1024 

10 ranked nodes in the PSEV for each node types that don't directly connect to 1025 

Multiple sclerosis Disease node in SPOKE (dashed edges) 1026 

 1027 

Supplementary Figure 2. Recovering deleted Disease-Disease edges. (A) shows how 1028 

the deleted Disease-Disease edge between Type 2 Diabetes and Hypertension is 1029 

recovered using the pressure generated from the Type 2 Diabetes patients. (B) The gold 1030 

standard Disease-Disease network was made from the deleted edges in SPOKE. Plots 1031 

show the number of Disease-Disease relationships using each of the PSEV matrices that 1032 

overlap with the gold standard network. The pink distributions show the results from the 1033 

permuted PSEV matrices (PSEVRandom; 1000 iterations) while the arrows show the results 1034 

from the original PSEV (blue), PSEVΔDD, ΔDG (green), PSEVSPOKE SHUFFLED (red), and 1035 

PSEVSEP SHUFFLED (orange). (B) The top K Diseases where selected from the set of 1036 

Diseases in the gold standard network or (B insert) the entire set of Disease in SPOKE. 1037 

(F) The top K Diseases where selected from the set of Diseases in the gold standard 1038 

network or (F insert) the entire set of Disease in SPOKE. 1039 

 1040 

Supplementary Figure 3. Recovering deleted Compound-Gene edges. Prior to 1041 

PSEVΔCC, ΔCG calculation all of the Compound -Gene and Compound - Compound edges 1042 

were deleted from SPOKE. It is possible to retrace how PSEV can recover deleted edges 1043 

(outlined in Figure 4C). (A) Shortest paths between the top SEPs of Tolmetin, a non-1044 

steroidal anti-inflammatory drug, to its target PTGS1. (B) The gold standard Compound-1045 
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Gene network was made from the deleted edges in SPOKE (Compound-BINDS_CbG-1046 

Gene). Plots show the number of Compound-Gene relationships using each of the PSEV 1047 

that overlap with the gold standard networks. The pink distributions show the results 1048 

from the permuted PSEV matrices (PSEVRandom; 1000 iterations) while the arrows show 1049 

the results from the original PSEV (blue), PSEVΔCC, ΔCG (green), PSEVSPOKE SHUFFLED 1050 

(red), and PSEVSEP SHUFFLED (orange). (B) The top K Genes where selected from the set 1051 

of Genes in the gold standard network or (B insert) the entire set of Gene nodes in 1052 

SPOKE. (C-E) Determining K threshold for recovering Compound-Gene edges. (C) The 1053 

top factor in determining missing Compound-Gene edges is whether patients that are on a 1054 

given compound are also diagnosed with a Disease that is a associated with the target 1055 

gene. (D) Shows the number of recovered Compound-Gene relationships at each rank 1056 

(where 1=top ranked and 1451 is the worst ranked Gene). (E) Shows how much the 1057 

patients that are prescribed a given Compound are contributing to the rank of the binding 1058 

partner (missing Compound-Gene relationship) of that Compound using the flow of 1059 

information through Diseases as in A. Genes ranked greater than ~150 are no longer 1060 

receiving positive patient contribution. 1061 

 1062 

Supplementary Figure 4. Recovering deleted Compound-Compound edges. (A) 1063 

Retracing shortest between similar Compounds. The paths between Tioconazole to 1064 

Sertaconazole and Trihexyphenidyl to Procyclidine show two different routes in finding 1065 

similar compounds. (B) The gold standard Compound- Compound network was made 1066 

from the deleted edges in SPOKE (Compound-RESEMBLES_CrC-Compound). (B) The 1067 

top K Compound where selected from the set of Compound in the gold standard network 1068 

or (B insert) the entire set of Compound in SPOKE. 1069 

 1070 

Figure 5 MEDLINE Anatomy-SideEffect Relationships are Top Ranked Nodes in 1071 

PSEV. Fraction (A), count (B), and fold change (C) of overlapping edges MEDLINE 1072 

Anatomy-SideEffect network and PSEV Anatomy-SideEffect network (blue) or 1073 

random PSEV Anatomy-SideEffect network (red) for different thresholds of PSEV 1074 

disease similarity. A-C Are shown in 5% similarity intervals of ranked nodes starting 1075 

with the most similar 5% left and all nodes (100%) right. The inserts in A-C focus on 1076 
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the top 0.14-1.6% of ranked nodes. D-F Examples shortest paths connecting the 1077 

nodes that contribute the most to the SideEffect-Anatomy similarity to the target 1078 

SideEffect and Anatomy nodes. 1079 

 1080 

 1081 

Supplementary Table 1. SPOKE nodes and edges. (A) Source(s) and counts of each 1082 

node type in SPOKE. (B) Source(s) and counts of each edge label in SPOKE.  1083 

 1084 

 1085 
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Figure 3. Disease Cluster by Genetic Similarity. (A) Heat map generated with the Disease 
PSEVΔDD, ΔDG  (only using elements of Genes that associate with at least one Disease). Both Disease 
(rows) and Genes (columns) are clustered. Disease Cluster 4 (n=18) is enriched in neurological 
diseases and shown in dark purple. (B) Magnification of the 197 Genes found in a top Gene Cluster 
(Cluster 6) for Disease Cluster 4. Asterisks above Gene symbols indicate how many Disease in Dis-
ease Cluster 4 are associated with that Gene. Color bar signifies how many Diseases were associat-
ed with a given Gene. (C) Expected distributions for the number of Genes that are associated with at 
least one, two, or three Diseases (1000 random permutations of 18 Disease and 197 Genes). Arrows 
show the observed number over Genes within Gene Cluster 6 that are associated with at least one, 
two, or three Disease in Disease Cluster 4 and greatly exceed the expected number of Genes (fold 
change=2.0, 3.9, and 5.4 accordingly). (D) 15 Genes that are within Gene Cluster 6 are associated 
with three or more Disease in Disease Cluster 4.
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Figure 4. Recovering deleted Disease-Gene edges. Prior to PSEVΔDD, ΔDG calculation all of the 
Disease-Gene and Disease-Disease edges were deleted from SPOKE. (A) The gold standard 
Disease-Gene network was made from the deleted edges in SPOKE. Plots show the number of 
Disease-Gene relationships using each of the PSEV matrices that overlap with the gold standard 
networks. The pink distributions show the results from the permuted PSEV matrices (PSEVRandom; 
1000 iterations) while the arrows show the results from the original PSEV (blue), PSEVΔDD, ΔDG (green), 
PSEVSPOKE SHUFFLED (red), and PSEVSEP SHUFFLED (orange). (A) The top K Genes where selected from the 
set of Genes in the gold standard network or (A insert) the entire set of Gene nodes in SPOKE.  (B) 
The breakdown of top Disease-Gene relationships as knowledge (edges) is added back to the net-
work.  (C) To uncover how the deleted Disease-Gene associations are recovered using the PSEVs 
we retraced the shortest path between the most important SPOKE Entry points (SEPs) and the de-
sired Gene. Patients with Disease X put pressure on the SEPs (top). The SEPs that receive the most 
significant amount of pressure are colored by node type. Information then flows through other nodes 
in SPOKE (middle) before reaching the Gene that is genetically associated to Disease X (bottom). 
(D) In the GWAS catalog Schizophrenia and CSMD1 are associated. As outlined in B, the information 
flows from the significant SEPs of patients with Schizophrenia to CSMD1. 
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Figure 5 MEDLINE Anatomy-SideEffect Relationships are Top Ranked Nodes in PSEV. Fraction 
(A), count (B), and fold change (C) of overlapping edges MEDLINE Anatomy-SideEffect network and 
PSEV Anatomy-SideEffect network (blue) or random PSEV Anatomy-SideEffect network (red) for 
different thresholds of PSEV disease similarity. A-C Are shown in 5% similarity intervals of ranked 
nodes starting with the most similar 5% left and all nodes (100%) right. The inserts in A-C focus on 
the top 0.14-1.6% of ranked nodes. D-F Examples shortest paths connecting the nodes that contrib-
ute the most to the Anatomy-SideEffect similarity to the target SideEffect and Anatomy nodes.
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