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Abstract 

With the advent of automatic cell imaging and machine learning, high-content phenotypic screening has 

become the approach of choice for drug discovery due to its ability to extract drug  specific multi-

layered data and compare it to known profiles. In the field of epigenetics such screening approaches 

has suffered from the lack of tools sensitive to selective epigenetic perturbations. Here we describe a 

novel approach Microscopic Imaging of Epigenetic Landscapes (MIEL) that captures patterns of 

nuclear staining of epigenetic marks (e.g. acetylated and methylated histones) and employs machine 

learning to accurately distinguish between such patterns (1). We demonstrated that MIEL has superior 

resolution compared to conventional intensity thresholding techniques and enables efficient detection of 

epigenetically active compounds, function-based classification, flagging possible off-target effects and 

even predict novel drug function. We validated MIEL platform across multiple cells lines and using 

dose-response curves to insure the robustness of this approach for the high content high throughput 

drug discovery. 

 

Introduction 

Posttranscriptional modifications of histone ‘tails’ modulate local chromatin and constitutes the physical 

basis for transcription regulation (2, 3). Enzymes producing these modifications (epigenetic writers and 

erasers) as well as chromatin-associated proteins which read the modifications (epigenetic readers) 

have been associated with initiation and progression of multiple cancer types (4). Several drugs 

inhibiting such epigenetic targets have recently been approved for clinical use and many more are 

currently in clinical trials (4-6). This, together with the possible applicability of epigenetic drugs in other 

diseases including neurological and cardiovascular disorders make these an attractive target for drug 

discovery (7-9). Continuing the trend set in the post-Human Genome Project era, much of the effort 

exerted toward developing new epigenetic drugs has been directed towards target-based drug 

discovery, leading to a proliferation of both biochemical and cell-based assays (10, 11).Initial screening 

for epigenetic drugs is often done by acellular biochemical assays. Though these provide valuable 
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information regarding specificity, they employ purified (often truncated) enzymes and isolated histone 

substrates (or even short peptides) (11-14). However, many epigenetic targets function as part of 

protein complexes and therefore may be misrepresented by such synthetic systems (15, 16). In 

addition, adjacent histone modification could potentially affect the function of assayed enzymes (17, 

18).The most commonly used cellular alternatives are lysis and ELISA based assays, such as 

AlphaLISA (PerkinElmer). These circumvent many of these limitations and provide additional 

information such as estimation of toxicity and cell permeability but yield the ability to test direct 

enzymatic activity (10, 11, 14, 19).Over the last decades the low cost and scalability of high content 

screening approaches have greatly increased its prevalence for drug discovery.  More recently, the 

addition of novel image analysis tools coupled with multiparametric analysis and machine learning have 

had a significant impact on our ability to understand and process the output of phenotypic screening 

(20, 21). Despite these advantages, such assays are not currently adapted and optimized for epigenetic 

drug discovery. 

Here we demonstrate the ability of MIEL, a high content screening approach for profiling the 

endogenous patterns of histone modifications and chromatin organization, to detected active epigenetic 

compounds and classify them by their molecular function. Given its malignancy, the poor therapeutic 

benefits of current treatments and the proclivity of epigenetic events in development and progression of 

glioblastoma (4, 22-24), we chose patient derived glioblastoma lines to evaluate the advantages of 

MIEL-based phenotypic screening approach. 

 

Results 

The MIEL platform. 

We have developed a novel phenotypic screening platform, MIEL, which interrogates the epigenetic 

landscape at both population and single cell level using image derived features and machine learning 

(1). MIEL takes advantage of epigenetic marks such as histone methylation and acetylation, which are 

always present in eukaryotic nuclei and can be revealed by immunostaining. It analyzes the 

immunolabeling patterns of epigenetic marks using conventional image analysis methods for 

segmentation of nuclei, feature extraction and previously described machine learning algorithms (25) 

(Fig. 1a and Methods). Primarily, we utilized 4 histone modifications: H3K27me3 and H3K9me3, which 

are associated with condensed (closed) facultative and constitutive heterochromatin, respectively; 

H3K27ac, associated with transcriptionally active (open) areas of chromatin, especially at promoter and 

enhancer regions; and H3K4me1, associated with enhancers and other chromatin regions (Fig. 1a; (26, 

27)). To focus on the intrinsic pattern of epigenetic marks, we use only texture-associated features (eg, 

Haralick's texture features (28), threshold adjacency statistics, and radial features (29)) for multivariate 

analysis. Previous studies have successfully employed similar features for cell painting techniques 

combined with multivariate analyses to accurately classify subcellular localization of proteins (29), 
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cellular subpopulations (30), and drug mechanisms of action (25, 31-33). One of key advantages of 

MIEL is the very phenotypic traits used for deriving texture features – the representation of epigenetic 

landscapes within the single nuclei (1). 

MIEL naturally lends itself to screening of epigenetic drugs. We put to test the fine resolution of 

the MIEL approach by screening a library of 222 epigenetically active compounds many with known 

targets among epigenetic writers, erasers, or readers (SBP epigenetic library, Supplementary Fig. 

1a,b). Our analysis was focused on the accuracy of detection and ranking of active drugs, our ability to 

predict drug function (off target effect), robustness across cell lines and the dose-response, and, finally, 

the utility of MIEL to inform about the mechanism of drug action. 

 

MIEL markedly improves detection of epigenetically active drugs 

Current phenotypic methods employed to screen for the drugs targeting epigenetic enzymes rely on 

staining for the relevant histone modification and monitoring changes in average fluorescent intensity 

(34, 35). To test the ability of the MIEL approach to detect active compounds and compare it to intensity 

based methods, GBM2 cells were treated with previously defined drugs targeting a wide range of 

functional targets (Supplementary Fig. 1a,b). Drugs were given in triplicates at 10uM for 24 hours and 

treated cells were stained for multiple histone modifications expected to exhibit alterations following 

drug treatment (H3K9me3, H3K27me3, H3K27ac and H3K4me1). Image analysis including nuclei 

segmentation and features extraction was conducted, as previously described (25) on Acapella 2.6 

(PerkinElmer). Phenotypic profiles were generated for each compound and control (DMSO) wells. 

These are vectors composed of 1048 (262 features per modification X 4 modifications) texture features 

derived from the staining of each histone modification and represent the average value for each feature 

across all stained cells in each cell population (drug or DMSO). When treatment reduced cell count to 

under 50 imaged nuclei per well, compound was deemed toxic and excluded from analysis. Following 

feature normalization by z-score, Euclidean distance between vectors of compounds and DMSO 

treated cells were calculated. These distances were then normalized (z-score) to the average distance 

between DMSO replicates and standard deviation of these distances. Compounds with distance z-

score of greater than 3 were defined as active (Fig. 1A; see Methods section). This analysis identified 

122 compound which induced significant epigenetic changes. Active compounds were not uniformly 

distributed across all functional drug categories. Rather, we identified 10 categories in which 50% of the 

drugs were identified as active and nontoxic and 13 categories in which 25% or less of the drugs 

induced detectable epigenetic alterations following a 24-hour treatment (Fig. 1b). To compare MIEL 

with current thresholding methods we repeated the calculation using mean fluorescence intensity for all 

histone modifications. Mean intensity for each drug was normalized (z-score) against DMSO. This 

analysis identified 94 active compounds, for which z-scored intensity for at least one of the histone 
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modifications was greater than 3 or lower than -3. These were distributed across the functional 

categories similar to MIEL identified compounds (Fig. 1b). 

 To inspect the contribution of individual histone modifications we repeated both the MIEL and 

thresholding analyses for each of the 4 modifications individually. A single modification MIEL based 

analysis yielded similar detection rates to the combination of modifications across most functional 

categories (Supplementary Fig. 2a). Intensity based analysis using individual modifications yielded 

lower detection rates compared to the combination of modifications and displayed equal or reduced 

detection rates when compared to MIEL in all categories and modifications (Supplementary Fig. 2a). Of 

note, 3 of the 4 modifications used for MIEL analysis showed similar detection rates across most 

functional categories. However, the modification H3K27me3 consistently showed reduced detection 

rates over most active categories (Supplementary Fig. 2a) with the exception of EZH1/2 inhibitors, 

possibly due to the role of these enzymes in regulating this posttranslational modification. To further 

compare the MIEL and thresholding detection methods we estimated the magnitude of epigenetic 

alterations induced by active compounds. We calculated the fold increase in distance from DMSO 

(normalized to average distance between DMSO replicates) as well as the absolute fold change of 

fluorescence intensity for active compounds in each category. This analysis indicated increased effect 

size for MIEL based analysis in all categories tested (Supplementary Fig. 2b). Taken together, these 

results demonstrate that MIEL analysis markedly improves detection of epigenetically active 

compounds as compared to current image-based thresholding methods. 

 

MIEL enables Identification of drug function and off-target effects detection 

One of the key advantages of phenotypic profiling methods, like MIEL, is the ability to classify 

compounds by function and identify nonspecific effects through comparison with profiles of well-defined 

controls. To assess the ability of MIEL to correctly group compounds by function we applied 

discriminant to all active-non-toxic compounds from categories which had at least 4 such compounds 

(total 84 compounds over 7 categories in addition to 48 DMSO replicates). All 132 populations were 

used as training data for a quadratic discriminant analysis performed employing a stepwise model on all 

texture features derived from images of the four histone modification (features displaying 

multicollinearity were reduced) and the model was tested through cross validation by ‘leave one out’ 

(see method). This analysis demonstrates the ability of MIEL to separate multiple categories of 

epigenetically active drugs with an average accuracy of 86.7% (Fig. 1c,d). Although many of the 

epigenetically active compounds induced alterations in average fluorescence (Supplementary Fig. 3a), 

a discriminant analysis utilizing intensity measurements from all 4 channels was ineffective at 

separating the various categories and yielded only 45% average accuracy (Supplementary Fig. 3b). Of 

note, the compound library used in this study included Pan HDACi, Class I HDACi and Class I HDACi 

known to also target HDAC6. HDAC inhibitors targeting both Class I and HDAC 6 displayed same 
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profile as Pan HDAC and the two categories were undistinguishable through discriminant analysis. This 

is likely due to high expression of HDAC Class I and HDAC 6 and low expression of other HDACs in 

the GBM line (Supplementary Fig. 4a,b,c). To test whether individual histone modification textures 

contain sufficient information to distinguish between the various drug classes we performed 

discriminant analysis using features derived from each modification. This degraded MIEL’s ability to 

separate compound subclasses affecting similar histone modification changes such as Class I and Pan 

HDAC inhibitors, but retained its ability to separate major categories, such as histone phosphorylation 

and deacetylation (Fig. 1e, Supplementary Fig. 3c). 

Of the 84 compounds tested 7 (8.3%) were identified as active but miss classified by MIEL. One 

of these was Valproic acid, a commonly used anticonvulsant (36) also shown to function as a Pan 

HDAC inhibitor at high concentrations (37). Though Valproic acid is expected to inhibit HDACs only at 

high concentrations (>1.2mM), a short 24 hour treatment induced detectable epigenetic changes even 

at low concentrations (<30uM, Supplementary Fig. 5a). However, quantification of H3K27ac and 

H3K27me3 immunofluorescence intensity indicated that at these concentrations it did not increase 

histone acetylation or decreased histone methylation similar to other Pan HDAC inhibitors (TSA, SAHA; 

Supplementary Fig. 5b). To test, whether the observed epigenetic changes resulted in corresponding 

transcriptomic alterations we sequenced RNA from GBM2 cells treated with either DMSO, TSA, SAHA 

or Valproic acid (15uM) for 24 hours and identified all genes altered by at least one of the drugs (as 

compared to DMSO; 118 genes). This analysis demonstrated that the Pan HDAC inhibitors induced 

similar transcriptomic changes and that these were not reflected in the transcriptomic profile of Valproic 

acid treated cells (Supplementary Fig. 5c). To test whether MIEL profiles reflected global drug induced 

transcriptomic profiles, FPKM values for all expressed genes (FPKM>1 in at least one cell population) 

were used to calculate Euclidean distance between all 4 cell populations. FPKM-based distances were 

then correlated to image texture feature-based distances which yielded a high and significant 

correlation between these metrics (R=0.91, pv<0.05; Supplementary Fig. 5a). Taken together these 

results demonstrate the enhanced ability of the MIEL approach to identify epigenetically active 

compounds, accurately categories them according to their molecular function and detect off-target 

effects of tested compounds. 

 

MIEL profiles are coherent across drug concentrations and cell lines 

As drugs vary in potency, the ability to predict the function of unknown drugs relies on generating 

functional category specific profiles that remain valid over a range of activity levels. To test the ability of 

MIEL to correctly identify the functional category of drugs with different potency we treated GBM2 cells 

with drugs from several active categories at a range of concentrations (0.1, 0.3, 1, 3, 10uM) and 

conducted discriminant analysis aimed at separating the different concentrations in each class. We 

found that for most categories tested (Aurora-i, JAKi, SIRTi and EZH1/2i) the discriminant analysis 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/541151doi: bioRxiv preprint 

https://doi.org/10.1101/541151


yielded low average accuracy of classification (32%, 25%, 35% and 55% respectively; Fig. 2a, 

Supplementary Fig. 6a) indicating similar MIEL profiles across all drug concentrations tested. However, 

Pan HDAC and HDAC Class I inhibitors displayed progressive profile changes allowing the discriminant 

analysis to separate the different concentrations at 77% and 78% accuracy (Fig. 2a, Supplementary 

Fig. 6a). 

 In addition to their on-target effect, drugs may induce epigenetic alterations through toxicity and 

stress. To estimate the impact of toxicity on drug induced profile changes and its contribution to drug 

miss-classification across a range of concentrations, we plotted z-scored distance from DMSO (effect 

size) against z-scored nuclei count (a proxy for cytotoxicity) for GBM2 cells treated at a range of drug 

concentrations (0.1, 0.3, 1, 3, 10uM). This demonstrated that some compound classes, such as Aurora 

and JAK inhibitors, induce epigenetic alterations only at concentrations at which cell count is 

significantly reduced, whether through toxicity or direct effect on proliferation (Fig. 2b); while other 

compounds, such as HDAC inhibitors, characteristically have a range of concentrations at which 

epigenetic alterations are not accompanied by reduced cell count (Fig. 2b). Interestingly, both SIRTi 

and EZH1/2 inhibitors affected significant epigenetic changes without inducing significant changes in 

cell count (Fig. 2b). 

 Testing candidate drugs in multiple cell lines can help to gauge their inclusivity and to identify 

tumor subtypes which do not respond to a specific drug or drug class. To test whether MIEL readouts 

are coherent across multiple glioblastoma TPCs we treated 4 cell lines with a subset of drugs from the 

epigenetic library (57 drugs), derived phenotypic profiles and calculated their effect size (z-scored 

Euclidean distance from DMSO replicates). This revealed a significant positive correlation between all 4 

cell lines pointing to similarities in their drug sensitivity profiles and demonstrating the robustness of the 

MIEL read out (Fig. 2c,d). In addition, we found that the magnitude of effect for some drugs classes 

showed high correlation to the level of target gene expression. For example, SIRTi treatment was 

significantly more effective (n=4 compounds, p<0.02; Supplementary Fig. 6b,c) in lines showing 

reduced Sirt1 expression (the main SIRT to deacetylate histone 3; Supplementary Fig. 6b,c) and there 

was a high correlation between Sirt1 expression and effect size (R=-0.87; Supplementary Fig. 6c). 

These results point to the sensitivity of MIEL and to its ability to reflect internal differences between cell 

populations. 

Due to inter- and inta- tumor heterogeneity (38-40), different naïve (DMSO treated) GBM lines 

display distinct MIEL profiles making it hard to compare drug induced profile changes (Supplementary 

Fig. 6d). Through linear normalization of the feature space to the profile of DMSO treated cell the naïve 

states are equalized and drug induced changes are visualized using a polar plot. In this plot, treatments 

for each cell line are represented as vectors with a magnitude - rho (the distance from the center) and 

directionality given by the angular coordinate theta. Applying this normalization showed that individual 

drugs induce similar profile alterations across different GBM lines (Supplementary Fig. 6e). This was 
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further demonstrated through discriminant analysis which distinguished drugs with distinct functions 

such as EZH1/2i and SIRTi (5 and 3 compounds respectively, 3 replicates per compound, 4 GBM lines; 

Fig. 2E). However, we were unable to separate subclasses of drugs with similar functions such as class 

I and pan HDACs inhibitors (6 and 17 compounds, 3 replicates each, 4 GBM lines) across multiple lines 

(Fig. 2e). These results demonstrate the ability of MIEL to correctly categorize by function drugs with 

varying degrees of potency across multiple cells lines. 

 

MIEL helps identify the mechanism of drug function 

Our analysis indicated that the magnitude of drug induce profile changes, as measured by distance 

from DMSO replicates, varies between individual drugs within each drug class (Supplementary Fig. 7a). 

To test whether these differences are biologically meaningful we correlated MIEL based activity with a 

measurable functionality. Eepigenetic drugs are often designed to work as part of a drug combination 

treatment. (Dong Hoon Lee, Oncotarget, 2017, additional refs). One common approach, is to use 

epigenetic drugs to sensitive tumor cells to standard of care cytotoxic treatments (41-44), for 

glioblastoma these are radiation and Temozolomide (TMZ). To identify drug classes which sensitize 

GBM TPCs to cytotoxic therapy, GBM2 cells were treated with epigenetic drugs for 2 days prior to 

radiation or TMZ. Cytotoxic treatment was carried for 4 days at levels inducing 50% reduction in cell 

numbers (1Gy or 200uM TMZ; Fig. 3a). At the end of the days 6 treatment, cells were score and 

combined drug index (CDI) was calculated (see Methods). Though we did not identify any drugs which 

synergized (CDI<0.7) with the radiation therapy (Fig. 3b, right panel) multiple drugs from both PARPi 

and BETi categories that sensitized the cells to TMZ treatment (Fig. 3b, left panel). 

PARP inhibitors have been extensively studied in this context and were shown to function through 

multiple non epigenetic mechanisms such as PARP trapping (45-47). Consistent with this, most PARPi 

did not induce epigenetic changes detectable using MIEL (Fig. 3d, Supplementary Fig. 7b) and we 

found no correlation between the magnitude of epigenetic changes as measured by MIEL and CDI (Fig. 

3d). To date only a single report utilizing the BETi OTX015 (48) has pointed to a synergistic effect with 

TMZ, prompting us to validated this finding in additional GBM lines. In all we tested 6 GBM lines, in 3 of 

these (454M, PBT24 and GBM2) the BET inhibitors increased the effectiveness of the TMZ treatment 

(Fig. 3c). In the other 3 lines (SK262, 101A and 217M) these drugs did not induce synergism, and in 

many cases were found to be protective against (CDI>1), the TMZ treatment (Fig. 3c). Though only few 

BETi induced epigenetic changes during our initial screen conducted over 24 hours, we found that a 6 

days treatment led to significant epigenetic changes in all cell line tested (Fig. 3d, Supplementary Fig. 

7b). In lines displaying synergism between TMZ and BETi, we found a significant correlation between 

the degree of BETi activity as measure by MIEL and the degree of synergism (Fig. 3d). This 

demonstrates that the ranking achieved by MIEL for individual compounds can predict relative drug 

activity and suggests an epigenetic component for the mechanism of BETi-TMZ synergy. 
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 The enzyme O6-alkylguanine DNA alkyltransferase (MGMT), which provides the main line of 

defense against DNA alkylating agents such as TMZ, has been found to be epigenetically silenced 

through DNA methylation in a large fraction of GBM tumors (49, 50). To gain a better understanding of 

the mechanism of by which BETi sensitize GBM TPCs to TMZ treatment we quantified the expression 

of MGMT in the 6 lines tested using qPCR. This analysis showed that while all 6 lines express similar 

levels of BET TFs such as Brd2 (Fig. 3e) and are thus susceptible to BET inhibitors, only the 3 lines 

displaying BETi-TMZ synergism express MGMT (Fig.3e). We found that treating those with BETi 

dramatically reduced the expression of MGMT in the synergistic lines (Fig. 3f). Finally, combining BET 

inhibitors with the MGMT inhibitor Lomeguatrib did not increase sensitivity to TMZ above the levels 

conferred by Lomeguatrib alone (Fig. 3g). 

 Taken together these results suggest that BETi can increase the effectiveness of TMZ treatment 

by reducing the expression of MGMT and demonstrate the power of MIEL to provide critical information 

on the mechanism of drug function (i.e. epigenetic mechanism of BETi but not PARPi). 

 

Discussion 

Here we show that phenotypic profiling of chromatin organization and histone modification patterns 

visualized by immunofluorescence for specific histone modifications enables detection and functionality 

based categorization of active epigenetic drugs. High content assays are not commonly used for 

screening epigenetic compounds and often employ reporter-based studies in which compounds are 

chosen on their ability to alter the expression of a silenced reporter (34). In cases where 

immunofluorescence for specific histone modifications was employed, the assays focused on changes 

in average intensity-based analysis (35). We demonstrated that machine learning approach based on 

image texture (i.e. MIEL) dramatically improves the accuracy of  active compounds detection compared 

to the intensity based thresholding and has a significant advantage for functional categorization and 

prediction. MIEL does not involve any additional steps during assay preparation, and therefore no 

additional costs, thus representing a clear advantage of intensity thresholding. 

Curiously, a number of compounds from several functional categories did not induce detectable 

epigenetic changes, which could have several potential explanations. This can represent a bias 

emanating from the cellular system chosen and its distinctive expression profile. For example, it was 

previously shown that, GBM TPCs, maintain high Class I HDACs expression and down regulate Class 

II HDACs expression (51). Alternatively, this may represent differences between the kinetics of drugs 

from different functional classes or the turn-over rate of specific histone modifications (52). For 

example, our initial screen was conducted over 24 hours, and detected epigenetic changes only for the 

few BET inhibitors also inducing high toxicity. However, when tested after 6 days of treatment, we 

found that almost all BETi induce significant epigenetic changes detectable by MIEL. 
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Previous studies have shown that image based profiling was able to distinguish between 

compound classes with very distinct function such as Aurora and HADC inhibitors (20). One objective 

of our study was to estimate the resolution of separation between compound categories with similar 

functions. We found that a single histone modification was sufficient to separate highly distinct classes. 

Separating similar classes, such as Aurora and JAK inhibitors affecting histone phosphorylation or Pan 

and Class I HADCs which affect histone acetylation, required staining for at least one additional histone 

modification. Despite their many advantages, cellular assay, including high content assays, are often 

used as secondary screens for epigenetic drugs due multiplicity of enzyme family members and 

inability to determine direct enzymatic activity (10). The ability to separate closely related functional 

categories on top of other advantages offered by the MIEL profiling approach make it an attractive 

alternative for primary screens. 

 Phenotypic profiling methods have been previously used to identify genotype�specific drug 

responses by comparing profiles across multiple isogenic lines (53). Here we show that activity of 57 

compounds was significantly correlated across 4 different primary GBM lines, that variation in activity 

levels correlated with level of target expression and that the various categories can be distinguished 

across cell lines. Together, these suggest that MIEL can be used to identify cell lines which show an 

aberrant reaction to selected drugs and aid in identifying optimal treatments to individual patients. 

Similar applications were previously used to tailor specific kinase inhibitors to chronic lymphocytic 

leukemia (CLL) patients displaying venetoclax resistance (54). 

 Our results show a significant correlation between BET inhibitor activity, as defined by MIEL, 

and their ability to synergize and increase sensitivity of TPCs to TMZ, thus demonstrating the ability of 

MIEL to be used as a secondary screening assay for hit prioritization. This analysis also uncovered a 

previously unknown role for BET inhibitors in reducing the expression of MGMT. Previous studies have 

demonstrated upregulation of several BET transcription factors in glioblastomas (55, 56) and multiple 

pre-clinical studies have investigate the potential of BET inhibition as a single drug treatment for GBM 

(57-59). However, while clinical trials with the BET inhibitor, OTX015, demonstrated low toxicity at 

doses achieving biologically active levels, no detectable clinical benefits were found (60). This 

prompted multiple drug combination approaches (61) such as a combined HDACi and BETi treatment 

(62, 63). The mechanism by which BETi can induce increased TMZ has not been described. Recently, 

a distal enhancer regulating MGMT expression was identified (64). Activation of this enhancer by 

targeting a Cas9-p300 fusion to its genomic locus increases MGMT expression while deletion of this 

enhancer reduced MGMT expression (64). BET transcription factors bind the elevated levels of 

H3K27ac found in enhancers (65, 66), suggesting a possible mechanism for BETi induced reduction of 

MGMT expression which in turn results in increased sensitivity to the DNA alkylating agent TMZ. 

Silencing of the MGMT gene through promoter methylation has long been known to increase 

responsiveness to TMZ treatment and improve prognosis in GBM patients (24, 49, 50). Despite that, 
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clinical trials combining TMZ and MGMT inhibitors did not produce improved therapeutic outcomes in 

glioblastoma patients, possibly due to the 50% reduction in TMZ dose required to avoid hematologic 

toxicity with that combination (67-69). Further pre- and clinical trial are needed to determine whether 

the elevated sensitivity of glioblastoma to BETi and their ability to reduce MGMT expression can be 

exploited to improve the clinical outcome of GBM patients. 

 High content profiling methods have become eminent tools for drug discovery. At the same 

time, epigenetic writers, erasers and reader are the focus of multiple campaigns and numerous pre and 

clinical trials testing the benefits of such drugs are being conducted. We believe that MIEL as a method 

for profiling the endogenous patterns of histone modifications and chromatin organization can greatly 

improve drug discovery efforts in this field. 

 

 

 

 

Materials and Methods 

Cell Culture: Monolayer cultures of patient-derived GMB TPCs were propagated on Matrigel-coated 

plates in DMEM:F12 Neurobasal media (1:1; Gibco), 1% B27 supplement (Gibco), 10% BIT 9500 

(StemCell Technologies), 1 mM glutamine, 20 ng/ml EGF (Chemicon), 20 ng/ml bFGF, 5 µg/ml insulin 

(Sigma), and 5 mM nicotinamide (Sigma). The medium was replaced every other day and the cells 

were enzymatically dissociated using Accutase prior to splitting. 

Immunofluorescence: Cells were rinsed with PBS and fixed in 4% paraformaldehyde in PBS for 10 

min at room temperature. After blocking with PBSAT (2% BSA and 0.5% Triton X-100 in PBS) for 1 h at 

room temperature, the cells were incubated overnight at 4°C with primary antibodies diluted in PBSAT. 

The primary antibodies are listed in Table 1, and the appropriate fluorochrome-conjugated secondary 

antibodies were used at 1:500 dilution. Nuclear co-staining was performed by incubating cells with 

DAPI  nuclear dye. 

Microscopy and image analysis: For MIEL analysis cells were imaged on an IC200-KIC (Vala 

Sciences) using a ×20 objective. Images collected were analyzed using Acapella 2.6 (PerkinElmer). At 

least 5 fields per well were acquired and at least 2 wells per population were used. Features of nuclear 

morphology, fluorescence intensity inter-channel co-localization, and texture features (Image moments, 

Haralick, Threshold Adjacency Statistics) were calculated using custom algorithms (scripts available 
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from www.andrewslab.ca). A full list of the features used is available from the authors. Values for each 

cell were generated and exported to Microsoft Excel for further analysis. 

Data processing: The image features based profile for each cell population (eg, cell types, treatments, 

technical repetition, etc.) was represented using a vector (center of distribution vectors) in which every 

element is the average value of all cells in that population for a particular feature. The vector’s length is 

given by the number of features chosen (262 per histone modification). Raw feature values were 

normalized by z-scoring to the average and standard deviation of all populations being compared. All 

cells in each population were used to calculate center vectors and each population contained at least 

50 cells. Activity level for each drug was determined by calculating distance from DMSO. For this, 

feature values of all DMSO replicates center vectors were used to calculate the ‘DMSO center vector’. 

Euclidean distance of each compound and each DMSO replicate to the ‘DMSO center vector’ was 

calculated. Distances were z-scored scored to the average distance and standard deviation of DMSO 

replicates from the ‘DMSO center vector’. Transcriptomic based profile for each cell population was 

represented using a vector in which every element is the z-scored FPKM value for a single gene in that 

population. The length of the vector is given by the number of genes used to construct the profile. 

MDS: The Euclidean distance between all vectors (either image features or transcriptomic based) was 

calculated to assemble a dissimilarity matrix (size N×N, where N is the number of populations being 

compared). For representation, the N×N matrix was reduced to a Nx2 matrix with MDS using the Excel 

add-on program xlstat (Base, v19.06), and displayed as a 2D scatter plot. 

Epigenetic Drugs Screen: GBM2 cells were plated at 4000 cells/well and exposed to Epigenetics 

compounds (Table 2) at 10 µM for 1 days in 384-well optical bottom assay plates (PerkinElmer). 

Negative controls were DMSO (0.1%), 48 DMSO replicates per plate, 3 technical replicates (wells) 

were treated per compound. Cells were fixed and stained with histone modification specific antibodies 

(H3K27ac & H3K27me3, H3K9me3 & H3K4me1; Table 1) and AlexaFluor-488- or AlexaFluor-555-

conjugated secondary antibodies. DNA was stained with DAPI followed by imaging and feature 

extraction. To compare data from multiple plates, average feature values in each plate were was 

normalized DMSO. For this, feature values of all DMSO replicates center vectors in each plate were 

used to calculate the ‘plate-wise DMSO vector’. Raw feature values for all center vectors of all 

populations in each plate were normalized to the plate-wise DMSO vector; normalized feature values 

were z-scored as above. To identify active compounds, activity level for each compounds was 

calculated as above and active compounds were defined as compounds for which activity z-score was 

>3. Compounds reducing the number of imaged cell per well below 50 were considered toxic and 

excluded from analysis. 
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Concentration Curve: For concentration curves GBM2 cells were plated and stained as above. For 

each compound (Table 3), cells were treated at 0.1, 0.3, 1.0, 3.0, 10.0 uM. Activity levels were 

calculated as above. For comparing epigenetic changes and toxicity, average cell count over all 

replicates for each compound was calculated. Cell counts were z-scored against the average and the 

standard deviation of all DMSO replicates. Distances (z-scored) and cell counts (z-scored) were 

averaged for each functional class at each concentration. 

RNAseq and transcriptomic analysis: Total RNA was isolated from GBM2 cells using the RNeasy Kit 

(Qiagen), 0.25 ug total RNA was used for isolation of mRNAs and library preparation. Library 

preparation and sequencing was conducted by the SBP genomics core (Sanford-Burnham NCI Cancer 

Center Support Grant P30 CA030199). PolyA RNA was isolated using the NEBNext® Poly(A) mRNA 

Magnetic Isolation Module and barcoded libraries were made using the NEBNext® Ultra II™ Directional 

RNA Library Prep Kit for Illumina®(NEB, Ipswich MA). Libraries were pooled and single end sequenced 

(1X75) on the Illumina NextSeq 500 using the High output V2 kit (Illumina). Read data was processed 

in BaseSpace (basespace.illumina.com). Reads were aligned to Homo sapiens genome (hg19) using 

STAR aligner (https://code.google.com/p/rna-star/) with default settings. Differential transcript 

expression was determined using the Cufflinks Cuffdiff package (https://github.com/cole-trapnell-

lab/cufflinks). For heat maps showing fold change in expression the FPKM values in each drug treated 

population were divided by the average FPKM values of DMSO treated GBM2 and values are shown 

as log2 of the ratio. Heat maps were generated using Microsoft Excel conditional formatting function. 

Discriminant Analysis: Quadratic discriminant analysis was conducted using the Excel add-on 

program xlstat (Base, v19.06). Model was generated in a stepwise (forward) approach using default 

parameters. All features derived from images of tested histone modification were used for analysis 

following normalization by z-score. Features displaying multicollinearity were reduced. Model testing 

was done by cross validation by ‘leave one out’ method. 

Polar plots: Due to the inherent heterogeneity of TPC lines, we performed data normalization when 

comparing multiple treatments on several TPC lines. For this, the value of each feature for all individual 

cells in each line was divided by the average value obtained for that feature in the DMSO treated 

population from the same cell line. Therefore, following normalization, untreated cells from all lines had 

the same center of distribution vector (in which all elements are equal to 1), while each treatment 

retained its relative distance from untreated as well as from all other treatments of the same cell line. 

However, as each cell line is divided by a different value, the distance vectors originating from two 

different lines represent the change in feature values induced by treatment, rather than the absolute 

feature values. Therefore, following MDS, the results are shown on a polar plot to indicate that the 

various treatments induce similar feature value changes in multiple lines rather than similar absolute 
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values. As a result, direction and distance to the origin are comparable between lines while distances 

directly between points are not. 

Comparing epigenetic changes in different cell lines: For comparing drug induced epigenetic 

changes across multiple GBM lines 101A, 217M, GBM2 and PBT24 cells were plates at 4000 cells/well 

and treated with compounds for 24 hours. Compounds and concentrations are shown in Table 4. 

Feature values for each cell lines were normalized to average DMSO feature values of that line prior to 

data processing. Activity level was calculated as above. Pearson coefficient and significance of 

correlation for activity levels in each pair of cell lines were calculated using the Excel add-on program 

xlstat (Base, v19.06). 

Correlation of transcriptomic and image-based profiles: Euclidean distance between DMSO, VA 

(15uM), SAHA (3uM) and TSA (1uM) treated GBM2 cells (triplicates for each) was calculated using 

either transcriptomic data (FPKM) or texture features. Pearson’s correlation coefficient (R) was 

transformed to a t-value using the formula (t = R × SQRT(N-2)/SQRT(1-R2) where N is the number of 

samples, and R is Pearson correlation coefficient, and the p-value was calculated using Excel t.dist.2t(t) 

function. 

Sensitization to radiation or TMZ : Cells were plated at 1500 cells/well in 384-well optical bottom 

assay plates (PerkinElmer). 2 sets of the experiment were prepared; negative controls were DMSO 

(0.1%), 48 DMSO replicates per plate; 3 replicates (wells) were treated per compound. Compound 

concentrations used are shown in Table 5. Cells in both sets were pre-treated with epigenetic 

compounds for 2 days prior to cytotoxic treatment. Cytotoxic treatment, either 200uM Temozolomide 

(TMZ, Sigma) or 1Gy x-ray radiation (RS2000; RAD Source) was carried out for 4 days on single set 

(‘treatment set’); for TMZ treatment DMSO was given to the second set (‘control set’). Radiation was 

given as a single dose at day 3; TMZ was given twice at the 3rd and 5th day of the experiment. Cells 

were fixed, stained with DAPI and scored automatically using an automated microscope (Celigo; 

Nexcelom Bioscience). For each compound the fold change in cell number was calculated for both the 

‘treatment set’ (Drug+Cytotox) and the ‘control set’ (Drug) compared to DMSO treated wells in the 

‘control set’. The effect of Radiation or TMZ alone was calculated as fold reduction of DMSO treated 

wells in the ‘treatment set’ compared to DMSO treated wells in the ‘control set’(Cytotox). Coefficient of 

drug interaction (CDI) was calculated as: (Drug+Cytotox)/ (Drug)X(Cytotox). For conformation 

experiments, same regiment and CDI calculations were carried out on SK262, 101A, 217M, 454M and 

PBT24 GBM lines; PARPi and BETi were used at same concentration as initial screen on GBM2 (Table 

5). 
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Fig. 1: MIEL compares the epigenetic landscape of multiple cell populations and can be used to 

detect active epigenetic drugs across cell lines and drug concentrations.  

(a) Flowchart of MIEL pipeline. Fixed cells were immunostained for the desired epigenetic 

modifications, stained with Hoechst 33342 to visualize DNA and imaged. Nuclei were segmented based 

on DNA staining, and texture features calculated from the pattern of immunofluorescence. The relative 

similarity of multiple cell populations was assessed by calculating the multiparametric Euclidean 

distance between their pairwise centers, and represented in 2D following MDS (distance map). 

Discriminant analysis is trained on features derived from the histone staining texture of drug treated 

cells and categorized by drug function. (b) Table showing the fraction of epigenetic drugs in each 

functional category identified as active by either MIEL analysis employing texture features derived from 

images of GBM2 cells stained for H3K9me3, H3K4me1, H3K27ac, H3K27me3 or by intensity based 

analysis using the same modifications (see Methods). (c,d,e) Quadratic discriminant analysis using 

texture features derived from images of GBM2 cells treated with either DMSO or 84 active compounds 

(n=132 total cell populations, 84 compounds represented as the average of 3 replicates, 48 DMSO 

replicates) stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. (c) Scatter plots depict the first 2 

discriminant factors derived from features of all four histone modification images for each cell 

population (drug). (d) Confusion matrix showing results of cross validation by ‘leave one out’ method for 

analysis in ‘c’, numbers depict the percent of drugs in each category. (e) Confusion matrix showing 

results of cross validation for a discriminant analyses conducted using features from a single histone 

modification. 
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Fig. 2: MIEL distinguishes between multiple categories of epigenetic drugs. 

(a) Quadratic discriminant analysis using texture features derived from images of GBM2 cells treated 

with 0.1, 0.3, 1, 3 or 10uM Aurora (n=11 compounds, 2 replicates) or HDAC Pan inhibitors (n=11 

compounds, 2 replicates) stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. Scatter plot depict 

the first 2 discriminant factors for each cell population (drug replicate). Confusion matrix showing results 

of cross validation of by ‘leave one out’ method (numbers depict the percent of replicates). (b) Scatter 

plot comparing the magnitude of effect, as calculated using average z-scored Euclidean distances from 

DMSO, to drug induced cytotoxicity, as calculated using z-scored average cell count. Euclidean 

distance was calculated using image texture features derived from images of H3K27ac & H3K27me3 

(Aurora) or H3K27ac & H3K9me3 (HDAC Pan). Distances and cell counts represent average of all 

compounds in each category; nAurora=11, nEZH1/2=5, nHDAC Class I=7, nHDAC Pan=43, nJAK=15, nSIRTi=4). (c) 

Scatter plots comparing the average z-scored Euclidean distances from DMSO replicates across four 

GBM lines (n=57 compounds, z-score for each compound is the average of 3 technical replicates). 

Euclidean distances were calculated using image texture features derived from images of H3K27ac & 

H3K27me3 or H3K27ac & H3K9me3. (d) A table summarizing the Pearson coefficient and statistical 

significance of z-scored Euclidean distances shown in ‘c’. (e) Confusion matrixes showing results of 

cross validation by ‘leave one out’ method (numbers depict the percent of replicates) for a quadratic 

discriminant analysis using texture features derived from images of GBM2, PBT24, 101A, 217M  cells. 

Left: Cells were treated with either DMSO, 5 EZH1/2 inhibitors or 2 SIRT inhibitors (n=33 total cell 

populations for each cell line, 12 DMSO replicates, 3 replicates for per compound) features derived 

from images of cells stained for H3K27me3, H3K27ac. Right: Cells treated with either DMSO, 6 Class I 

HDAC inhibitors or 17 Pan HDAC inhibitors (n=70 total cell populations for each cell line, 12 DMSO 

replicates, 3 replicates for per compound) features derived from images of cells stained for H3K27ac, 

H3K9me3. 
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Fig. 3: MIEL can be used to rank candidate drugs by activity 

(a) Top: Scheme describing the experimental setup used to identify synergy between epigenetic drugs 

and radiation or TMZ. Bottom: Scatter plots showing the fold reduction in GBM2 cell count following a 4 

days treatment with varying concentration of TMZ and radiation doses. (b) Scatter plots showing fold 

change in cell count (compared to DMSO treated cells) and coefficient of drug interaction (CDI) for 

synergy with TMZ (left) and radiation (right) for each drug (n=222, values represent the average of 3 

technical replicates). (c) Graph showing individual and average CDI for BET inhibitors in 6 GBM lines 

(n=11 drugs, values represent the average of 3 technical replicates). (d) Scatter plot showing the 

correlation between CDI and MIEL derived activity (z-scored Euclidean distance from DMSO) of BET 

and PARP inhibitors (nBETi=11; nPARPi=10; values represent the average of 3 technical replicates) in 3 

GBM lines. (e) Bar graph showing the relative normalized expression of Brd2 and MGMT in 6 GBM 

lines (Mean±SD; n=3 technical repeats). (f) Bar graph showing fold reduction in MGMT expression 

following treatment with BET inhibitors in 3 different GBM lines (Mean±SD; n=3 technical repeats). (g) 

Graph showing individual and average TMZ sensitization CDI for BETi, MGMTi (Lomeguatrib) and BETi 

& MGMTi  in GBM2 cells (n=11 drugs, values represent the average of 3 technical replicates). 
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Supplementary Fig. 1 

(a) Pi chart showing functional classes of epigenetic drugs used in the study. (b) Table detailing the 

molecular targets of epigenetic drugs used in the study. 
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Supplementary Fig. 2 

(a) Table showing the fraction of epigenetic drugs in each functional category identified as active by 

either MIEL analysis employing texture features derived from images of GBM2 cells stained for either 

H3K9me3, H3K4me1, H3K27ac, H3K27me3 or by intensity based analysis using the individual 

modifications (see Methods). (b) Graph depicting the average fold change in Euclidean distance from 

DMSO replicates induced by drugs of each functional category as calculated using texture features 

derived from images of individual  histone modification (n for each category is shown in ‘a’). 
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Supplementary Fig. 3  

(a) Bar graph showing average fold change in average fluorescence intensity resulting from 24 hour 

treatment of GBM2  cells with epigenetic drugs from seven functional categories (Mean±SD; n for each 

category is shown in ‘b’). (b) Confusion matrixes showing results of cross validation by ‘leave one out’ 

method (numbers depict the percent of replicates) for a quadratic discriminant analysis using average 

fluorescence intensity derived from images of GBM2 cells treated for 24 hours with either DMSO or 84 

active compounds (n=132 total cell populations, 84 compounds represented as the average of 3 

replicates, 48 DMSO replicates) stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. (c) Confusion 

matrixes showing results of cross validation by ‘leave one out’ method (numbers depict the percent of 

replicates) for a quadratic discriminant analysis using texture features derived from images of GBM2 

cells treated with either DMSO or 84 active compounds (n=132 total cell populations, 84 compounds 

represented as the average of 3 replicates, 48 DMSO replicates) stained for H3K9me3, H3K27me3, 

H3K4me1, H3K27ac. 
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Supplementary Fig. 4 

(a) Bar graph showing expression level (FPKM) of HDAC and SIRT genes in GBM2 cells obtained 

through RNA sequencing. (b,c) Quadratic discriminant analysis using texture features derived from 

images of GBM2 cells treated with either DMSO or 45 active compounds (n=93 total cell populations, 

45 compounds represented as the average of 3 replicates, 48 DMSO replicates) stained for H3K9me3, 

H3K27me3, H3K4me1, H3K27ac. (b) Scatter plot depicts the first 2 discriminant factors derived from 

features of all histone modification images for each cell population. (c) Confusion matrix showing 

results of cross validation by ‘leave one out’ method (numbers depict the percent of compounds) for 

analysis in ‘b’. 
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Supplementary Fig. 5 

(a) Distance map depicting the relative Euclidean distances between the multiparametric centroids 

GBM2 cells treated for 24 hours with either DMSO, Valproic Acid (15uM), SAHA (3uM) or TSA (1uM). 

Left: Distances calculated using texture features derived from images of H3K9me3, H3K27ac and 

H3K27me3 marks. Right: Distances calculated using FPKM values of all expressed genes (13,119 

genes; FPKM>1 in at least one sample). R denotes Pearson correlation coefficient. (b) Bar graph 

showing average fold change in average intensity resulting from 24 hour treatment of GBM2 cells with 

DMSO, Valproic Acid (15uM), SAHA (3uM) or TSA (1uM) (Mean±SD; n=6 technical replicates). (c) Heat 

maps showing log2 of fold change in expression (RNA sequencing) of select differentially expressed 

genes. 
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Supplementary Fig. 6 

(a) Confusion matrix showing results of cross validation of by ‘leave one out’ method (numbers depict 

the percent of replicates) for a quadratic discriminant analysis using texture features derived from 

images of GBM2 cells treated with 0.1, 0.3, 1, 3 or 10uM of EZH1/2 (n=6), SIRT (n=4), JAK (n=15) or 

HDAC Class I (n=6) inhibitors (2 replicates per compound) stained for either H3K27me3 & H3K27ac 

(EZH1/2, JAK, SIRT) or H3K9me3 & H3K27ac (HDAC Class I). (b) Graph depicting the average z-

scored Euclidean distance from DMSO replicates induced by SIRT inhibitors (n=4 compounds, 3 

replicates per compound) as calculated using image texture features derived from images of 217M, 

101A, PBT24 and GBM2 cells stained for H3K27ac & H3K27me3. (c) Left: Scatter plot comparing the 

average Euclidean distances shown in ‘b’ with expression of Sirt1 in each cell line (z-scored FPKM 

values derived by RNA sequencing).  Right: table showing FPKM values for Sirt1 in the four GBM lines. 

(d) Distance map depicting the relative Euclidean distance between the multiparametric centroids of 

four GBM lines treated with either DMSO, TSA (1uM), SAHA (3uM) or Tubacin (10uM). Distances 

calculated using texture features derived from images of cells stained with H3K9me3 and H3K27ac 

(n=12 DMSO replicates; n=3 replicates per compound). (e) Polar plot visualizing the fold changes in 

feature values for cell populations shown in ‘d’ following linear normalization to DMSO averages of 

each cell line (see Methods). 
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Supplementary Fig. 7 

(a) Left: Distance map depicting the relative Euclidean distance between the multiparametric centroids 

of GBM2 cells treated with either DMSO (n=12 replicates), HDAC Pan (n=7 compounds; showing 

average or 3 replicates) or HDAC Class I inhibitors (n=6 compounds; showing average or 3 replicates). 

Distances calculated using texture features derived from images of cells stained with H3K9me3 and 

H3K27ac. Right: Bar graph depicting the fold change in Euclidean distance from DMSO replicates 

induced by drug treatments shown in ‘a’. (b) Graph depicting the average fold change in Euclidean 

distance from DMSO replicates induced by individual BET (left) and PARP (right) inhibitors as 

calculated using texture features derived from images of H3K27ac & H3K9me3 (n=3 replicates per 

compound). 
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Table 1: Primary antibodies. 

     Antigen Host Dilution Brand Catalogue Number 

H3K9me3 rb 1:500 Active Motif 39765 

H3K4me1 ms 1:250 Active Motif 39635 

H3K27me3 ms 1:250 Active Motif 61017 

H3K27ac rb 1:500 Active Motif 39133 

H3K27ac ms 1:250 Active Motif 39685 
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Table 2: Epigenetic drug library - SBP.  

    
Compound ID Molecule Name CAS Number Functional Category 

SBI-0654430 TAK-901 934541-31-8 Aurora 

SBI-0654432 AMG-900 945595-80-2 Aurora 

SBI-0654442 MLN8054 869363-13-3 Aurora 

SBI-0654458 MK-5108 (VX-689) 1010085-13-8 Aurora 

SBI-0654463 CCT137690 1095382-05-0 Aurora 

SBI-0654253 Phthalazinone pyrazole 88048-62-7 Aurora 

SBI-0086733 JNJ-7706621 443797-96-4 Aurora 

SBI-0646927 Alisertib (MLN8237) 1028486-01-2 Aurora 

SBI-0654270 ZM 447439 331771-20-1 Aurora 

SBI-0654331 VX-680 (Tozasertib, MK-0457) 639089-54-6 Aurora 

SBI-0654340 Danusertib (PHA-739358) 827318-97-8 Aurora 

SBI-0654349 Barasertib (AZD1152-HQPA) 722544-51-6 Aurora 

SBI-0654350 SNS-314 Mesylate 1146618-41-8 Aurora 

SBI-0654353 CYC116 693228-63-6 Aurora 

SBI-0654357 ENMD-2076 1291074-87-7 Aurora 

SBI-0654368 Aurora A Inhibitor I 1158838-45-9 Aurora 

SBI-0654369 PHA-680632 398493-79-3 Aurora 

SBI-0654376 CCT129202 942947-93-5 Aurora 

SBI-0654379 Hesperadin 422513-13-1 Aurora 

SBI-0800321 GSK1324726A (I-BET726) 1300031-52-0 BET 

SBI-0800331 I-BRD9 1714146-59-4 BET 

SBI-0800338 (+/-)-JQ1 1268524-69-1 BET 

SBI-0757158 PFI-1 (PF-6405761) 1403764-72-6 BET 

SBI-0757169 I-BET151 (GSK1210151A) 1300031-49-5 BET 

SBI-0658003 (+)-JQ1 1268524-70-4 BET 

SBI-0757166 Bromosporine 1619994-69-2 BET 

SBI-0757171 I-BET-762 1260907-17-2 BET 

SBI-0757176 RVX-208 1044870-39-4 BET 

SBI-0757183 OTX015 202590-98-5 BET 

SBI-0798104 MS-436 1395084-25-9 BET 

SBI-0757191 CPI-203 1446144-04-2 BET 

SBI-0800325 OF-1 919973-83-4 BRPF 

SBI-0800327 NI-57 1883548-89-7 BRPF 

SBI-0800336 PFI-4 900305-37-5 BRPF 

SBI-0636191 Gemcitabine 95058-81-4 DNMT 

SBI-0634491 5-Aza-2'-deoxycytidine 2353-33-5 DNMT 

SBI-0646035 Zebularine 654065 DNMT 

SBI-0050024 Azacitidine 320-67-2 DNMT 

SBI-0050968 Procainamide HCl 614-39-1 DNMT 

SBI-0798079 2',3',5'-triacetyl-5-Azacytidine 10302-78-0 DNMT 

SBI-0055064 RG108 48208-26-0 DNMT 

SBI-0757174 SGI-1027 1020149-73-8 DNMT 
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SBI-0798105 5-Methylcytidine 2140-61-6 DNMT 

SBI-0798107 5-Methyl-2'-deoxycytidine 838-07-3 DNMT 

SBI-0800323 MG149 1243583-85-8 HAT 

SBI-0634482 Anacardic acid 16611-84-0 HAT 

SBI-0798054 CAY10669 1243583-88-1 HAT 

SBI-0646030 Garcinol 78824-30-3 HAT 

SBI-0646040 Butyrolactone 3 778649-18-6 HAT 

SBI-0646041 CTPB 586976-24-1 HAT 

SBI-0798086 I-CBP112 (hydrochloride) 1640282-31-0 HAT 

SBI-0757180 SGC-CBP30 1613695-14-9 HAT 

SBI-0757186 C646 328968-36-1 HAT 

SBI-0800312 Remodelin 1622921-15-6 HAT 

SBI-0757155 Tubastatin A HCl 1310693-92-5 HDAC6 

SBI-0757194 Tubacin 537049-40-4 HDAC6 

SBI-0798111 BRD73954 1440209-96-0 HDAC6 

SBI-0757156 PCI-34051 950762-95-5 HDAC8 

SBI-0757172 RGFP966 1396841-57-8 HDAC-Class I 

SBI-0634800 Entinostat (MS-275) 209783-80-2 HDAC-Class I 

SBI-0634803 Mocetinostat (MGCD0103) 726169-73-9 HDAC-Class I 

SBI-0757179 RG2833 (RGFP109) 1215493-56-3 HDAC-Class I 

SBI-0647660 Romidepsin (FK228, Depsipeptide) 128517-07-7 HDAC-Class I 

SBI-0798076 CBHA 174664-65-4 HDAC-Class I 

SBI-0798078 Pimelic Diphenylamide 106 937039-45-7 HDAC-Class I 

SBI-0053620 Sodium Butyrate 156-54-7 HDAC-Pan 

SBI-0800326 4SC-202 910462-43-0 HDAC-Pan 

SBI-0798099 HPOB 1429651-50-2 HDAC-Pan 

SBI-0050864 Valproic acid 99-66-1 HDAC-Pan 

SBI-0052872 Phenylbutyrate·Na 1716-12-7 HDAC-Pan 

SBI-0053105 NSC-3852 3565-26-2 HDAC-Pan 

SBI-0798047 4-iodo-SAHA 1219807-87-0 HDAC-Pan 

SBI-0634430 SAHA 149647-78-9 HDAC-Pan 

SBI-0634549 M-344 251456-60-7 HDAC-Pan 

SBI-0757142 AR-42 935881-37-1 HDAC-Pan 

SBI-0634614 Scriptaid 287383-59-9 HDAC-Pan 

SBI-0757144 PCI-24781 (Abexinostat) 783355-60-2 HDAC-Pan 

SBI-0757145 LAQ824 (Dacinostat) 404951-53-7 HDAC-Pan 

SBI-0634799 CI-994 112522-64-2 HDAC-Pan 

SBI-0757146 Quisinostat (JNJ-26481585) 875320-29-9 HDAC-Pan 

SBI-0634801 BML-210 537034-17-6 HDAC-Pan 

SBI-0646028 Trichostatin A 58880-19-6 HDAC-Pan 

SBI-0757149 CUDC-101 1012054-59-9 HDAC-Pan 

SBI-0757150 MC1568 852475-26-4 HDAC-Pan 

SBI-0757151 Pracinostat (SB939) 929016-96-6 HDAC-Pan 

SBI-0757152 Givinostat (ITF2357) 732302-99-7 HDAC-Pan 

SBI-0646032 Apicidin 183506-66-3 HDAC-Pan 
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SBI-0646033 Suberoyl bis-hydroxamic acid 38937-66-5 HDAC-Pan 

SBI-0646034 Nullscript 300816-11-9 HDAC-Pan 

SBI-0798064 HC Toxin 83209-65-8 HDAC-Pan 

SBI-0798068 coumarin-SAHA 1260635-77-5 HDAC-Pan 

SBI-0798069 SAHA-BPyne 930772-88-6 HDAC-Pan 

SBI-0646037 Fluoro-SAHA 149648-08-8 HDAC-Pan 

SBI-0757162 Sodium Phenylbutyrate 1716-12-7 HDAC-Pan 

SBI-0646038 Valproic acid hydroxamate 106132-78-9 HDAC-Pan 

SBI-0646039 MC-1293 117378-93-5 HDAC-Pan 

SBI-0646042 Oxamflatin 151720-43-3 HDAC-Pan 

SBI-0634526 HNHA 926908-04-5 HDAC-Pan 

SBI-0646045 NCH-51 848354-66-5 HDAC-Pan 

SBI-0798082 Pyroxamide 382180-17-8 HDAC-Pan 

SBI-0634804 Belinostat (PXD101) 414864-00-9 HDAC-Pan 

SBI-0634805 Panobinostat (LBH589) 404950-80-7 HDAC-Pan 

SBI-0798091 CAY10398 193551-00-7 HDAC-Pan 

SBI-0798094 Chidamide 743420-02-2 HDAC-Pan 

SBI-0798100 2-hexyl-4-Pentynoic Acid 96017-59-3 HDAC-Pan 

SBI-0757165 Resminostat 864814-88-0 HDAC-Pan (Class I + HDAC

SBI-0798102 CAY10683 1477949-42-0 HDAC-Pan (Class I + HDAC

SBI-0646047 BML-281 1045792-66-2 HDAC-Pan (Class I + HDAC

SBI-0031029 Droxinostat 99873-43-5 HDAC-Pan (Class I + HDAC

SBI-0757157 Rocilinostat (ACY-1215) 1316214-52-4 HDAC-Pan (Class I + HDAC

SBI-0757184 Nexturastat A 1403783-31-2 HDAC-Pan (Class I + HDAC

SBI-0661466 CUDC-907 1339928-25-4 HDAC-Pan (Class I + HDAC

SBI-0654405 CYT387 1056634-68-4 JAK 

SBI-0654407 Tofacitinib (CP-690550,Tasocitinib) 540737-29-9 JAK 

SBI-0654431 TG101209 936091-14-4 JAK 

SBI-0654448 Baricitinib (LY3009104, INCB028050) 1187594-09-7 JAK 

SBI-0654455 TG101348 (SAR302503) 936091-26-8 JAK 

SBI-0654480 CEP-33779 1257704-57-6 JAK 

SBI-0798073 Lestaurtinib 111358-88-4 JAK 

SBI-0757170 AZD1480 935666-88-9 JAK 

SBI-0757177 XL019 945755-56-6 JAK 

SBI-0050820 ZM 39923 HCl 1021868-92-7 JAK 

SBI-0754170 Pacritinib (SB1518) 937272-79-2 JAK 

SBI-0086685 WHI-P154 211555-04-3 JAK 

SBI-0634628 WP1066 857064-38-1 JAK 

SBI-0654261 S-Ruxolitinib (INCB018424) 941678-49-5 JAK 

SBI-0654347 AT9283 896466-04-9 JAK 

SBI-0757193 Filgotinib (GLPG0634) 1206161-97-8 JAK 

SBI-0654389 NVP-BSK805 2HCl 1092499-93-8 (free base) JAK 

SBI-0654394 LY2784544 1229236-86-5 JAK 

SBI-0654403 AZ 960 905586-69-8 JAK 

SBI-0800324 ML324 1222800-79-4 KDM-JMJC/D 
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SBI-0798060 Daminozide 1596-84-5 KDM-JMJC/D 

SBI-0798061 GSK-J1 (sodium salt) 1373422-53-7 KDM-JMJC/D 

SBI-0798063 GSK-J5 (hydrochloride) 1797983-32-4 KDM-JMJC/D 

SBI-0757161 GSK J4 HCl 1797983-09-5 KDM-JMJC/D 

SBI-0798093 N-Oxalylglycine 5262-39-5 KDM-JMJC/D 

SBI-0757188 IOX1 5852-78-8 KDM-JMJC/D 

SBI-0798101 JIB-04 199596-05-9 KDM-JMJC/D 

SBI-0800316 ORY-1001 (RG-6016) 1431326-61-2 KDM-LSD1 

SBI-0800317 SP2509 1423715-09-6 KDM-LSD1 

SBI-0757185 OG-L002 1357302-64-7 KDM-LSD1 

SBI-0798109 GSK-LSD1 (hydrochloride) 1431368-48-7 KDM-LSD1 

SBI-0756809 IOX2 931398-72-0 KDM-Misc 

SBI-0635958 Tranylcypromine hemisulfate 13492-01-8 (H2SO4) KDM-Misc 

SBI-0646029 2,4-Pyridinedicarboxylic Acid 499-80-9 KDM-Misc 

SBI-0635387 2-Hydroxyglutaric Acid (sodium salt) 40951-21-1 KDM-Misc 

SBI-0757160 EPZ5676 1380288-87-8 KMT-DotL1 

SBI-0757164 EPZ004777 1338466-77-5 KMT-DotL1 

SBI-0757173 SGC 0946 1561178-17-3 KMT-DotL1 

SBI-0800318 EI1 1418308-27-6 KMT-EZH1/2 

SBI-0800320 GSK503 1346572-63-1 KMT-EZH1/2 

SBI-0052994 3-Deazaneplanocin A (DZNeP) 120964-45-6 KMT-EZH1/2 

SBI-0798085 GSK343 1346704-33-3 KMT-EZH1/2 

SBI-0757175 EPZ-6438 1403254-99-8 KMT-EZH1/2 

SBI-0798087 UNC1999 1431612-23-5 KMT-EZH1/2 

SBI-0798095 EPZ005687 1396772-26-1 KMT-EZH1/2 

SBI-0798103 GSK 126 1346574-57-9 KMT-EZH1/2 

SBI-0800311 CPI-360 1802175-06-9 KMT-EZH1/2 

SBI-0800315 CPI-169 1450655-76-1 KMT-EZH1/2 

SBI-0647018 UNC0638 1255580-76-7 KMT-G9a/GLP 

SBI-0800319 BRD4770 1374601-40-7 KMT-G9a/GLP 

SBI-0798048 UNC0321 (trifluoroacetate salt) 1238673-32-9 KMT-G9a/GLP 

SBI-0633794 BIX-01294 935693-62-2 KMT-G9a/GLP 

SBI-0800334 A-366 1527503-11-2 KMT-G9a/GLP 

SBI-0798070 UNC0631 1320288-19-4 KMT-G9a/GLP 

SBI-0798071 UNC0646 1320288-17-2 KMT-G9a/GLP 

SBI-0798080 UNC0224 1197196-48-7 KMT-G9a/GLP 

SBI-0798097 UNC0642 1481677-78-4 KMT-G9a/GLP 

SBI-0800330 LLY-507 1793053-37-8 KMT-Misc 

SBI-0800337 A-196 1982372-88-2 KMT-Misc 

SBI-0798075 Chaetocin 28097-03-2 KMT-Misc 

SBI-0798110 AZ 505 1035227-43-0 KMT-Misc 

SBI-0798081 Sinefungin 58944-73-3 KMT-Misc 

SBI-0798098 (R)-PFI-2 (hydrochloride) 1627607-87-7 KMT-Misc 

SBI-0800313 UNC0379 1620401-82-2 KMT-Misc 

SBI-0757159 UPF 1069 1048371-03-4 L3MBTL 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/541151doi: bioRxiv preprint 

https://doi.org/10.1101/541151


SBI-0757182 UNC669 1314241-44-5 L3MBTL 

SBI-0757187 UNC1215 1415800-43-9 L3MBTL 

SBI-0800322 MI-3 (Menin-MLL Inhibitor) 1271738-59-0 MLL 

SBI-0798057 MI-2 (hydrochloride) 1271738-62-5 MLL 

SBI-0798058 MI-nc (hydrochloride) 1359873-45-2 MLL 

SBI-0798083 WDR5-0103 890190-22-4 MLL 

SBI-0757178 MM-102 1417329-24-8 MLL 

SBI-0754173 Olaparib (AZD2281, Ku-0059436) 763113-22-0 PARP 

SBI-0757141 Veliparib (ABT-888) 912444-00-9 PARP 

SBI-0757143 Iniparib (BSI-201) 160003-66-7 PARP 

SBI-0757147 Rucaparib (AG-014699,PF-01367338) 459868-92-9 PARP 

SBI-0757153 AG-14361 328543-09-5 PARP 

SBI-0757163 AZD2461 1174043-16-3 PARP 

SBI-0754156 BMN 673 1207456-01-6 PARP 

SBI-0050032 INO-1001 (3-Aminobenzamide) 3544-24-9 PARP 

SBI-0634597 PJ34 344458-19-1 PARP 

SBI-0757181 ME0328 1445251-22-8 PARP 

SBI-0757154 SGI-1776 free base 1025065-69-3 PIM 

SBI-0207181 SMI-4a 438190-29-5 PIM 

SBI-0757189 AZD1208 1204144-28-4 PIM 

SBI-0757190 CX-6258 HCl 1353859-00-3 PIM 

SBI-0800328 MS023 hydrochloride 1831110-54-3 PRMT 

SBI-0800332 SGC707 1687736-54-4 PRMT 

SBI-0800335 MS049 hydrochloride 1502816-23-0 PRMT 

SBI-0798084 AMI-1 (sodium salt) 20324-87-2 PRMT 

SBI-0051742 Ellagic Acid 476-66-4 PRMT 

SBI-0050890 Piceatannol 10083-24-6 SIRTa 

SBI-0051080 Resveratrol 501-36-0 SIRTa 

SBI-0052275 Triacetylresveratrol 42206-94-0 SIRTa 

SBI-0757148 SRT1720 1001645-58-4 SIRTa 

SBI-0646044 BML-278 120533-76-8 SIRTa 

SBI-0243859 CAY10591 839699-72-8 SIRTa 

SBI-0646046 Aminoresveratrol sulfate 1224713-76-1 SIRTa 

SBI-0046858 B2 115687-05-3 SIRTi 

SBI-0051149 Suramin·6Na 129-46-4 SIRTi 

SBI-0206826 Nicotinamide 98-92-0 SIRTi 

SBI-0633736 BML-266 96969-83-4 SIRTi 

SBI-0798052 JGB1741 1256375-38-8 SIRTi 

SBI-0633793 AGK2 304896-28-4 SIRTi 

SBI-0634619 EX-527 49843-98-3 SIRTi 

SBI-0634621 Salermide 1105698-15-4 SIRTi 

SBI-0646031 Splitomicin 1384339 SIRTi 

SBI-0646043 Sirtinol 410536-97-9 SIRTi 

SBI-0055128 SIRT1/2 Inhibitor IV 14513-15-6 SIRTi 

SBI-0798096 AK-7 420831-40-9 SIRTi 
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Table 3: Epigenetic drug used for concentration curve 

    
Compound ID Molecule Name CAS Number Functional Category 

SBI-0654430 TAK-901 934541-31-8 Aurora 

SBI-0654442 MLN8054 869363-13-3 Aurora 

SBI-0654458 MK-5108 (VX-689) 1010085-13-8 Aurora 

SBI-0654253 Phthalazinone pyrazole 88048-62-7 Aurora 

SBI-0646927 Alisertib (MLN8237) 1028486-01-2 Aurora 

SBI-0654270 ZM 447439 331771-20-1 Aurora 

SBI-0654331 VX-680 (Tozasertib, MK-0457) 639089-54-6 Aurora 

SBI-0654349 Barasertib (AZD1152-HQPA) 722544-51-6 Aurora 

SBI-0654350 SNS-314 Mesylate 1146618-41-8 Aurora 

SBI-0654368 Aurora A Inhibitor I 1158838-45-9 Aurora 

SBI-0654379 Hesperadin 422513-13-1 Aurora 

SBI-0634800 Entinostat (MS-275) 209783-80-2 HDAC-Class I 

SBI-0634803 Mocetinostat (MGCD0103) 726169-73-9 HDAC-Class I 

SBI-0647660 Romidepsin (FK228, Depsipeptide) 128517-07-7 HDAC-Class I 

SBI-0757172 RGFP966 1396841-57-8 HDAC-Class I 

SBI-0757179 RG2833 (RGFP109) 1215493-56-3 HDAC-Class I 

SBI-0798076 CBHA 174664-65-4 HDAC-Class I 

SBI-0798078 Pimelic Diphenylamide 106 937039-45-7 HDAC-Class I 

SBI-0050864 Valproic acid 99-66-1 HDAC-Pan 

SBI-0053105 NSC-3852 3565-26-2 HDAC-Pan 

SBI-0053620 Sodium Butyrate 156-54-7 HDAC-Pan 

SBI-0634430 SAHA 149647-78-9 HDAC-Pan 

SBI-0634526 HNHA 926908-04-5 HDAC-Pan 

SBI-0634549 M-344 251456-60-7 HDAC-Pan 

SBI-0634614 Scriptaid 287383-59-9 HDAC-Pan 

SBI-0634799 CI-994 112522-64-2 HDAC-Pan 

SBI-0634801 BML-210 537034-17-6 HDAC-Pan 

SBI-0634804 Belinostat (PXD101) 414864-00-9 HDAC-Pan 

SBI-0634805 Panobinostat (LBH589) 404950-80-7 HDAC-Pan 

SBI-0646028 Trichostatin A 58880-19-6 HDAC-Pan 

SBI-0646032 Apicidin 183506-66-3 HDAC-Pan 

SBI-0646033 Suberoyl bis-hydroxamic acid 38937-66-5 HDAC-Pan 

SBI-0646034 Nullscript 300816-11-9 HDAC-Pan 

SBI-0646037 Fluoro-SAHA 149648-08-8 HDAC-Pan 

SBI-0646038 Valproic acid hydroxamate 106132-78-9 HDAC-Pan 

SBI-0646039 MC-1293 117378-93-5 HDAC-Pan 

SBI-0646042 Oxamflatin 151720-43-3 HDAC-Pan 

SBI-0646045 NCH-51 848354-66-5 HDAC-Pan 

SBI-0757142 AR-42 935881-37-1 HDAC-Pan 

SBI-0757144 PCI-24781 (Abexinostat) 783355-60-2 HDAC-Pan 
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SBI-0757145 LAQ824 (Dacinostat) 404951-53-7 HDAC-Pan 

SBI-0757146 Quisinostat (JNJ-26481585) 875320-29-9 HDAC-Pan 

SBI-0757149 CUDC-101 1012054-59-9 HDAC-Pan 

SBI-0757150 MC1568 852475-26-4 HDAC-Pan 

SBI-0757151 Pracinostat (SB939) 929016-96-6 HDAC-Pan 

SBI-0757162 Sodium Phenylbutyrate 1716-12-7 HDAC-Pan 

SBI-0798047 4-iodo-SAHA 1219807-87-0 HDAC-Pan 

SBI-0798064 HC Toxin 83209-65-8 HDAC-Pan 

SBI-0798068 coumarin-SAHA 1260635-77-5 HDAC-Pan 

SBI-0798069 SAHA-BPyne 930772-88-6 HDAC-Pan 

SBI-0798082 Pyroxamide 382180-17-8 HDAC-Pan 

SBI-0798091 CAY10398 193551-00-7 HDAC-Pan 

SBI-0798094 Chidamide 743420-02-2 HDAC-Pan 

SBI-0798099 HPOB 1429651-50-2 HDAC-Pan 

SBI-0798100 2-hexyl-4-Pentynoic Acid 96017-59-3 HDAC-Pan 

SBI-0800326 4SC-202 910462-43-0 HDAC-Pan 

SBI-0031029 Droxinostat 99873-43-5 HDAC-Pan (Class I + HDA

SBI-0646047 BML-281 1045792-66-2 HDAC-Pan (Class I + HDA

SBI-0661466 CUDC-907 1339928-25-4 HDAC-Pan (Class I + HDA

SBI-0757157 Rocilinostat (ACY-1215) 1316214-52-4 HDAC-Pan (Class I + HDA

SBI-0757165 Resminostat 864814-88-0 HDAC-Pan (Class I + HDA

SBI-0757184 Nexturastat A 1403783-31-2 HDAC-Pan (Class I + HDA

SBI-0798102 CAY10683 1477949-42-0 HDAC-Pan (Class I + HDA

SBI-0654405 CYT387 1056634-68-4 JAK 

SBI-0654407 Tofacitinib (CP-690550,Tasocitinib) 540737-29-9 JAK 

SBI-0654431 TG101209 936091-14-4 JAK 

SBI-0654455 TG101348 (SAR302503) 936091-26-8 JAK 

SBI-0654480 CEP-33779 1257704-57-6 JAK 

SBI-0798073 Lestaurtinib 111358-88-4 JAK 

SBI-0757170 AZD1480 935666-88-9 JAK 

SBI-0757177 XL019 945755-56-6 JAK 

SBI-0050820 ZM 39923 HCl 1021868-92-7 JAK 

SBI-0754170 Pacritinib (SB1518) 937272-79-2 JAK 

SBI-0634628 WP1066 857064-38-1 JAK 

SBI-0654347 AT9283 896466-04-9 JAK 

SBI-0654389 NVP-BSK805 2HCl 1092499-93-8 (free base) JAK 

SBI-0654394 LY2784544 1229236-86-5 JAK 

SBI-0654403 AZ 960 905586-69-8 JAK 

SBI-0800318 EI1 1418308-27-6 KMT-EZH1/2 

SBI-0798085 GSK343 1346704-33-3 KMT-EZH1/2 

SBI-0798087 UNC1999 1431612-23-5 KMT-EZH1/2 

SBI-0798103 GSK 126 1346574-57-9 KMT-EZH1/2 

SBI-0800311 CPI-360 1802175-06-9 KMT-EZH1/2 

SBI-0800315 CPI-169 1450655-76-1 KMT-EZH1/2 

SBI-0046858 B2 115687-05-3 SIRTi 
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SBI-0051149 Suramin·6Na 129-46-4 SIRTi 

SBI-0633736 BML-266 96969-83-4 SIRTi 

SBI-0646031 Splitomicin 1384339 SIRTi 

SBI-0646043 Sirtinol 410536-97-9 SIRTi 

SBI-0055128 SIRT1/2 Inhibitor IV 14513-15-6 SIRTi 

SBI-0798096 AK-7 420831-40-9 SIRTi 
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Compound ID Molecule Name CAS Number Functional Category Concentra

SBI-0757155 Tubastatin A HCl 1310693-92-5 HDAC6 10 

SBI-0757194 Tubacin 537049-40-4 HDAC6 10 

SBI-0798111 BRD73954 1440209-96-0 HDAC6 10 

SBI-0757156 PCI-34051 950762-95-5 HDAC8 10 

SBI-0634800 Entinostat (MS-275) 209783-80-2 HDAC-Class I 1 

SBI-0634803 Mocetinostat (MGCD0103) 726169-73-9 HDAC-Class I 1 

SBI-0757172 RGFP966 1396841-57-8 HDAC-Class I 3 

SBI-0757179 RG2833 (RGFP109) 1215493-56-3 HDAC-Class I 1 

SBI-0798076 CBHA 174664-65-4 HDAC-Class I 1 

SBI-0798078 Pimelic Diphenylamide 106 937039-45-7 HDAC-Class I 1 

SBI-0050864 Valproic acid 99-66-1 HDAC-Pan 10 

SBI-0053105 NSC-3852 3565-26-2 HDAC-Pan 1 

SBI-0634430 SAHA 149647-78-9 HDAC-Pan 1 

SBI-0634614 Scriptaid 287383-59-9 HDAC-Pan 1 

SBI-0634799 CI-994 112522-64-2 HDAC-Pan 3 

SBI-0634801 BML-210 537034-17-6 HDAC-Pan 10 

SBI-0646028 Trichostatin A 58880-19-6 HDAC-Pan 1 

SBI-0646033 Suberoyl bis-hydroxamic acid 38937-66-5 HDAC-Pan 10 

SBI-0646034 Nullscript 300816-11-9 HDAC-Pan 3 

SBI-0798069 SAHA-BPyne 930772-88-6 HDAC-Pan 10 

SBI-0798082 Pyroxamide 382180-17-8 HDAC-Pan 3 

SBI-0798091 CAY10398 193551-00-7 HDAC-Pan 1 

SBI-0798094 Chidamide 743420-02-2 HDAC-Pan 3 

SBI-0798099 HPOB 1429651-50-2 HDAC-Pan 10 

SBI-0800326 4SC-202 910462-43-0 HDAC-Pan 1 

SBI-0031029 Droxinostat 99873-43-5 HDAC-Pan (Class I + HDAC6) 1 

SBI-0646047 BML-281 1045792-66-2 HDAC-Pan (Class I + HDAC6) 1 

SBI-0757157 Rocilinostat (ACY-1215) 1316214-52-4 HDAC-Pan (Class I + HDAC6) 1 

SBI-0757165 Resminostat 864814-88-0 HDAC-Pan (Class I + HDAC6) 1 

SBI-0757184 Nexturastat A 1403783-31-2 HDAC-Pan (Class I + HDAC6) 1 

SBI-0052994 3-Deazaneplanocin A (DZNeP) 120964-45-6 KMT-EZH1/2 1 

SBI-0757175 EPZ-6438 1403254-99-8 KMT-EZH1/2 1 

SBI-0798085 GSK343 1346704-33-3 KMT-EZH1/2 1 

SBI-0798087 UNC1999 1431612-23-5 KMT-EZH1/2 1 

SBI-0798103 GSK 126 1346574-57-9 KMT-EZH1/2 1 

SBI-0800311 CPI-360 1802175-06-9 KMT-EZH1/2 1 

SBI-0800315 CPI-169 1450655-76-1 KMT-EZH1/2 1 

SBI-0800318 EI1 1418308-27-6 KMT-EZH1/2 1 

SBI-0800320 GSK503 1346572-63-1 KMT-EZH1/2 1 

SBI-0633794 BIX-01294 935693-62-2 KMT-G9a/GLP 3 

SBI-0647018 UNC0638 1255580-76-7 KMT-G9a/GLP 3 

SBI-0798070 UNC0631 1320288-19-4 KMT-G9a/GLP 3 

SBI-0798071 UNC0646 1320288-17-2 KMT-G9a/GLP 3 

SBI-0798080 UNC0224 1197196-48-7 KMT-G9a/GLP 3 
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SBI-0798097 UNC0642 1481677-78-4 KMT-G9a/GLP 3 

SBI-0798081 Sinefungin 58944-73-3 KMT-Misc 10 

SBI-0798098 (R)-PFI-2 (hydrochloride) 1627607-87-7 KMT-Misc 10 

SBI-0800313 UNC0379 1620401-82-2 KMT-Misc 1 

SBI-0798110 AZ 505 1035227-43-0 KMT-Misc 10 

SBI-0800330 LLY-507 1793053-37-8 KMT-Misc 1 

SBI-0046858 B2 115687-05-3 SIRTi 1 

SBI-0051149 Suramin·6Na 129-46-4 SIRTi 3 

SBI-0055128 SIRT1/2 Inhibitor IV 14513-15-6 SIRTi 10 

SBI-0633736 BML-266 96969-83-4 SIRTi 3 

SBI-0646043 Sirtinol 410536-97-9 SIRTi 3 

SBI-0798096 AK-7 420831-40-9 SIRTi 10 
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Table 5: Epigenetic drug screened for sensitization to cytotoxic treatment 

    Compound ID Molecule Name CAS Number Functional Category 

SBI-0654369 PHA-680632 398493-79-3 Aurora 

SBI-0654442 MLN8054 869363-13-3 Aurora 

SBI-0654340 Danusertib (PHA-739358) 827318-97-8 Aurora 

SBI-0654350 SNS-314 Mesylate 1146618-41-8 Aurora 

SBI-0654376 CCT129202 942947-93-5 Aurora 

SBI-0654331 VX-680 (Tozasertib, MK-0457) 639089-54-6 Aurora 

SBI-0654432 AMG-900 945595-80-2 Aurora 

SBI-0654357 ENMD-2076 1291074-87-7 Aurora 

SBI-0654368 Aurora A Inhibitor I 1158838-45-9 Aurora 

SBI-0646927 Alisertib (MLN8237) 1028486-01-2 Aurora 

SBI-0654430 TAK-901 934541-31-8 Aurora 

SBI-0654349 Barasertib (AZD1152-HQPA) 722544-51-6 Aurora 

SBI-0086733 JNJ-7706621 443797-96-4 Aurora 

SBI-0654458 MK-5108 (VX-689) 1010085-13-8 Aurora 

SBI-0654353 CYC116 693228-63-6 Aurora 

SBI-0654379 Hesperadin 422513-13-1 Aurora 

SBI-0654463 CCT137690 1095382-05-0 Aurora 

SBI-0654270 ZM 447439 331771-20-1 Aurora 

SBI-0654253 Phthalazinone pyrazole 88048-62-7 Aurora 

SBI-0757183 OTX015 202590-98-5 BET 

SBI-0757169 I-BET151 (GSK1210151A) 1300031-49-5 BET 

SBI-0658003 (+)-JQ1 1268524-70-4 BET 

SBI-0800321 GSK1324726A (I-BET726) 1300031-52-0 BET 

SBI-0757191 CPI-203 1446144-04-2 BET 

SBI-0798104 MS-436 1395084-25-9 BET 

SBI-0757158 PFI-1 (PF-6405761) 1403764-72-6 BET 

SBI-0757171 I-BET-762 1260907-17-2 BET 

SBI-0800331 I-BRD9 1714146-59-4 BET 

SBI-0800338 (+/-)-JQ1 1268524-69-1 BET 

SBI-0757176 RVX-208 1044870-39-4 BET 

SBI-0757166 Bromosporine 1619994-69-2 BET 

SBI-0800336 PFI-4 900305-37-5 BRPF 

SBI-0800327 NI-57 1883548-89-7 BRPF 

SBI-0800325 OF-1 919973-83-4 BRPF 

SBI-0634491 5-Aza-2'-deoxycytidine 2353-33-5 DNMT 

SBI-0798107 5-Methyl-2'-deoxycytidine 838-07-3 DNMT 

SBI-0636191 Gemcitabine 95058-81-4 DNMT 

SBI-0646035 Zebularine 654065 DNMT 

SBI-0757174 SGI-1027 1020149-73-8 DNMT 

SBI-0050024 Azacitidine 320-67-2 DNMT 

SBI-0798105 5-Methylcytidine 2140-61-6 DNMT 

SBI-0055064 RG108 48208-26-0 DNMT 
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SBI-0050968 Procainamide HCl 614-39-1 DNMT 

SBI-0798079 2',3',5'-triacetyl-5-Azacytidine 10302-78-0 DNMT 

SBI-0800312 Remodelin 1622921-15-6 HAT 

SBI-0757180 SGC-CBP30 1613695-14-9 HAT 

SBI-0800323 MG149 1243583-85-8 HAT 

SBI-0646040 Butyrolactone 3 778649-18-6 HAT 

SBI-0798054 CAY10669 1243583-88-1 HAT 

SBI-0757186 C646 328968-36-1 HAT 

SBI-0634482 Anacardic acid 16611-84-0 HAT 

SBI-0798086 I-CBP112 (hydrochloride) 1640282-31-0 HAT 

SBI-0646041 CTPB 586976-24-1 HAT 

SBI-0646030 Garcinol 78824-30-3 HAT 

SBI-0757155 Tubastatin A HCl 1310693-92-5 HDAC6 

SBI-0798111 BRD73954 1440209-96-0 HDAC6 

SBI-0757194 Tubacin 537049-40-4 HDAC6 

SBI-0757156 PCI-34051 950762-95-5 HDAC8 

SBI-0634803 Mocetinostat (MGCD0103) 726169-73-9 HDAC-Class I 

SBI-0647660 Romidepsin (FK228, Depsipeptide) 128517-07-7 HDAC-Class I 

SBI-0798076 CBHA 174664-65-4 HDAC-Class I 

SBI-0634800 Entinostat (MS-275) 209783-80-2 HDAC-Class I 

SBI-0757179 RG2833 (RGFP109) 1215493-56-3 HDAC-Class I 

SBI-0757172 RGFP966 1396841-57-8 HDAC-Class I 

SBI-0798078 Pimelic Diphenylamide 106 937039-45-7 HDAC-Class I 

SBI-0798068 coumarin-SAHA 1260635-77-5 HDAC-Pan 

SBI-0757142 AR-42 935881-37-1 HDAC-Pan 

SBI-0634614 Scriptaid 287383-59-9 HDAC-Pan 

SBI-0798094 Chidamide 743420-02-2 HDAC-Pan 

SBI-0634805 Panobinostat (LBH589) 404950-80-7 HDAC-Pan 

SBI-0634430 SAHA 149647-78-9 HDAC-Pan 

SBI-0757145 LAQ824 (Dacinostat) 404951-53-7 HDAC-Pan 

SBI-0757149 CUDC-101 1012054-59-9 HDAC-Pan 

SBI-0798091 CAY10398 193551-00-7 HDAC-Pan 

SBI-0798047 4-iodo-SAHA 1219807-87-0 HDAC-Pan 

SBI-0757146 Quisinostat (JNJ-26481585) 875320-29-9 HDAC-Pan 

SBI-0757151 Pracinostat (SB939) 929016-96-6 HDAC-Pan 

SBI-0800326 4SC-202 910462-43-0 HDAC-Pan 

SBI-0646042 Oxamflatin 151720-43-3 HDAC-Pan 

SBI-0053105 NSC-3852 3565-26-2 HDAC-Pan 

SBI-0757144 PCI-24781 (Abexinostat) 783355-60-2 HDAC-Pan 

SBI-0634804 Belinostat (PXD101) 414864-00-9 HDAC-Pan 

SBI-0646032 Apicidin 183506-66-3 HDAC-Pan 

SBI-0798082 Pyroxamide 382180-17-8 HDAC-Pan 

SBI-0634549 M-344 251456-60-7 HDAC-Pan 

SBI-0646028 Trichostatin A 58880-19-6 HDAC-Pan 

SBI-0757152 Givinostat (ITF2357) 732302-99-7 HDAC-Pan 
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SBI-0798064 HC Toxin 83209-65-8 HDAC-Pan 

SBI-0646037 Fluoro-SAHA 149648-08-8 HDAC-Pan 

SBI-0798099 HPOB 1429651-50-2 HDAC-Pan 

SBI-0757162 Sodium Phenylbutyrate 1716-12-7 HDAC-Pan 

SBI-0646033 Suberoyl bis-hydroxamic acid 38937-66-5 HDAC-Pan 

SBI-0646034 Nullscript 300816-11-9 HDAC-Pan 

SBI-0646045 NCH-51 848354-66-5 HDAC-Pan 

SBI-0050864 Valproic acid 99-66-1 HDAC-Pan 

SBI-0052872 Phenylbutyrate·Na 1716-12-7 HDAC-Pan 

SBI-0757150 MC1568 852475-26-4 HDAC-Pan 

SBI-0634801 BML-210 537034-17-6 HDAC-Pan 

SBI-0634526 HNHA 926908-04-5 HDAC-Pan 

SBI-0053620 Sodium Butyrate 156-54-7 HDAC-Pan 

SBI-0798100 2-hexyl-4-Pentynoic Acid 96017-59-3 HDAC-Pan 

SBI-0798069 SAHA-BPyne 930772-88-6 HDAC-Pan 

SBI-0634799 CI-994 112522-64-2 HDAC-Pan 

SBI-0646038 Valproic acid hydroxamate 106132-78-9 HDAC-Pan 

SBI-0646039 MC-1293 117378-93-5 HDAC-Pan 

SBI-0031029 Droxinostat 99873-43-5 HDAC-Pan (Class I + HDA

SBI-0757157 Rocilinostat (ACY-1215) 1316214-52-4 HDAC-Pan (Class I + HDA

SBI-0661466 CUDC-907 1339928-25-4 HDAC-Pan (Class I + HDA

SBI-0646047 BML-281 1045792-66-2 HDAC-Pan (Class I + HDA

SBI-0757165 Resminostat 864814-88-0 HDAC-Pan (Class I + HDA

SBI-0757184 Nexturastat A 1403783-31-2 HDAC-Pan (Class I + HDA

SBI-0798102 CAY10683 1477949-42-0 HDAC-Pan (Class I + HDA

SBI-0798073 Lestaurtinib 111358-88-4 JAK 

SBI-0654347 AT9283 896466-04-9 JAK 

SBI-0654394 LY2784544 1229236-86-5 JAK 

SBI-0654431 TG101209 936091-14-4 JAK 

SBI-0754170 Pacritinib (SB1518) 937272-79-2 JAK 

SBI-0654455 TG101348 (SAR302503) 936091-26-8 JAK 

SBI-0654405 CYT387 1056634-68-4 JAK 

SBI-0654403 AZ 960 905586-69-8 JAK 

SBI-0757170 AZD1480 935666-88-9 JAK 

SBI-0634628 WP1066 857064-38-1 JAK 

SBI-0050820 ZM 39923 HCl 1021868-92-7 JAK 

SBI-0757193 Filgotinib (GLPG0634) 1206161-97-8 JAK 

SBI-0654261 S-Ruxolitinib (INCB018424) 941678-49-5 JAK 

SBI-0654480 CEP-33779 1257704-57-6 JAK 

SBI-0654407 Tofacitinib (CP-690550,Tasocitinib) 540737-29-9 JAK 

SBI-0757177 XL019 945755-56-6 JAK 

SBI-0086685 WHI-P154 211555-04-3 JAK 

SBI-0654389 NVP-BSK805 2HCl 1092499-93-8 (free base) JAK 

SBI-0654448 Baricitinib (LY3009104, INCB028050) 1187594-09-7 JAK 

SBI-0798063 GSK-J5 (hydrochloride) 1797983-32-4 KDM-JMJC/D 
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SBI-0798061 GSK-J1 (sodium salt) 1373422-53-7 KDM-JMJC/D 

SBI-0798060 Daminozide 1596-84-5 KDM-JMJC/D 

SBI-0757188 IOX1 5852-78-8 KDM-JMJC/D 

SBI-0757161 GSK J4 HCl 1797983-09-5 KDM-JMJC/D 

SBI-0798093 N-Oxalylglycine 5262-39-5 KDM-JMJC/D 

SBI-0800324 ML324 1222800-79-4 KDM-JMJC/D 

SBI-0798101 JIB-04 199596-05-9 KDM-JMJC/D 

SBI-0800317 SP2509 1423715-09-6 KDM-LSD1 

SBI-0798109 GSK-LSD1 (hydrochloride) 1431368-48-7 KDM-LSD1 

SBI-0800316 ORY-1001 (RG-6016) 1431326-61-2 KDM-LSD1 

SBI-0757185 OG-L002 1357302-64-7 KDM-LSD1 

SBI-0635387 2-Hydroxyglutaric Acid (sodium salt) 40951-21-1 KDM-Misc 

SBI-0756809 IOX2 931398-72-0 KDM-Misc 

SBI-0635958 Tranylcypromine hemisulfate 13492-01-8 (H2SO4) KDM-Misc 

SBI-0646029 2,4-Pyridinedicarboxylic Acid 499-80-9 KDM-Misc 

SBI-0757160 EPZ5676 1380288-87-8 KMT-DotL1 

SBI-0757173 SGC 0946 1561178-17-3 KMT-DotL1 

SBI-0757164 EPZ004777 1338466-77-5 KMT-DotL1 

SBI-0800315 CPI-169 1450655-76-1 KMT-EZH1/2 

SBI-0052994 3-Deazaneplanocin A (DZNeP) 120964-45-6 KMT-EZH1/2 

SBI-0800311 CPI-360 1802175-06-9 KMT-EZH1/2 

SBI-0798087 UNC1999 1431612-23-5 KMT-EZH1/2 

SBI-0757175 EPZ-6438 1403254-99-8 KMT-EZH1/2 

SBI-0798095 EPZ005687 1396772-26-1 KMT-EZH1/2 

SBI-0800318 EI1 1418308-27-6 KMT-EZH1/2 

SBI-0798103 GSK 126 1346574-57-9 KMT-EZH1/2 

SBI-0800320 GSK503 1346572-63-1 KMT-EZH1/2 

SBI-0798085 GSK343 1346704-33-3 KMT-EZH1/2 

SBI-0647018 UNC0638 1255580-76-7 KMT-G9a/GLP 

SBI-0633794 BIX-01294 935693-62-2 KMT-G9a/GLP 

SBI-0798071 UNC0646 1320288-17-2 KMT-G9a/GLP 

SBI-0798097 UNC0642 1481677-78-4 KMT-G9a/GLP 

SBI-0800319 BRD4770 1374601-40-7 KMT-G9a/GLP 

SBI-0798070 UNC0631 1320288-19-4 KMT-G9a/GLP 

SBI-0798048 UNC0321 (trifluoroacetate salt) 1238673-32-9 KMT-G9a/GLP 

SBI-0798080 UNC0224 1197196-48-7 KMT-G9a/GLP 

SBI-0800334 A-366 1527503-11-2 KMT-G9a/GLP 

SBI-0798075 Chaetocin 28097-03-2 KMT-Misc 

SBI-0800313 UNC0379 1620401-82-2 KMT-Misc 

SBI-0798081 Sinefungin 58944-73-3 KMT-Misc 

SBI-0800330 LLY-507 1793053-37-8 KMT-Misc 

SBI-0798098 (R)-PFI-2 (hydrochloride) 1627607-87-7 KMT-Misc 

SBI-0800337 A-196 1982372-88-2 KMT-Misc 

SBI-0798110 AZ 505 1035227-43-0 KMT-Misc 

SBI-0757187 UNC1215 1415800-43-9 L3MBTL 
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SBI-0757182 UNC669 1314241-44-5 L3MBTL 

SBI-0757159 UPF 1069 1048371-03-4 L3MBTL 

SBI-0757167 Lomeguatrib 192441-08-0 MGMT 

SBI-0798057 MI-2 (hydrochloride) 1271738-62-5 MLL 

SBI-0800322 MI-3 (Menin-MLL Inhibitor) 1271738-59-0 MLL 

SBI-0757178 MM-102 1417329-24-8 MLL 

SBI-0798058 MI-nc (hydrochloride) 1359873-45-2 MLL 

SBI-0798083 WDR5-0103 890190-22-4 MLL 

SBI-0754173 Olaparib (AZD2281, Ku-0059436) 763113-22-0 PARP 

SBI-0754156 BMN 673 1207456-01-6 PARP 

SBI-0050032 INO-1001 (3-Aminobenzamide) 3544-24-9 PARP 

SBI-0757143 Iniparib (BSI-201) 160003-66-7 PARP 

SBI-0634597 PJ34 344458-19-1 PARP 

SBI-0757163 AZD2461 1174043-16-3 PARP 

SBI-0757181 ME0328 1445251-22-8 PARP 

SBI-0757141 Veliparib (ABT-888) 912444-00-9 PARP 

SBI-0757153 AG-14361 328543-09-5 PARP 

SBI-0757147 Rucaparib (AG-014699,PF-01367338) 459868-92-9 PARP 

SBI-0757154 SGI-1776 free base 1025065-69-3 PIM 

SBI-0757190 CX-6258 HCl 1353859-00-3 PIM 

SBI-0207181 SMI-4a 438190-29-5 PIM 

SBI-0757189 AZD1208 1204144-28-4 PIM 

SBI-0051742 Ellagic Acid 476-66-4 PRMT 

SBI-0798084 AMI-1 (sodium salt) 20324-87-2 PRMT 

SBI-0800328 MS023 hydrochloride 1831110-54-3 PRMT 

SBI-0800335 MS049 hydrochloride 1502816-23-0 PRMT 

SBI-0800332 SGC707 1687736-54-4 PRMT 

SBI-0051080 Resveratrol 501-36-0 SIRTa 

SBI-0757148 SRT1720 1001645-58-4 SIRTa 

SBI-0646046 Aminoresveratrol sulfate 1224713-76-1 SIRTa 

SBI-0243859 CAY10591 839699-72-8 SIRTa 

SBI-0646044 BML-278 120533-76-8 SIRTa 

SBI-0052275 Triacetylresveratrol 42206-94-0 SIRTa 

SBI-0050890 Piceatannol 10083-24-6 SIRTa 

SBI-0046858 B2 115687-05-3 SIRTi 

SBI-0798096 AK-7 420831-40-9 SIRTi 

SBI-0051149 Suramin·6Na 129-46-4 SIRTi 

SBI-0646031 Splitomicin 1384339 SIRTi 

SBI-0646043 Sirtinol 410536-97-9 SIRTi 

SBI-0633736 BML-266 96969-83-4 SIRTi 

SBI-0634621 Salermide 1105698-15-4 SIRTi 

SBI-0055128 SIRT1/2 Inhibitor IV 14513-15-6 SIRTi 

SBI-0634619 EX-527 49843-98-3 SIRTi 

SBI-0206826 Nicotinamide 98-92-0 SIRTi 

SBI-0798052 JGB1741 1256375-38-8 SIRTi 
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SBI-0633793 AGK2 304896-28-4 SIRTi 
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