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Abstract 
With the advent of automatic cell imaging and machine learning, high-content phenotypic screening has 

become the approach of choice for drug discovery because it can extract drug-specific multi-layered 

data, which could be compared to known profiles. In the field of epigenetics, such screening 

approaches have suffered from a lack of tools sensitive to selective epigenetic perturbations. Here we 

describe a novel approach, Microscopic Imaging of Epigenetic Landscapes (MIEL), which captures the 

nuclear staining patterns of epigenetic marks (e.g., acetylated and methylated histones) and employs 

machine learning to accurately distinguish between such patterns. We validated the fidelity and 

robustness of the MIEL platform across multiple cells lines using dose-response curves. We employed 

MIEL to uncover the mechanism by which bromodomain inhibitors synergize with temozolomide-

mediated killing of human glioblastoma lines. To explore alternative, non-cytotoxic, glioblastoma 

treatment, we screen the Prestwick chemical library and documented the power of MIEL platform to 

identify epigenetically active drugs and accurately rank them according to their ability to produce 

epigenetic and transcriptional alterations consistent with the induction of glioblastoma differentiation. 
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Introduction 
 A cell’s epigenetic landscape is largely determined by its chromatin organization, the pattern of 

its DNA, and its histone modifications, all of which confer differential accessibility to areas of the 

genome and, through direct and indirect regulation of all DNA-related processes, form the basis of the 

cellular phenotype (1, 2). By collecting global information about the epigenetic landscape, for example 

using ATAC- or histone ChIP-seq, we can derive multilayered information regarding cellular states (3, 

4). These include stable cell phenotypes such as quiescence, senescence, or cell fate, as well as 

transient changes such as those induced by cytokines and chemical compounds. However, current 

methods for collecting such information are not adapted for high-content drug screening. Over the past 

decade the decreasing cost and remarkable scalability have made high content screening particularly 

attractive for drug discovery.  More recently,  novel image analysis coupled with multiparametric 

analysis and machine learning have significantly impacted our ability to understand and process 

phenotypic screening outputs (5, 6). Despite these advantages, such assays have not been adapted to 

extract and utilize information for the cellular epigenetic landscape. 
 While malignant glioblastoma is the most common and lethal brain tumor, current therapeutic 

options offer little prognostic improvement, so the median survival time has remained virtually 

unchanged for decades (7-9). Tumor-propagating cells (TPCs) are a subpopulation of glioblastoma 

cells with increased tumorigenic capability (10) and are operationally defined as early-passaged (<15) 

glioblastoma cells propagated in serum-free medium (11). Compared to the bulk of the tumor, TPCs are 

more resistant to drugs, such as temozolomide (TMZ) and radiation therapy (12, 13). This resistance 

may explain the failure of traditional therapeutic strategies based on cytotoxic drugs targeting 

glioblastoma. Multiple approaches aimed at reducing or circumventing the resilience of TPCs have 

been proposed. These include targeting epigenetic enzymes (i.e., enzymes that write, remove, or read 

DNA and histone modifications) that would increase sensitivity to cytotoxic treatments (14-17), 

differentiating TPCs to reduce tumor expansion by decreased cell proliferation, and increasing 

sensitivity to cytotoxic treatments (18-23).  

 Culturing primary GBM cells in serum-containing medium induces their differentiation into cells 

with drastically reduced tumorigenic potential (24). In addition, Bone Morphogenetic Protein 4 (BMP4) 

treatment was reported to induce GBM differentiation (25, 26), which might be reversible (27) and is 

contingent on the presence of functional BMP receptors (28). These observations support the potential 

therapeutic value of small molecules that mimic the differentiation effect of serum and BMPs on TPCs 

 Here we have used the novel high-content screening platform MIEL to profile chromatin 

organization by using the endogenous patterns of histone modifications present in all eukaryotic cells. 

We validated this platform across multipole cell lines using epigenetically active compounds and 

applied MIEL to realize the mechanism by which BET inhibitors synergize with TMZ treatment. Also 

relevant to the tumor differentiation paradigm, we demonstrated that MIEL can identify epigenetically 
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active drugs, classify them by molecular function, and accurately rank them by the ability to produce a 

set of desired epigenetic alterations consistent with inducing glioblastoma differentiation. 

 
 
Results 
 

Development of the MIEL platform. 
 We have developed a novel phenotypic screening platform, MIEL, which interrogates the 

epigenetic landscape at both population and single cell levels using image derived features and 

machine learning (29). MIEL takes advantage of epigenetic marks such as histone methylation and 

acetylation, which are always present in eukaryotic nuclei and can be revealed by immunostaining. 

MIEL analyzes the immunolabeling patterns of epigenetic marks using conventional image analysis 

methods for nuclei segmentation, feature extraction, and previously described machine-learning 

algorithms (30) (Fig. 1a and Methods). Primarily, we utilized four histone modifications: H3K27me3 and 

H3K9me3, which are associated with condensed (closed) facultative and constitutive heterochromatin, 

respectively; H3K27ac, associated with transcriptionally active (open) areas of chromatin, especially at 

promoter and enhancer regions; and H3K4me1, associated with enhancers and other chromatin 

regions (Fig. 1a; (31, 32)). To focus on the intrinsic pattern of epigenetic marks, we used only texture-

associated features (e.g., Haralick's texture features (33), threshold adjacency statistics, and radial 

features (34)) for multivariate analysis. Previous studies have successfully employed similar features 

for cell painting techniques combined with multivariate analyses to accurately classify subcellular 

localization of proteins (34), cellular subpopulations (35), and drug mechanisms of action (30, 36-38). 

 We employed three main methods of data visualization and analysis: To visualize similarity 

between multiple cell populations, we calculated the multivariate centroids for each cell population and 

the Euclidean distance between all populations. To reduce data dimensionality and present as a 2D 

scatter plot (termed distance map), we used multidimensional scaling (MDS; Methods and Fig. 1a). To 

classify multiple cell populations, we employed quadratic discriminant analysis of multivariate centroids, 

while single cells across cell populations were classified using a Support Vector Machine (SVM; 

Methods and Fig. 1a). 

  The most commonly used cellular assays for epigenetic drug discovery are lysis and ELISA, 

such as AlphaLISA (PerkinElmer). Imaging-based alternatives rely on staining for relevant histone 

modification and monitoring changes in average fluorescent intensity (39, 40). Using MIEL, we 

screened a library of 222 epigenetically active compounds, many with known targets among epigenetic 

writers, erasers, or readers (SBP epigenetic library, Supplementary Fig. 1a, b). We focused on MIEL’s 

ability to (1) detect active compounds; (2) group drugs by function and identify off-target effects; (3) be 
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robust across cell lines and drug concentrations; (4) rank active drugs, and derive information regarding 

drug mechanism of action. 

 

MIEL improves detection of epigenetically active drugs 
 To determine how well MIEL could detect active compounds and compare them against other 

intensity-based methods, primary-derived TPCs (GBM2 cell line) were treated with epigenetically active 

drugs for 24 hours (10 uM, triplicates). Treated cells were immunolabeled for multiple histone 

modifications expected to exhibit alterations following drug treatment (H3K9me3, H3K27me3, 

H3K27ac, and H3K4me1). Image analysis, including nuclei segmentation and features extraction, was 

conducted, as previously described (30) on an Acapella 2.6 (PerkinElmer). Phenotypic profiles were 

generated for each compound or control-treated (DMSO) treated wells. These are vectors were 

composed of 1048 (262 features per modification X 4 modifications) texture features derived from the 

staining of each modified histone modification and representing the average value for each feature 

across all stained cells in each cell population (drug or DMSO). When treatment reduced cell count to 

under 50 imaged nuclei per well, the compound was deemed toxic and excluded from analysis. 

Following feature normalization by z-score, we calculated the Euclidean distance between vectors of 

the compounds and DMSO- treated cells. These distances were then normalized (z-score) to the 

average distance between DMSO replicates and the standard deviation of these distances. 

Compounds with a distance z-score of greater than 3 were defined as active (see Methods section). 

This analysis identified 122 compounds that induced significant epigenetic changes. Active compounds 

were not uniformly distributed across all functional drug categories. Rather, we identified 10 categories 

in which 50% of the drugs were identified as active and nontoxic and 13 categories in which 25% or 

less fewer of the drugs induced detectable epigenetic alterations following a 24-hour treatment (Fig. 

1b).  

To compare MIEL with current thresholding methods, we repeated the calculation using mean 

fluorescence intensity for all histone modifications by normalizing (z-score) each drug against DMSO; 

active compounds were defined as compounds for which z-scored intensity for at least one of the 

histone modifications was greater than 3 or less than -3. As a result, we identified 94 active 

compounds, which were distributed across functional categories similarly to MIEL-identified compounds 

(Fig. 1b). For each functional category, the number of compounds identified as active using 

thresholding was fewer than the number identified using MIEL (Fig. 1b), demonstrating MIEL’s 

increased detection sensitivity over standard thresholding.  

 To determine the contribution of individual histone modifications, we repeated both MIEL and 

thresholding analyses individually for each of the 4 modifications. Using MIEL-based analysis, a single 

modification yielded similar detection rates to the combination of modifications across most functional 

categories (Supplementary Fig. 2a). Using intensity-based analysis, individual modifications yielded 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 15, 2019. ; https://doi.org/10.1101/541151doi: bioRxiv preprint 

https://doi.org/10.1101/541151


lower detection rates compared to the combination of modifications and displayed equal or reduced 

detection rates when compared to MIEL in all categories and modifications (Supplementary Fig. 2a). Of 

note, 3 of the 4 modifications used for MIEL analysis showed similar detection rates across most of the 

functional categories. However, detection rates of modified H3K27me3 were consistently reduced 

across the most active categories (Supplementary Fig. 2a) except for EZH1/2 inhibitors, possibly due to 

the role these enzymes play in regulating this posttranslational modification. To further compare MIEL 

and thresholding, we estimated the magnitude of epigenetic alterations induced by active compounds. 

We calculated the fold increase in distance from DMSO (normalized to average distance between 

DMSO replicates), as well as the fold change in fluorescence intensity for active compounds in each 

category. In all categories, MIEL showed an increased effect (Supplementary Fig. 2b).  

 These results demonstrate that, across all tested epigenetic modifications, detecting 

epigenetically active compounds using high content imaging was markedly improved by implementing 

MIEL compared to current image-based thresholding methods. 

 

MIEL suggests functional groups and identifies the off-target effects 
 One key advantage of phenotypic profiling methods like MIEL is the ability to classify 

compounds by function and identify its nonspecific effects by comparing with profiles of well-defined 

controls. To assess whether MIEL could correctly group compounds by function, we applied 

discriminant analysis (DA) to all active, nontoxic compounds from categories that had at least 3 such 

compounds (85 compounds; 7 categories and DMSO). Two replicates from each drug and 38 DMSO 

replicates were used as a training set for a quadratic DA, using all texture features derived from images 

of the four histone modifications (features displaying multicollinearity were reduced). The third replicate 

for each compound, as well as 10 DMSO replicates, were used as a test set to validate the model. 

Results showed that MIEL separated multiple categories of epigenetically active drugs with an average 

accuracy of 91.4% (Fig. 1c, d). Although many of the epigenetically active compounds induced 

alterations in average fluorescence (Supplementary Fig. 2b), a DA utilizing intensity measurements 

from all 4 channels was ineffective at separating the various categories and yielded only 51.6% 

average accuracy  (Supplementary Fig. 3a). To test whether modification textures of individual histones 

contained sufficient information to distinguish between the various drug classes, we performed DA 

using features derived from each modification. Although this degraded MIEL’s ability to separate 

compound subclasses, which affected similar changes in histone modification such as Class I and Pan 

HDAC inhibitors, MIEL was still able to separate major categories, such as histone phosphorylation and 

deacetylation (Supplementary Fig. 3b).  

 Of note, the compound library used in this study included Pan HDAC inhibitors (HDACi), Class I 

HDACi, and Class I HDACi, known to also target HDAC6. HDAC inhibitors targeting both Class I and 

HDAC 6 displayed the same profile as Pan HDAC, and DA showed the two categories to be 
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undistinguishable. This was likely due to the high expression of HDAC Class I and HDAC 6 and low 

expression of other HDACs in GBM2 glioblastoma line (Supplementary Fig. 4a, b, c). 

 Of the 85 compounds tested, 7 (8.2%) were identified as active but were misclassified by MIEL. 

One of these was valproic acid, a commonly used anticonvulsant (41), which also functions as a Pan 

HDAC inhibitor at high concentrations (42). Though valproic acid is expected to inhibit HDACs only at 

high concentrations (>1.2mM), a short 24-hour treatment induced detectable epigenetic changes even 

at low concentrations (<30uM). However, when we quantified H3K27ac and H3K27me3 

immunofluorescence intensity at these concentrations, no increase in histone acetylation or decrease in 

histone methylation similar to other Pan HDAC inhibitors (TSA, SAHA; Supplementary Fig. 5a) was 

seen. To test, whether observed epigenetic changes resulted in corresponding transcriptomic 

alterations, we sequenced RNA from GBM2 cells treated with either DMSO, TSA, SAHA or valproic 

acid (15µM) for 24 hours and identified all genes altered by at least one of the drugs (as compared to 

DMSO; 118 genes). The Pan HDAC inhibitors induced similar transcriptomic changes; these were not 

reflected in the transcriptomic profile of valproic acid-treated cells (Supplementary Fig. 5b). To test 

whether MIEL profiles reflected global drug-induced transcriptomic profiles, FPKM values for all 

expressed genes (FPKM>1 in at least one cell population) were used to calculate the Euclidean 

distance between all 4 cell populations. FPKM-based distances were then correlated to image texture 

feature-based distances, which yielded a high and significant correlation between these metrics 

(R=0.91, pv<0.05; Supplementary Fig. 5c).  

 Taken together, we have demonstrated a unique ability of the MIEL approach to identify 

epigenetically active compounds, to accurately categorize them according to their molecular 

mechanism of action, and to detect off-target effects of compounds with known mechanism of action. 

 

Unbiased detection of drug concentration effect on cellular epigenetic state. 
 As drugs vary in potency, predicting the function of unknown drugs relies on generating 

functional category-specific profiles that remain valid over a range of activity levels. To determine 

whether MIEL could correctly identify the functional category of drugs with different potencies, we 

treated GBM2 cells with drugs from several active categories at a range of concentrations (0.1, 0.3, 1, 

3, 10µM) and conducted DA aimed at separating the different concentrations in each class. We found 

that for most drug categories (inhibitors of: Aurora, JAK, SIRT and EZH1/2), DA yielded low-average 

accuracy (Fig. 2a - Aurora kinase: 43.3%; Supplementary Fig. 6a - EZH1/2:62.5%, SIRT:46.2%, JAK: 

37.2), indicating similar MIEL profiles across all tested drug concentrations. However, Pan HDAC and 

HDAC Class I inhibitors displayed progressive profile changes, allowing DA to separate the different 

concentrations at higher accuracy (Fig. 2a – HDAC Pan: 80.9%; Supplementary Fig. 6a - HDAC Class 

I: 82.2%). 
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 In addition to their on-target effect, the drugs may induce epigenetic alterations through toxicity 

and stress. To estimate the impact of toxicity on changes to drug-induced profiles and its contribution to 

drug misclassification across a range of concentrations, we plotted z-scored distance from DMSO 

(effect size) against z-scored nuclei count (a proxy for cytotoxicity) for GBM2 cells treated at a range of 

drug concentrations (0.1, 0.3, 1, 3, 10µM). This demonstrated that some compound classes, such as 

Aurora and JAK inhibitors, induce epigenetic alterations only in concentrations where cell count is 

significantly reduced, whether through toxicity or direct effect on proliferation (Fig. 2b – dark blue and 

pink respectively), while other compounds, such as HDAC inhibitors, characteristically have a 

concentration range where epigenetic alterations are not accompanied by reduced cell counts (Fig. 2b 

– green and yellow). Interestingly, both SIRT and EZH1/2 (Fig. 2b – light-blue and red, respectively) 

inhibitors affected significant epigenetic changes without inducing significant changes in cell count. 

 These results indicated the MIEL platform is ideally positioned to analyze dose-dependent 

effects from drug treatment. In particular, our data suggest that low (0.1uM) and high (10uM) 

concentration of HDAC inhibitors resulted in distinct and separable epigenetic landscapes, suggesting 

potentially distinct chromatin/gene expression profiles and divergent biological outcomes when using a 

low vs high concentration of such compounds. 

  

MIEL profiles are coherent across multiple cell lines 
 Testing candidate drugs in multiple cell lines can help gauge their inclusivity and identify tumor 

subtypes that do not respond to a specific drug or drug class. To test whether MIEL readouts were 

coherent across multiple glioblastoma TPCs, we treated 4 cell lines with a subset of drugs from the 

epigenetic library (57 drugs), derived phenotypic profiles, and calculated their effect size (z-scored 

Euclidean distance from DMSO replicates. This revealed a significant positive correlation between all 4 

cell lines pointing to the similarities in their drug sensitivity profiles and demonstrating the robustness of 

the MIEL read out (Fig. 2c,d). To assess the ability of MIEL to group compounds by function across 

multiple cell lines we employed DA to classify DMSO and drug treated TPCs across these 4 GBM lines. 

In this way, we could accurately separate cells treated with drugs modulating distinct functions, such as 

EZH1/2 or SIRT inhibitors (5 and 3 compounds respectively; mean accuracy 100%; Fig. 2e). However, 

we were unable to separate drug subclasses with similar functions, such as class I and pan HDACs 

inhibitors (6 and 17 compounds respectively; mean accuracy 76.8%; Fig. 2e). These results 

demonstrate MIEL’s ability to correctly categorize by function drugs with varying degrees of potency 

across multiple cells lines. 

 Finally, although individual drug activity correlated well across cells lines, the magnitude of the 

effect for some classes of drugs was highly correlated to the gene expression levels of the target. For 

example, SIRT inhibition was significantly more effective in lines showing reduced Sirt1 expression (the 

main SIRT to deacetylate histone 3; n=4 compounds, p<0.02; Supplementary Fig. 6b, c), and there was 
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a significant inverse correlation between Sirt1 expression and the effect size (R=-0.87; Supplementary 

Fig. 6c).  

 In sum, we documented that the MIEL assay was both sensitive and robust across multiple 

primary human glioblastoma cells lines, which further underscores its ability to detect the differences in 

gene expression and to provide a cumulative measurement of the effect of each compound on cellular 

epigenetic landscape. 

 

MIEL helps uncover the mechanism of BET inhibitors synergy with TMZ and ranks their activity. 
 MIEL analysis demonstrated that the magnitude of drug-induced profile change, as measured 

by the distance from DMSO controls, vary between individual drugs within each drug class 

(Supplementary Fig. 7a). To test whether these differences are biologically meaningful, we correlated 

MIEL-based activity of epigenetic drugs which are often designed to work in combination with other 

treatments (16, 17). One common approach is to use epigenetic drugs to sensitize tumor cells to a 

standard of care in cytotoxic treatment (15, 43-45), such as radiation and temozolomide (TMZ), which 

are used to treat glioblastoma. To identify drug classes that sensitize glioblastoma TPCs to cytotoxic 

therapy, GBM2 cells were treated with epigenetic drugs for 2 days prior to radiation or TMZ. Cytotoxic 

treatment was carried out for 4 days at levels that induced a 50% reduction in cell numbers (1Gy 

radiation or 200uM TMZ; Fig. 3a). At the end of the treatment (day 6), cells were counted, and a 

combined drug index (CDI) was calculated (see Methods). Though we did not identify any drugs that 

synergized (CDI<0.7) with the radiation therapy (Fig. 3b, right panel), multiple drugs from both PARP 

and BET inhibitor (PARPi and BETi) sensitized cells to TMZ (Fig. 3b, left panel). 

 PARPi have been extensively studied in this context and have been shown to function through 

multiple nonepigenetic mechanisms such as PARP trapping (46-48). Consistent with this, most PARPi 

did not induce detectable epigenetic changes using MIEL (Fig. 3d, Supplementary Fig. 7b), and we 

found no correlation between the magnitude of epigenetic changes as measured by MIEL and CDI (Fig. 

3d – bottom panel). To date, only a single report utilizing the BETi OTX015 (49) has pointed to synergy 

with TMZ, prompting us to validate this finding in 6 additional glioblastoma lines. In 3 lines, BETi 

increased the TMZ effectiveness (average CDI: 454M 0.76±0.28, PBT24 0.78±0.12 and GBM2 

0.51±0.2; Mean±SD; n=11 BETi; Fig. 3c). In the other 3 lines, the drugs did not synergize and, in many 

cases, were found to be protective against (CDI>1) TMZ (average CDI: SK262 1.4±0.26, 101A 

1.4±0.22 and 217M 1.2±0.21; Mean±SD; n=11 BETi; Fig. 3c; p- values for all pairwise comparisons). 

Only a few BETi-induced epigenetic changes occurred during our 24-hour initial screening (Fig. 1b). 

However, following 6 days of treatment, 6 of 11 BETi induced significant (average z-scored distance 

from DMSO replicates >3) epigenetic changes in all cell lines (Fig. 3d, Supplementary Fig. 7b). In lines 

displaying TMZ and BETi synergy, the degree of BETi activity, as measured by MIEL, significantly 

correlated with the degree of synergism (Fig. 3d – top panel). This demonstrated that for individual 
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compounds, MIEL can predict relative drug activity and suggests an epigenetic component for the 

mechanism of BETi-TMZ synergy. 

 O6-alkylguanine DNA alkyltransferase (MGMT), which provides the main line of defense against 

DNA alkylating agents such as TMZ, has been found to be epigenetically silenced through DNA 

methylation in a large fraction of glioblastoma tumors (50, 51). To gain a better understanding of the 

mechanism by which BETi sensitizes glioblastoma TPCs to TMZ treatment, we quantified MGMT 

expression in the 6 lines tested using qPCR. Analysis showed that while all lines expressed similar 

BET-TF levels, such as Brd2 (Fig. 3e), and were thus susceptible to BET inhibitors, only 3 lines 

displaying BETi-TMZ synergy expressed MGMT (Fig.3e). Yet after treating those 3 lines with BETi, 

MGMT expression was dramatically reduced (Fig. 3f). Finally, after combining BET inhibitors with the 

MGMT inhibitor Lomeguatrib, we detected no increase in sensitivity to TMZ above the levels conferred 

by Lomeguatrib alone (Fig. 3g). 

 In sum, we have discovered that several BETi synergized with TMZ treatment by reducing 

MGMT expression. We determined that the degree of synergism displayed by individual BETi positively 

correlated with the magnitude of their epigenetic effect as measured using MIEL, suggesting that their 

mechanism of action involves epigenetic change. In contrast, the activity of PARP inhibitors didn’t 

correlate with MIEL distance, suggesting an alternative mechanism of action unrelated to epigenetic 

changes.  

 

MIEL discriminates between multiple cell fates. 
 To determine whether MIEL could discriminate between different cell fates we analyzed 3 cell 

types: primary human fibroblasts, induced pluripotent stem cells (iPSCs) derived from these fibroblasts, 

and neural progenitor cells (NPCs) differentiated from the iPSCs. The fibroblasts were isolated from 3 

unrelated donors (WT-61, WT-101, WT-126) and used to obtain corresponding iPSC and NPC lines. 

Cellular identities of the 3 cell types were verified by immune-fluorescence for Sox2 and Oct4 (Fig. 4a), 

and MIEL analysis was carried out using data from either H3K4me1 and H3K9me3 or H3K27ac and 

H3K27me3 staining, with both combinations providing similar results. Multivariate centroids were 

calculated for each cell population and plotted on a distance map to visualize the relative Euclidean 

distance between various cell populations. The fibroblasts, iPSCs, and NPCs each segregate to form 3 

visually distinct territories (Supplementary Fig. 8a, c). We separated the 9 lines by cell-fates using DA, 

which showed an accurate separation of the different cell-fates across all 3 donors (average accuracy 

100%; Fig. 4b, Supplementary Fig. 8e). A similar analysis performed to separate the different donors 

showed only low accuracy (average accuracy 55.5%; Fig. 4c, Supplementary Fig. 8f). To determine 

whether it was possible to discriminate between individual cells with different fates, a Support Vector 

Machine (SVM) classifier was trained on a subset of fibroblasts, iPSCs, and NPCS from the 3 donors. 

Classification of the test set indicated a high degree of separation between the different fates at a single 
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cell level (Supplementary Fig. 8b, d). Additionally, MIEL analysis (using only H3K9me3) was able to 

discriminate between the main lineages of primary hematopoietic cell types freshly isolated from mouse 

bone marrow, namely lymphoid, myeloid, and stem/progenitors (Supplementary Fig. 9). However, 

closely related cell types in each lineage such as hematopoietic stem and progenitor cells were not 

readily separated (Supplementary Fig. 9). 

 These results underscore MIEL’s ability to discriminate multiple different cell types and 

differentiation states uniquely based on their single-cell epigenetic landscapes both in cultured and 

primary cells of human and mouse origin.  

 

MIEL determines the signatures of glioblastoma stem cells and differentiated glioblastoma. 
 Most epigenetic drugs are known to directly affect the level histone and DNA modifications, 

which are the substrates MIEL assay. To test whether MIEL is capable to identify and classify drugs 

that affect epigenetic landscape indirectly, we focused on glioblastoma differentiation paradigm. 

Although such approach was proposed by several groups (24-26), identification of small molecule 

inducers of glioblastoma differentiation has been challenging.  Previous attempts to design screening 

strategies for this purpose have met with multiple difficulties. One critical problem is the lack of 

informative markers faithfully reporting GBM differentiation that could be used for high-throughput 

screening (10). Therefore, we tested the utility of MIEL platform to screen for drugs inducing 

glioblastoma TPCs differentiation.  

 We tested MIEL’s ability to distinguish TPCs and differentiated glioma cells (DGCs), derived 

from primary human glioblastomas (10). Three TPC/DGC pairs were derived in parallel from 3 

genetically distinct glioblastoma tumor samples (MGG4, MGG6, and MGG8) over a 3-month period 

using either serum-free FGF/EGF for TPCs or 10% serum for DGCs (10). Visualization using a distance 

map demonstrated that TPCs and DGCs segregate to form two visually distinct territories 

(Supplementary Fig. 8g) and were separated with high accuracy using DA (mean accuracy 100%; Fig. 

4d). SVM-based pairwise classification of single cells distinguished TPCs from their corresponding 

DGC lines with an average accuracy of 83%, using any of the 4 epigenetic marks tested (H3K27me3, 

H3K9me3, H3K27ac, and H3K4me1; Fig. 4e). An SVM classifier derived from images of the MGG4 

TPC/DGC pair separated all 3 TPC/DGC pairs with 88% average accuracy, providing proof of principle 

for the derivation of a signature for nontumorigenic cells obtained following serum differentiation of 

primary glioblastoma cells (Fig. 4f).  

 These findings suggest that MIEL can readily distinguish undifferentiated TPCs from 

differentiated DGCs based on multiparametric signatures of these glioblastoma cells using only the 

patterns of universal epigenetic marks. Of note, until now such signatures could only be obtained using 

simultaneous assessment of dozens of transcripts by averaging thousands of cells (10, 52). 
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Short-term treatment with serum or Bmp4 initiates TPC differentiation.  
 For the purpose of establishing a screening protocol, we tested whether short serum or Bmp4 

treatment is sufficient to induce a differentiation-like phenotype in TPCs. We treated several 

glioblastoma cell lines for 3 days with either serum or Bmp4, then quantified expression of core 

transcription factors previously shown to determine the TPC transcriptomic program (10). 

Immunostaining revealed that the 4 transcription factors Sox2, Sall2, Brn2 and Olig2 were 

downregulated by both serum and Bmp4 in a cell line-dependent manner (Supplementary Fig. 10a). 

RNAseq analysis of serum- and Bmp4-treated GBM2 cells revealed that 3 days of treatment reduced 

(vs untreated cells) expression of most genes previously found to constitute the transcriptomic 

stemness signature (52) (Supplementary Fig. 10b). Additionally, both serum and Bmp4 were found to 

attenuate TCP growth rate (Supplementary Fig. 10c). To identify the cellular processes altered by these 

treatments, we conducted differential expression analysis. Expression of 4852 genes was significantly 

altered (p<0.01 and -1.5<Fold Change >1.5) by either serum or Bmp4. Gene Ontology (GO) analysis of 

these altered genes indicated enrichment in multiple GO categories consistent with initiation of TPC 

differentiation; these include cell cycle, cellular morphogenesis associated with differentiation, 

differentiation in neuronal lineages, histone modification, and chromatin organization (Supplementary 

Fig. 11).  

These results demonstrate that a 3-day treatment with either serum or Bmp4 is sufficient to 

induce transcriptomic changes characteristic of TPC differentiation. Previous work indicated distinct 

features of glioblastoma differentiation induced with BMP compared to serum (27). Indeed, we 

observed distinct expression changes, including differences in expression of genes regulating 

chromatin organization and histone modifications (Supplementary Fig. 12a, b), between serum- and 

Bmp4-induced glioblastoma differentiation.   
  

MIEL detects epigenetic changes following short-term serum or Bmp4 treatment. 
 We treated 4 genetically distinct glioblastoma lines with serum or BMP4, then conducted MIEL 

analysis using either H3K9me3 and H3K4me1 or H3K27ac and H3K27me3 to detect TPC 

differentiation. Discriminant analysis allowed high accuracy separation of these treatments across all 

cell lines using both histone modification combinations (mean accuracy 100%; Fig. 4h; Supplementary 

Fig. 12c). 

 The global gene expression profile represents a gold standard for defining the cellular state 

(53).  To test whether MIEL reliably reports the epigenetic changes associated with serum and Bmp4 

treatments we conducted a correlation between MIEL-based and global gene expression-based 

metrics. We sequenced untreated and 3 days serum- or Bmp4-treated GBM2 TPCs. All genes with 

FPKM>1 in at least one cell population were used to calculate the Euclidean distance matrix between 
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all cell populations. FPKM-based distances were then correlated to image texture feature-based 

distances. The resulting Pearson correlation coefficient of R=0.93 (p<0.001) suggests a high correlation 

between these two metrics (Fig. 4j, k), demonstrating that MIEL is capable of distinguishing closely 

related glioblastoma differentiation routes induced by serum or BMP and validating the robustness of 

the MIEL approach for analyzing glioblastoma differentiation. 

 

MIEL successfully prioritizes small molecules inducing TPCs differentiation. 
 We screened the Prestwick compound library (~1200 compounds) using MIEL to identify 

compounds inducing glioblastoma TPC differentiation based on the differentiation signatures obtained 

with serum/Bmp4 treatments. GBM2 TPCs were treated for 3 days with Prestwick compounds at 3 µM  

fixed, then immunolabeled for H3K27ac and H3K27me3. GBM2 cells treated with DMSO, serum, 

BMP4, or compound were compared within the same plate (to avoid imaging artifacts and normalization 

issues). 

 To identify epigenetically active compounds, we calculated the Euclidean distance to the DMSO 

center for each DMSO replicate and Prestwick compound. Distances were z-scored, and active 

compounds were defined as compounds for which z-scored distance was greater than 3. Compounds 

with less than 50 cells imaged were considered toxic and excluded from analysis. Following analysis, 

MIEL identified 144 active compounds. To identify compounds inducing epigenetic changes reminiscent 

of serum- BMP4-induced differentiation, we used quadratic DA to build a model separating untreated, 

serum-treated, and Bmp4-treated cells and classified all 144 active compounds to these categories 

(Fig. 5a,b). A total 31 compounds were classified as similar to either serum or Bmp4 (i.e., 

differentiated). Of these, 20 compounds belonged to 1 of the following 4 categories: Na/K-ATPase 

inhibitors of the digoxin family, molecules that disrupt microtubule formation or stability, topoisomerase 

inhibitors, or nucleotide analogues that disrupt DNA synthesis (Fig. 5b). To further narrow down the list 

of candidates, we conducted pairwise SVM classification of DMSO- and either serum- or BMP4-treated 

cells, then selected compounds that induced at least 50% of the cells to be classified as either serum- 

or BMP4-treated. We then calculated the Euclidean distance between candidate compounds and 

serum- and BMP4-treated cells; we selected compounds where the distance to one or both treatments 

was less than the distance between DMSO and that treatment. Of the 20 candidate compounds 

identified, 15 belonged to 1 of the 4 categories mentioned above (Supplementary Fig. 13a).  

From the 15 candidate compounds, we chose 2 top compounds from each of the four categories (8 

total) for further analysis. GBM2 cells were treated for 3 days with DMSO, serum, Bmp4 or candidate 

compounds at 0.3,1, or 3 µM, fixed, then immunostained for H3K27ac and H3K27me3. Using pairwise 

SVM-based classifications of untreated cells and either serum- or Bmp4-treated cells identified for each 

of the 8 compounds, the lowest concentration at which at least 50% of the cells were classified as 

treated (Supplementary Fig. 13b) and used those concentrations for all subsequent experiments. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 15, 2019. ; https://doi.org/10.1101/541151doi: bioRxiv preprint 

https://doi.org/10.1101/541151


Because most of these compounds are known for their cytotoxic effects, we verified the growth rates of 

drug-treated glioblastoma cells. With the exception of digoxin, which was cytostatic, drug treatment 

resulted in growth rates comparable with those induced by serum or BMP4 (supplementary Fig. 14a). 

We used immunofluorescence to test for expression of core TPC transcription factors (Sox2, Sall2, 

Brn2 and Olig2). Except for trifluridine, all compounds induced statistically significant reductions in 

Sox2; digoxin and digitoxigenin also induced a significant reduction of Sall2 and Brn2; olig2 expression 

was unaltered by any treatment (Supplementary Fig. 14b).  

 Next, we investigated whether the compounds identified using MIEL can induce transcriptomic 

changes similar to serum and Bmp4 treatment and quantified the ability of MIEL to predict compounds 

best at mimicking these treatments. GBM2 cells were treated with DMSO, serum, Bmp4, or each of the 

eight candidate compounds; after 3 days, RNA was extracted and sequenced. Transcriptomic profiles 

of the eight compounds were ranked according to average Euclidean distance (based on FPKM values 

for all expressed genes) from serum- or BMP4-treated cells. To safeguard against potential artefacts of 

cytotoxicity, we compared gene expression-based ranking with measured cellular growth rates from 

drug treatments and found no positive correlation (Supplementary Fig. 14c). When we next compared 

Sox2 expression levels under all treatment conditions to determine whether the transcription factor can 

identify drugs that best mimic serum or BMP4, we found no positive correlation between either 

expression levels or transcriptomic-based rankings (Supplementary Fig. 14d), suggesting that Sox2 

levels alone are insufficient to stratify the compounds. Finally, to compare MIEL-based signatures to the 

transcriptomic profile, we ranked MIEL readouts of cells treated with the eight drugs according to 

average Euclidean distance from serum- or Bmp4-treated cells (calculated using texture features 

derived from images of H3K27ac, H3K27me3, H3K9me3, and H3K4me1). Comparison of the MIEL-

based metric with the gene expression-based metric revealed a high degree of positive correlation 

between MIEL- and gene expression-based rankings (Pearson correlation coefficient R=0.92, p<0.001; 

Fig. 5c). To further visualize these results, we constructed heat maps depicting fold change in gene 

expression associated with several GO terms enriched by serum and Bmp4. Our top candidate, 

etoposide, altered expression of a large portion of genes in similar fashion to that of serum and BMP4; 

in contrast, the lowest-ranking candidate, digoxin, induced changes in gene expression, which were 

rather different from serum and BMP4 (Fig. 5d).  

Taken together, the above results suggest unique ability of MIEL to identify molecules that shift 

epigenetic signature of glioblastoma TPCs towards DGCs. Critically, MIEL is capable of ranking such 

molecules according to their change-inducing potency and that ranking robustly correlate with global 

expression-based readouts of glioblastoma differentiation. 

 
Discussion 
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 Here we have introduced MIEL, a novel method that expands phenotypic profiling to take 

advantage of universal biomarkers present in all eukaryotic cells, histone modification, and exploits the 

patterns of chromatin organization and epigenetic marks. The pipeline we developed employs 

information extracted from immunofluorescence images of specific histone modifications and is geared 

towards drug discovery and high-throughput screening. Focusing on compounds that modulate 

epigenetic writers, erasers, and readers, we have shown that MIEL markedly improves detection 

compared to conventional intensity-based thresholding approaches and enables functional 

categorization of such compounds. We have demonstrated that MIEL readouts are coherent across 

multiple compound concentrations and cell lines and can provide information regarding drug activity 

levels and their mechanism of action. We have also documented MIEL ability to robustly report cellular 

fate and provide proof of concept for identifying and prioritizing drugs inducing differentiation of 

glioblastoma TPCs. 

 Previous studies have demonstrated that image-based profiling can distinguish between classes 

of compounds with very distinct functions, such as Aurora and HADC inhibitors (5). One objective of our 

study was to estimate the resolution of separation between categories of compounds with similar 

functions. We found that a single histone modification was sufficient to separate highly distinct classes . 

Separating similar classes (e.g., Aurora and JAK inhibitors, which affect histone phosphorylation, or 

Pan and Class I HADCs, which affect histone acetylation) required staining for at least one additional 

histone modification. Despite their many advantages, cellular assays, including high-content assays, 

are often used as secondary screens for epigenetic drugs due to multiplicity of enzyme family members 

and an inability to determine direct enzymatic activity (54). Consequently, MIEL’s ability to separate 

closely related functional categories on top of other advantages make this profiling approach an 

attractive alternative for primary screens. 

 Phenotypic profiling methods have been previously used to identify genotype-specific drug 

responses by comparing profiles across multiple isogenic lines (55). Here we show that biologic activity 

(i.e., serum and Bmp4) that induces glioblastoma differentiation, as well as that of 57 epigenetic 

compounds, was significantly correlated across four different primary glioblastoma lines. We also 

showed that variation in activity levels correlated with target expression levels and that the various 

categories can be distinguished across cell lines. Together, these suggest that MIEL could be used to 

identify cell lines showing an aberrant reaction to selected drugs and, therefore, aid in identifying 

optimal treatments for individual patients. Similar applications have previously been used to tailor 

specific kinase inhibitors to patients with chronic lymphocytic leukemia (CLL) who display venetoclax 

resistance (56). 

 Given the limited success of cytotoxic drugs to treat glioblastoma, we focused on alternative 

approaches: (1) epigenetic drugs aimed at sensitizing glioblastoma TPCs to such treatments, and (2) 

inducing glioblastoma differentiation. We have demonstrated MIEL’s ability to rank candidate drug 
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activity to correctly predict the best candidates for achieving the desired effect. The importance of this is 

highlighted in large (hundreds of thousands of compounds) chemical library screens, which typically 

identify many possible hits needing to be reduced and confirmed in secondary screens (57, 58). 

 Our results uncovered a strong correlation between BET inhibitor activity (measured by MIEL) 

and its ability to synergize with TMZ and reveal a previously unknown role for BET inhibitors in reducing 

MGMT expression. Previous studies have demonstrated upregulation of several BET transcription 

factors in glioblastomas (59, 60), and multiple pre-clinical studies have investigated the potential of BET 

inhibition as a single drug treatment for glioblastoma (61-63). However, while clinical trials with the BET 

inhibitor OTX015 demonstrated low toxicity at doses achieving biologically active levels, no detectable 

clinical benefits were found (64). This prompted approaches using drug combinatorial treatments (65) 

such as combining HDACi and BETi (66, 67). However, the mechanism by which BETi induces 

increased TMZ has not been described. Recently, a distal enhancer regulating MGMT expression was 

identified (68). Activation of this enhancer by targeting a Cas9-p300 fusion to its genomic locus 

increased MGMT expression while deletion of this enhancer reduced MGMT expression (68). As BET 

transcription factors bind elevated H3K27ac levels found in enhancers (69, 70), this may be a possible 

mechanism for BETi-induced reduction of MGMT expression, which in turn result in increased 

sensitivity to the DNA alkylating agent TMZ.  

 Silencing the MGMT gene through promoter methylation has long been known to make TMZ 

treatment more responsive and to improve prognosis in patients with glioblastoma (50, 51, 71). Yet, 

clinical trials that combine TMZ and MGMT inhibitors have not improved therapeutic outcomes in such 

patients, possibly due to the 50% reduction in dose of TMZ, which is required to avoid hematologic 

toxicity (72-74). Thus, BETi offers an attractive line of research, though further studies are needed to 

determine whether the elevated sensitivity of glioblastoma to BETi, and its ability to reduce MGMT 

expression, thus synergizing with TMZ, could be exploited to improve patient outcome.  

 Based on our success with identifying the mechanism of BETi action, we believe that MIEL 

approach is well positioned to systematically analyze and identify epigenetically active compounds, 

then provide critical initial information for their mechanism of action. 

 We previously analyzed serum and BMP4, two established biologicals known to induce 

glioblastoma differentiation in culture (24-26), and established signatures of the differentiated 

glioblastoma cells based on the pattern of epigenetic marks that could be applied across several 

genetic backgrounds. This is the first time that a signature for glioblastoma differentiation suitable for 

high-throughput drug screening has been obtained. Indeed, results of previous studies using bulk 

glioblastoma analysis (27) or single-cell sequencing (52) could not be readily applied for high-

throughput screening. As a proof of principle, we analyzed the Prestwick chemical library of 1200 

approved drugs to validate MIEL’s ability to select and prioritize small molecules, which mimic the effect 

of serum and BMP4, using global gene expression profiling. Surprisingly, we observed that the degree 
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of reduction in endogenous SOX2 protein levels following drug treatment did not correlate with the 

degree of differentiation assessed by global gene expression; in contrast, MIEL-based metrics did 

correlate. This result, taken together with MIEL’s ability to distinguish multiple cells types (iPSCs, 

NPCs, fibroblasts, hematopoietic lineages) across several genetic backgrounds, suggests that the 

MIEL approach does not only readily identify compounds by inducing desired changes in cell fate but, 

specifically, can be a cost-effective tool for prioritizing hundreds of thousands of compounds during the 

primary screenings. 

 By tapping into the wealth of information contained within the cellular epigenetic landscape 

through modern high-content profiling and machine-learning techniques, the MIEL approach represents 

a valuable tool for high-throughput analytical and drug discovery and is especially  relevant when the 

desired cellular outcome cannot be readily defined using conventional approaches. 
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Fig. 1: MIEL compares the epigenetic landscape of multiple cell populations and can be used to 
detect active epigenetic drugs across cell lines and drug concentrations.  
(A) Flowchart of MIEL pipeline. Fixed cells were immunostained for the desired epigenetic modifications 

and imaged. Nuclei were segmented based on DNA staining (Hoechst 33342 or DAPI) and texture 

features were calculated from the pattern of immunofluorescence. The relative similarity of multiple cell 

populations was assessed by calculating the multi-parametric Euclidean distance between populations 

centers, and represented in 2D following MDS (distance map). Discriminant analysis is used to 

functionally classify whole cell populations based on their multi-parametric centers. SVM classification 

is used to separate single cells in each population and estimate populations overlap. (B) Table showing 

the fraction of epigenetic drugs in each functional category identified as active by either MIEL analysis 
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employing texture features derived from images of GBM2 cells stained for H3K9me3, H3K4me1, 

H3K27ac, H3K27me3, or by intensity-based analysis using the same modifications (see Methods). 

(C,D) Quadratic discriminant analysis using texture features derived from images of GBM2 cells treated 

with either DMSO or 85 active compounds (2 technical replicates per compound; 38 DMSO replicates) 

stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. (C) Scatter plots depicting the first 2 

discriminant factors derived from features of all four histone modification images for each cell 

population. (D) Confusion matrix showing classification results of discriminant analysis. Left column 

details number of compounds or DMSO replicates for each category in the test set (1 replicate per 

compound). Numbers represent the percent of compounds classified correctly (diagonal) and 

incorrectly (off the diagonal).  
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Fig. 2: MIEL distinguishes between multiple categories of epigenetic drugs. 
(A) Quadratic discriminant analysis using texture features derived from images of GBM2 cells treated 

with DMSO, 0.1, 0.3, 1, 3 or 10 uM Aurora kinase (n=11 compounds, 2 replicates) or HDAC Pan 

inhibitors (n=11 compounds, 2 replicates) stained for either H3K9me3+H3k27ac or H3K27me3 + 

H3K27ac. Scatter plots depict the first 2 discriminant factors for each cell population (drug replicate). 

Confusion matrixes showing results for the discriminant analysis. Numbers represent the percent of 
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replicates classified correctly (diagonal) and incorrectly (off the diagonal). (B) Scatter plot comparing 

the magnitude of effect (average z-scored Euclidean distances from DMSO) to drug-induced 

cytotoxicity (average z-scored cell count). Euclidean distance was calculated using image texture 

features derived from images of H3K27ac + H3K27me3 (Aurora, JAK, SIRT, EZH1/2) or H3K27ac + 

H3K9me3 (HDAC Pan, HDAC Class I). Distances and cell counts represent average of all compounds 

in each category; nAurora=11, nEZH1/2=5, nHDAC Class I=7, nHDAC Pan=43, nJAK=15, nSIRTi=4). (C) Scatter plots 

comparing the z-scored Euclidean distances from DMSO replicates across 4 GBM lines (n=57 

compounds, z-score for each compound is the average of 3 technical replicates). Euclidean distances 

were calculated using image texture features derived from images of H3K27ac & H3K27me3 or 

H3K27ac & H3K9me3. (D) A table summarizing the Pearson coefficient and statistical significance of z-

scored Euclidean distances shown in “C.” (E) Quadratic discriminant analysis using texture features 

derived from images of GBM2, PBT24, 101A, 217M cells treated with either DMSO, 5 EZH1/2 

inhibitors, 3 SIRT inhibitors, 6 Class I HDAC inhibitors or 17 Pan HDAC inhibitors. Features derived 

from images of cells stained for H3K27me3 + H3K27ac (EZH1/2, SIRT) or H3K27ac + H3K9me3 

(HDACi). Scatter plots depicting the first 2 discriminant factors for each cell population (2 replicates per 

drug per cell line) color coded according to cell line. Confusion matrix showing classification results for 

the discriminant analysis (test set, 1 replicate per drug per cell line). Numbers represent the percent of 

compounds classified correctly (diagonal) and incorrectly (off the diagonal).  
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Fig. 3: MIEL can be used to rank candidate drugs by activity 
(A) Top: Scheme describing the experimental setup used to identify synergy between epigenetic drugs 

and radiation or TMZ. Bottom: Scatter plots showing the fold reduction in GBM2 cell count following a 

4-day treatment with varying TMZ concentration and radiation doses. (B) Scatter plots showing fold 

change in cell count (compared to DMSO treated cells) and coefficient of drug interaction (CDI) for 

synergy with TMZ (left) and radiation (right) for each drug (n=222, values represent the average of 3 

technical replicates). (C) Graph showing individual and average CDI for BET inhibitors in 6 GBM lines 

(n=11 drugs, average of 3 technical replicates; p-values calculated by ANOVA using Tukey’s HSD for 

multiple comparisons between lines and shown in table). (D) Scatter plot showing the correlation 
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between CDI and MIEL-derived activity (z-scored Euclidean distance from DMSO) of BET and PARP 

inhibitors (nBETi=11; nPARPi=10; values represent the average of 3 technical replicates) in 3 GBM lines 

(454M, PBT24, GBM2). (E) Bar graph showing the relative normalized expression of Brd2 and MGMT 

in 6 GBM lines as measured by qPCR (Mean±SD; n=3 technical repeats). (F) Bar graph showing fold 

reduction in MGMT expression following treatment with BET inhibitors in 3 different GBM lines as 

measured by qPCR (Mean±SD; n=3 technical repeats). (G) Graph showing individual and average 

TMZ sensitization CDI for BETi, MGMTi (Lomeguatrib) and BETi & MGMTi in GBM2 cells (n=11 drugs, 

values represent the average of 3 technical replicates). 
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Figure 4. MIEL can distinguish between cell fates and identify glioblastoma differentiation 
(A) Hoechst 33342 stained (blue), and Sox2 (red) and Oct4 (green) immunofluorescence labeled 

fibroblasts (Sox2-/Oct4-), iPSCs (Sox2+/Oct4+) and NPCs (Sox2+/Oct4-). Scale bar, 50 µm. (B, C) 

Quadratic discriminant analysis separating either cell fates or cell lines using texture features derived 

from images of fibroblasts, iPSCs, and NPC lines from 3 human donors (WT-61, WT-101 and WT-126; 

3 technical replicates each); stained for H3K9me3 and H3K4me1. (B) Discriminant analysis separating 
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the different cell types. Scatter plot depicts the first 2 discriminant factors for each cell population (2 

replicate per cell line and cell type). Confusion matrix showing classification results for discriminant 

analysis (test set: 1 replicate per cell line and cell type). Numbers represent the percent of correctly 

(diagonal) and incorrectly (off the diagonal) classified cell populations. (C) Discriminant analysis 

attempts to separate different cell lines. Scatter plot depicts the first 2 discriminant factors for each cell 

population (2 replicates per cell line and cell type). Confusion matrix showing classification results for 

discriminant analysis (test set: 1 replicate per cell line and cell type). Numbers represent the percent of 

correctly (diagonal) and incorrectly (off the diagonal) classified cell populations. (D, E ,F) TPC and DGC 

cell lines derived simultaneously from tumors of 3 human donors (MGG4, MGG6, MGG8; 3 technical 

replicates each); stained for H3K9me3, H3K4me1. (D) Quadratic discriminant analysis separating TPCs 

and DGCs using image texture features. Scatter plot depicts the first discriminant factor for each cell 

population (2 replicates per cell line). Confusion matrix showing results of discriminant analysis (test 

set: 1 replicate per cell line). Numbers represent the percent of correctly (diagonal) and incorrectly (off 

the diagonal) classified cell populations. (E) Pairwise classification of single TPC and DGC cells using 

an SVM classifier trained on texture features derived from images of H3K27me3, H3K9me3, H3K27ac, 

or H3K4me1. Numbers correspond to the percent of correctly classified cells for each line using 

indicated epigenetic marks. (F) Bar graph shows results of SVM classification for single TPC and DGC 

cells using a classifier trained on texture features derived from images of H3K27ac and H3K27me3 

marks in the MGG4 line. (H) Quadratic discriminant analysis using texture features derived from images 

of untreated or 2 days serum or Bmp4 treated GBM2, 101A, SK262 and 454M cells (3 replicates per 

cell lines per treatment) and stained for H3K9me3, H3K4me1. Scatter plot depicts the first 2 

discriminant factors for each cell population (2 replicates per cell lines per treatment). Confusion matrix 

shows classification results for discriminant analysis (test set: 1 replicate per cell line per treatment). 

Numbers represent the percent of correctly (diagonal) and incorrectly (off the diagonal) classified cell 

populations. (I) Distance map depicting the relative Euclidean distance between the transcriptomic 

profiles of DMSO-, Bmp4- and serum-treated GBM2 cells calculated using FPKM values of all 

expressed genes (14,376 genes; FPKM>1 in at least one sample). Each treatment in triplicates. (J) 

Distance map depicting the relative Euclidean distance between the multiparametric centroids of 

DMSO-, Bmp4- and serum-treated GBM2 cells calculated using texture features derived from images of 

H3K27ac and H3K27me3 marks. Each treatment in triplicates. R denotes Pearson correlation 

coefficient.  
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Figure 5. MIEL prioritizes small molecules based on serum/Bmp4 differentiation signature. 
(A) Scatter plot depicting the first 2 discriminant factors for untreated and serum-, Bmp4- and 

compound-treated cells (1 replicate per compound). Quadratic discriminant analysis using texture 

features derived from images of untreated and serum-, Bmp4- and compound-treated GBM2 cells 

stained for H3K27me3, H3K27ac. Model was built to separate untreated and serum- and Bmp4-treated 

cells (60 technical replicates each). (B) Confusion matrix shows classification of epigenetically active 

Prestwick compounds. Numbers depict the percent of compounds from each category classified as 

either untreated, serum or Bmp4 treated. (C) Scatter plot shows the correlation of gene expression 

profile-based ranking and MIEL-based ranking for 8 candidate drugs, untreated, serum- or Bmp4-

treated GBM2 cells. Euclidean distance to serum- or Bmp4-treated GBM2 cells was calculated using 

transcriptomic profiles (vertical axis) or texture features derived from images of H3K27ac and 
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H3K27me3, H3K9me3, and H3K4me1 marks (horizontal axis). Distances were normalized to untreated 

and serum- or Bmp4-treated GBM2 cells. (D) Heat maps showing fold change in expression of select 

genes taken from the Gene Ontology (GO) list: cell cycle G2/M phase transition (GO:0044839), 

chromatin modification (GO:0006325), and regulation of neuron differentiation (GO:0045664). R 

denotes Pearson correlation coefficient. Drug concentrations a-c: febendazole=0.5 µM, 

mebendazole=0.5 µM, cytarabine=0.3 µM, trifluridine=3 µM, irinotecan=0.5 µM, etoposide=0.3 µM, 

digitoxigenin=0.3 µM, digoxin=0.3 µM.  

 

 

 

 
Supplementary Fig. 1 

(A) Pi chart showing functional classes of epigenetic drugs used in the study. (B) Table detailing the 

molecular targets of epigenetic drugs used in the study. 
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Supplementary Fig. 2 
(A) Table showing the fraction of epigenetic drugs in each functional category identified as active by 

either MIEL analysis employing texture features derived from images of GBM2 cells stained for either 

H3K9me3, H3K4me1, H3K27ac, H3K27me3 or by intensity-based analysis using individual 

modifications (see Methods). (B) Bar graph depicting the average fold change in Euclidean distance 

from DMSO replicates induced by drugs from several functional categories as calculated using mean 

intensity or using texture features derived from images of individual histone modification (Mean±SD; p-

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 15, 2019. ; https://doi.org/10.1101/541151doi: bioRxiv preprint 

https://doi.org/10.1101/541151


values calculated by ANOVA using Tukey’s HSD for multiple comparisons and shown in table; n for 

each category is shown in “A”). 

 

 

 

 
Supplementary Fig. 3  

(A) Quadratic discriminant analysis using average fluorescent intensity derived from images of GBM2 

cells treated with either DMSO or 85 active compounds (2 technical replicates per compound; 38 

DMSO replicates) stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. Scatter plots depicting the 

first 2 discriminant factors derived from features of all four histone modification images for each cell 

population. Confusion matrix showing classification results of the discriminant analysis. Left column 

details number of compounds or DMSO replicates for each category in the test set (1 replicate per 

compound). Numbers represent the percent of compounds classified correctly (diagonal) and 

incorrectly (off the diagonal). (B) Quadratic discriminant analysis using texture features derived from 
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images of GBM2 cells treated with either DMSO or 85 active compounds (2 technical replicates per 

compound; 38 DMSO replicates) stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. Confusion 

matrix showing classification results from discriminant analysis. Number of compounds or DMSO 

replicates for each category (1 replicate per compound) is as shown in “b”. Numbers represent the 

percent of compounds classified correctly (diagonal) and incorrectly (off the diagonal).  

 

 

 

 
Supplementary Fig. 4 

(A) Bar graph showing expression level (FPKM) of HDAC and SIRT genes in GBM2 cells obtained from 

RNA sequencing. (B, C) Quadratic discriminant analysis using texture features derived from images of 

GBM2 cells treated with either DMSO or 45 active compounds (2 replicates per compound, 38 DMSO 

replicates) and stained for H3K9me3, H3K27me3, H3K4me1, H3K27ac. (B) Scatter plot depicting the 

first 2 discriminant factors derived from features of all histone modification images for each cell 

population. (C) Confusion matrix showing classification results for the discriminant analysis (test set: 1 

replicate per compound; 10 DMSO replicates). Numbers represent the percent of correctly (diagonal) 

and incorrectly (off the diagonal) classified cell populations.  
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Supplementary Fig. 5 

(A) Distance map depicting the relative Euclidean distances between the multiparametric centroids 

GBM2 cells treated for 24 hours with either DMSO, valproic acid (15 uM), SAHA (3 uM) or TSA (1 uM). 

Left: Distances calculated using texture features derived from images of H3K9me3, H3K27ac and 
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H3K27me3 marks. Right: Distances calculated using FPKM values of all expressed genes (13,119 

genes; FPKM>1 in at least one sample). R denotes Pearson correlation coefficient. (B) Bar graph 

showing average fold change in average intensity resulting from 24-hour treatment of GBM2 cells with 

DMSO, valproic acid (15 uM), SAHA (3 uM) or TSA (1 uM) (Mean±SD; n=6 technical replicates). (C) 

Heat maps showing log2 of fold change in expression (RNA sequencing) of select differentially 

expressed genes. 

 
Supplementary Fig. 6 
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(A) Quadratic discriminant analysis using texture features derived from images of GBM2 cells treated 

with DMSO, 0.1, 0.3, 1, 3 or 10 uM of EZH1/2 (n=6), SIRT (n=4), JAK (n=15) or HDAC Class I (n=6) 

inhibitors (2 replicates per compound) stained for either H3K27me3 & H3K27ac (EZH1/2, JAK, SIRT) or 

H3K9me3 & H3K27ac (HDAC Class I). Confusion matrixes showing results for the discriminant 

analysis. Numbers represent the percent of replicates classified correctly (diagonal) and incorrectly (off 

the diagonal). (B) Graph depicting the average z-scored Euclidean distance from DMSO replicates 

induced by SIRT inhibitors (n=4 compounds, 3 replicates per compound), as calculated using image 

texture features derived from images of 217M, 101A, PBT24 and GBM2 cells stained for H3K27ac & 

H3K27me3. (C) Left: Scatter plot comparing the average Euclidean distances shown in “b” with Sirt1 

expression in each cell line (z-scored FPKM values derived by RNA sequencing). Right: table showing 

FPKM values for Sirt1 in the 4 GBM lines. (D) Distance map depicting the relative Euclidean distance 

between the multiparametric centroids of 4 GBM lines treated with either DMSO, TSA (1 uM), SAHA 

(3uM) or Tubacin (10 uM). Distances calculated using texture features derived from images of cells 

stained with H3K9me3 and H3K27ac (n=12 DMSO replicates; n=3 replicates per compound). (e) Polar 

plot visualizing the fold changes in feature values for cell populations shown in “d” following linear 

normalization to DMSO averages of each cell line (see Methods). 
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Supplementary Fig. 7 
(A) Left: Distance map depicting the relative Euclidean distance between the multiparametric centroids 

of GBM2 cells treated with either DMSO (n=12 replicates), HDAC Pan (n=7 compounds; showing 

average or 3 replicates) or HDAC Class I inhibitors (n=6 compounds; showing average or 3 replicates). 

Distances calculated using texture features derived from images of cells stained with H3K9me3 and 

H3K27ac. Right: Bar graph depicting the Euclidean distance from DMSO replicates (Mean±SD; n=3 

technical replicates) induced by drug treatments shown in “A”. (B) Graph depicting the average fold 

change in Euclidean distance from DMSO replicates induced by individual BET (left) and PARP (right) 

inhibitors as calculated using texture features derived from images of H3K27ac & H3K9me3 (n=3 

replicates per compound).  
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Supplementary Fig. 8  
(A, B) Distance map depicting the relative Euclidean distance following MDS between the 

multiparametric centroids of 9 cell lines: 3 fibroblasts, 3 iPSCs, and 3 NPCs, calculated from texture 

feature values derived from images of (A) H3K9me3 and H3K4me1 or (B) H3K27ac and H3K27me3 

marks. Each cell line appears as 3 technical triplicates. (C, D) Three-way classifications of the 9 cell 

lines using an SVM classifier trained on image texture features derived from images of pooled 

fibroblasts, iPSCs, and NPCs stained for (c) H3K9me3 and H3K4me1 or (d) H3K27ac and H3K27me3. 

(E, F) Quadratic discriminant analysis separating either cell fates or cell lines using texture features 
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derived from images of fibroblasts, iPSCs, and NPC l lines from 3 human donors (WT-61, WT-101 and 

WT-126; 3 technical replicates each); stained for H3K27me3 and H3K27ac. (E) Discriminant analysis 

separating the different cell types. Scatter plot depict the first 2 discriminant factors for each cell 

population (2 replicate per cell line and cell type). Confusion matrixes showing results of classification 

for the discriminant analysis (test set: 1 replicate per cell line and cell type) Numbers represent the 

percent of correctly (diagonal) and incorrectly (off the diagonal) classified cell populations. (F) 

Discriminant analysis attempting to separate the different cell lines. Scatter plot depicting the first 2 

discriminant factors for each cell population (2 replicate per cell line and cell type). Confusion matrixes 

showing results of classification for discriminant analysis (test set: 1 replicate per cell line and cell type). 

Numbers represent the percent of correctly (diagonal) and incorrectly (off the diagonal) classified cell 

populations. (G) Distance map depicting the relative Euclidean distance between the multiparametric 

centroids of 3 genetically distinct TCP and DGC lines calculated using texture features derived from 

images of H3K9me3 and H3K4me1 marks. 
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Supplementary Fig. 9 
(A) Surface markers for isolation of hematopoietic cells by flow cytometry. (B) Distance map depicting 

the relative Euclidean distance between the multiparametric centroids of image texture features from 

immunofluorescence micrographs of 6 hematopoietic cell types. (C) Three-way classification of 

hematopoietic stem or progenitor cells, T and B lymphoid cells, and macrophages, using an SVM 
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classifier trained on randomly selected subsets of MPPs, macrophages, and T-cells. (D) Accuracy of 

pairwise SVM classification between the 6 hematopoietic cell types.  

 
Supplementary Fig. 10 
(A) Fold change in immunofluorescence intensity for Sox2, Sall2, Brn2, Olig2, and GFAP for 3-

daysserum- or Bmp4-treated primary human GBM lines compared to untreated cells (mean ± S.D, n=3, 

*p<0.05, unpaired two-tailed t-test). (b) Fold change in nuclei number of 3 days serum- or Bmp4-treated 

primary human GBM lines compared to untreated cells (mean ± S.D, n=3, *p<0.05, unpaired two-tailed 
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t-test). (c) Heat map showing expression changes of genes identified as the TPC stemness signature in 

GBM2 cells following 3 days treatment with either serum or Bmp4 (values shown as fold change: FPKM 

value in every sample divided by average FPKM value of the 3 untreated samples). 

 

 

 

 
Supplementary Fig. 11 
Gene Ontology (GO) terms enriched by serum and Bmp4 treatments and identified using PANTHER 

v11. 
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Supplementary Fig. 12 
(A, B) Heat maps showing differential expression of selected genes from Gene Ontology (GO) terms 

(A) chromatin-modification (GO:0006325) or (B) cell-cycle G2/M phase transition (GO:0044839). 

Expression levels (FPKM) are represented as z-score to highlight difference in levels of expression. (C) 

Quadratic discriminant analysis using texture features derived from images of untreated or 2 days 
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serum- or Bmp4- treated GBM2, 101A, SK262 and 454M cells (3 replicates per cell lines per treatment) 

and stained for H3K27me3 and H3K27ac. Scatter plot depicting the first 2 discriminant factors for each 

cell population (2 replicates per cell lines per treatment). Confusion matrix showing classification results 

for the discriminant analysis (test set: 1 replicate per cell line per treatment). Numbers represent the 

percent of correctly (diagonal) and incorrectly (off the diagonal) classified cell populations. 

 

 

 

 
Supplementary Fig. 13 
(A) Twenty hit compounds grouped by the functional classes. For the pairwise classification, the 

classifier was trained on texture features derived from H3K27ac and H3K27me3 images of serum- or 

Bmp4-treated GBM2 (vs untreated; cut off = classified to treatment>50%). Normalized distance 

calculated as the Euclidean distance of a compound to either serum or Bmp4 (the smaller of the two) 

divided by the distance of untreated cells to the same control (cutoff = normalized distance<1). (B) 

Table showing pairwise classification of indicated drug-treated GBM2 using a classifier trained on 

texture features derived from H3K27ac and H3K27me3 images of DMSO- and either serum- or Bmp4-

treated GBM2 cells. 
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Supplementary Figure 14.  
(A) Growth dynamics (fold change in cell count – vertical axis) of untreated, serum-, Bmp4- or drug-

treated GBM2 cells over 3 days. (B) Fold change in Sox2, Sall2, Brn2, and Olig2 immunofluorescence 

intensity of untreated or serum-, Bmp4- or drug-treated GBM2 cells; 3 days of treatment (mean ± S.D, 

n=3, p<0.05, unpaired two-tailed t-test). (C) Scatter plot showing the correlation of gene expression 

profile-based ranking and growth rates for untreated, serum-treated, Bmp4-treated, or 8-drugs-treated 

GBM2 cells. Euclidean distance to serum- or Bmp4-treated GBM2 cells was calculated using 

transcriptomic profiles (vertical axis), or growth rate after 72 hours treatment with immunofluorescence 
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intensity (horizontal axis). Distances and growth rates were normalized to untreated and serum- or 

Bmp4-treated GBM2 cells. R denotes Pearson correlation coefficient. (D) Scatter plot showing the 

correlation of gene expression profile-based ranking and Sox2 expression for 8 candidate drugs, 

untreated, serum- or Bmp4-treated GBM2 cells. Euclidean distance to serum- or Bmp4-treated GBM2 

cells was calculated using transcriptomic profiles (vertical axis), or Sox2 immunofluorescence intensity 

(horizontal axis). Distances and Sox2 levels were normalized to untreated and serum- Bmp4-treated 

GBM2 cells. 

 

 
 
 
 
Materials and Methods 
Cell Culture: Monolayer cultures of patient-derived GMB TPCs were propagated on Matrigel-coated 

plates in DMEM:F12 Neurobasal Medium (1:1; Gibco), 1% B27 supplement (Gibco), 10% BIT 9500 

(StemCell Technologies), 1 mM glutamine, 20 ng/ml EGF (Chemicon), 20 ng/ml bFGF, 5 µg/ml insulin 

(Sigma), and 5 mM nicotinamide (Sigma). The medium was replaced every other day and the cells 

were enzymatically dissociated using Accutase prior to splitting. Fibroblasts, iPSCs, and iPSC-derived 

NPCs  were cultured as previously described (75, 76). 

 
Differentiation treatment: For TPC differentiation treatments cells were cultured in DMEM:F12 

Neurobasal Medium (1:1), 1% B27 supplement, 10% BIT 9500, 1 mM glutamine supplemented with 

either Bmp4 (100ng/ml; R&D Systems) or FBS (10%).  

 
Immunofluorescence: Cells were rinsed with PBS and fixed in 4% paraformaldehyde in PBS for 10 

min at room temperature. After blocking with PBSAT (2% BSA and 0.5% Triton X-100 in PBS) for 

1 hour at room temperature, the cells were incubated overnight at 4°C with primary antibodies diluted in 

PBSAT. Primary antibodies are listed in Table 1, and the appropriate fluorochrome-conjugated 

secondary antibodies were used at 1:500 dilution. Nuclear co-staining was performed by incubating 

cells with either Hoechst-33342 or DAPI nuclear dyes. 

 
Microscopy and image analysis: For MIEL analysis, cells were imaged on either an Opera QEHS 

high-content screening system (PerkinElmer) using ×40 water immersion objectives or an IC200-KIC 

(Vala Sciences) using a ×20 objective. Images collected were analyzed using Acapella 2.6 

(PerkinElmer). At least 40 fields/well for Opera and 5 fields/well for IC200 were acquired and at least 2 

wells per population were used. Features of nuclear morphology, fluorescence intensity inter-channel 
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co-localization, and texture features (Image moments, Haralick, Threshold Adjacency Statistics) were 

calculated using custom algorithms (scripts available from www.andrewslab.ca). A full list of the 

features used is available from the authors. Values for each cell were generated and exported to 

Microsoft Excel or MATLAB for further analysis. For Sall2, Olig2, Brn2, Sox2, Oct4, and GFAP 

immunostaining, images were captured on an IC200-KIC (Vala Sciences) using a ×20 objective. 

Between 3 and 8 fields per well were acquired and analyzed using Acapella 2.6 (PerkinElmer). For all 

nuclear markers, average intensities in nucleus or fold change compared to untreated cells are shown. 

Unless stated otherwise, at least 3 wells and a minimum of 300 cells for each condition were compared 

using the unpaired two-tailed t-test. 

 
Data processing: The image features-based profile for each cell population (e.g., cell types, 

treatments, technical repetition) was represented using a vector (center of distribution vectors) in which 

every element is the average value of all cells in that population for a particular feature. The vector’s 

length is given by the number of features chosen (262 per histone modification). Raw feature values 

were normalized by z-scoring to the average and standard deviation of all populations being compared. 

All cells in each population were used to calculate center vectors, and each population contained at 

least 50 cells. Activity level for each drug was determined by calculating the distance from DMSO. For 

this, feature values of all DMSO replicates center vectors were used to calculate the DMSO center 

vector. Euclidean distance of each compound and each DMSO replicate to the DMSO center vector 

was calculated. Distances were z-scored to the average distance and standard deviation of DMSO 

replicates from the DMSO center vector. Transcriptomic-based profile for each cell population was 

represented using a vector in which every element is the z-scored FPKM value for a single gene in that 

population. The length of the vector is given by the number of genes used to construct the profile. 

 
Multidimensional scaling - MDS: The Euclidean distance between all vectors (either image features 

or transcriptomic based) was calculated to assemble a dissimilarity matrix (size N×N, where N is the 

number of populations being compared). For representation, the N×N matrix was reduced to a Nx2 

matrix with MDS using the Excel add-on program Xlstat (Base, v19.06), and displayed as a 2D scatter 

plot. 

 
Discriminant Analysis: Quadratic discriminant analysis was conducted using the Excel add-on 

program xlstat (Base, v19.06). The model was generated in a stepwise (forward) approach using 

default parameters. All features derived from images of tested histone modification were used for 

analysis following normalization by z-score. Features displaying multicollinearity were reduced. Model 

training was done using multiple DMSO replicates and at least 2 replicates from each cell-line or drug 
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treatment. The model was tested on at least 8 DMSO replicates and at least 1 replicate from each cell 

line or treatment. 

 
SVM classification: SVM classification was conducted as previously described (30). Cell-level data in 

total populations (minimum 400 cells per population) were normalized to z-scores, and a subset of cells 

from each population being classified was randomly chosen as the training set (subset size at least 

100× the population number bei ng classified). The training set was used for a SVM classifier (MATLAB 

svmtrain function). The remaining cells (test set) were then classified using the SVM-derived classifier 

to assess the accuracy of classification (MATLAB svmclassify function). Here, the accuracy of all 

pairwise classifications was given as the average accuracy calculated for each population. To classify 

the similarity of multiple cell populations, we classified known populations (e.g., different treatments or 

cell fates) to generate known bins and then used the same classifiers on the unknown population to 

categorize each cell.  

 
Epigenetic Drug Screening: GBM2 cells were plated at 4000 cells/well and exposed to epigenetic 

compounds (Table 2) at 10 µM for 1 day in 384-well optical bottom assay plates (PerkinElmer). 

Negative control was DMSO (0.1%), 48 DMSO replicates per plate, 3 technical replicates (wells) were 

treated per compound. Cells were fixed and stained with histone modification-specific antibodies 

(H3K27ac & H3K27me3, H3K9me3, H3K4me1) and AlexaFluor-488- or AlexaFluor-555-conjugated 

secondary antibodies. DNA was stained with DAPI followed by imaging and feature extraction. To 

compare data from multiple plates, average feature values in each plate were normalized to DMSO. 

Here, feature values of all DMSO replicates center vectors in each plate, then were used to calculate 

the plate-wise DMSO vector. Raw feature values for all center vectors of all populations in each plate 

were normalized to the plate-wise DMSO vector; normalized feature values were z-scored as above. To 

identify active compounds, activity level for each compound was calculated as above, and active 

compounds were defined as compounds for which activity z-score was >3. Compounds reducing the 

number of imaged cells per well below 50 were considered toxic and excluded from analysis. 

 
Concentration Curves: GBM2 cells were plated and stained as above. For each compound (Table 3), 

cells were treated at 0.1, 0.3, 1.0, 3.0, 10.0 uM. Activity levels were calculated as above. Average cell 

count was calculated across the replicates for each compound to compare epigenetic changes and 

toxicity. Cell counts were z-scored against the average and standard deviation of all DMSO replicates. 

Distances (z-scored) and cell counts (z-scored) were averaged for each functional class at each 

concentration. 
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RNAseq and transcriptomic analysis: Total RNA was isolated from GBM2 cells using the RNeasy Kit 

(Qiagen), 0.25 ug total RNA was used to isolate mRNAs and for library preparation. Library preparation 

and sequencing were conducted by the SBP genomics core (Sanford-Burnham NCI Cancer Center 

Support Grant P30 CA030199). PolyA RNA was isolated using the NEBNext® Poly(A) mRNA Magnetic 

Isolation Module, and barcoded libraries were made using the NEBNext® Ultra II™ Directional RNA 

Library Prep Kit for Illumina®(NEB, Ipswich MA). Libraries were pooled and single-end sequenced 

(1X75) on the Illumina NextSeq 500 using the High-Output V2 kit (Illumina). Read data, processed in 

BaseSpace (basespace.illumina.com), were aligned to Homo sapiens genome (hg19) using STAR 

aligner (https://code.google.com/p/rna-star/) with default settings. Differential transcript expression was 

determined using the Cufflinks Cuffdiff package (https://github.com/cole-trapnell-lab/cufflinks). For heat 

maps showing fold change in expression, FPKM values in each HDACi-treated population were divided 

by the average FPKM values of DMSO-treated GBM2 and values shown as log2 of the ratio. Go 

enrichment analysis was conducted using PANTHER v11 (77) using all genes identified as differentially 

expressed following either serum or Bmp4 treatment. To highlight differences in expression levels 

between serum- and Bmp4-treated GBM2 cells, FPKM values in each sample were z-scored. 

Zscore=(FPKMObservation-FPKMAverage)/FPKMSD (FPKMObservation- FPKM value obtain through sequencing; 

FPKMAverage – average of all FPKM values in all samples for a certain gene; FPKMSD – standard 

deviation of FPKM values for a certain gene). Heat maps were generated using Microsoft Excel 

conditional formatting. 

 

Comparing epigenetic changes in different cell lines: To compare drug-induced epigenetic changes 

across multiple glioblastoma cell lines, 101A, 217M, GBM2 and PBT24 cells were plated at 4000 

cells/well and treated with compounds for 24 hours. Compounds and concentrations are shown in 

Table 4. Activity level was calculated as above. Pearson coefficient and significance of correlation for 

activity levels in each pair of cell lines were calculated using the Excel add-on program xlstat (Base, 

v19.06). 

 
Correlation of transcriptomic and image-based profiles: Euclidean distances were calculated using 

either transcriptomic data (FPKM) or texture features. Pearson’s correlation coefficient (R) was 

transformed to a t-value using the formula (t = R × SQRT(N-2)/SQRT(1-R2) where N is the number of 

samples, R is Pearson correlation coefficient; the p-value was calculated using Excel t.dist.2t(t) 

function. For compound prioritization, Euclidean distance between the compound treated and serum- or 

Bmp4-treated GBM2 cells was calculated based on either FPKM)or image features. The average 

distance for both serum and Bmp4 treatments was normalized to the average distance of untreated 

cells to serum and Bmp4. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 15, 2019. ; https://doi.org/10.1101/541151doi: bioRxiv preprint 

https://doi.org/10.1101/541151


Sensitization to radiation or TMZ: Cells were plated at 1500 cells/well in 384-well optical bottom 

assay plates (PerkinElmer). Two sets of the experiment were prepared; DMSO (0.1%) was used for 

negative controls at 48 DMSO replicates per plate; 3 replicates (wells) were treated per compound. 

Compound concentrations used are shown in Table 5. Cells in both sets were pre-treated with 

epigenetic compounds for 2 days prior to cytotoxic treatment. Cytotoxic treatment, either 200uM 

temozolomide (TMZ, Sigma) or 1Gy x-ray radiation (RS2000; RAD Source) was carried out for 4 days 

on single set (‘treatment set’); for TMZ treatment, DMSO control was given to the second set. A single 

radiation dose was given at day 3; TMZ was given twice at days 3 and 5 of the experiment. Cells were 

fixed, stained with DAPI, and scored using an automated microscope (Celigo; Nexcelom Bioscience). 

For each compound, fold change in cell number was calculated for both the “treatment set” 

(Drug+Cytotox) and the “control set” (Drug), compared to DMSO-treated wells in the control set. The 

effect of radiation or TMZ alone was calculated as fold reduction of DMSO-treated wells in the 

treatment set compared to DMSO-treated wells in the control set (Cytotox). The coefficient of drug 

interaction (CDI) was calculated as (Drug+Cytotox)/ (Drug)X(Cytotox). For conformation experiments, 

the same regiment and CDI calculations were carried out on SK262, 101A, 217M, 454M, and PBT24 

glioblastoma cell lines; PARPi and BETi were used at same concentration as the initial screen on 

GBM2 (Table 5). 

 
Prestwick Chemical Library screen using H3K27me3 and H3K27ac: GBM2 cells were plated at 

2000 cells/well and exposed to Prestwick compounds (3 µM; Table 6) for 3 days in 384-well optical 

bottom assay plates (PerkinElmer). Cells were then fixed and stained with rabbit polyclonal anti-

H3K27ac and mouse monoclonal anti-H3K27me3 antibodies followed by AlexaFluor-488- or 

AlexaFluor-555-conjugated secondary antibodies. Positive controls contained BMP4 (100 ng/ml) and 

serum (10%); negative controls contained DMSO (0.1%). DNA was counterstained with Hoechst. 

Images were acquired using Perkin Elmer Opera® QEHS. MIEL analysis was conducted as described 

above.  
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