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In every cell ribonucleotides represent a threat to the stability and transmission of the DNA 

genome. Two types of Ribonuclease H (RNase H) tackle such ribonucleotides, either by excision 

when they form part of the DNA strand, or by hydrolysing RNA when it base-pairs with DNA, in 

structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast can prosper 

in the absence of both enzymes. Removal of RNase H1 is tolerated by the parasite Trypanosoma 

brucei but no work has examined the function of RNase H2. Here we show that loss of the catalytic 

subunit of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant 

with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, 

revealing a novel and critical role for RNase H2. In addition, differential gene expression of both 

RNA Pol I and II transcribed genes occurs after TbRH2A loss, including patterns that may relate to 

cytosolic DNA accumulation in humans with autoimmune disease. Finally, we show that TbRH2A 

loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, 

leading to altered variant surface glycoprotein expression. Thus, we demonstrate a separation of 

function between the two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but 

overlap in function during RNA Pol I-mediated gene expression during host immune evasion. 

 

Incorporation of ribonucleotides is a major threat to the stability of DNA genomes. Such 

incorporation can occur in three ways, each of which can be tackled by ribonuclease H (RNase H) 

enzymes. Ribonucleotide monophosphates (rNMPs) can be directly incorporated into DNA by DNA 

polymerases (Pols), an error that occurs at various frequencies depending on the selectivity of dNTPs 

over rNTPs by the different types of DNA Pol and by the base type [1-3]. The ratio of rNTPs/dNTPs 

also influences rNMP selection, with rNTPs exceeding dNTPs in the cellular pool [4]. These factors 

result in as many as 13,000 and 3 million rNMPs being incorporated into the yeast and human 

genomes per round of replication, respectively [1, 5, 6]. Once incorporated, ribonucleotides 

destabilise DNA due to the presence of a reactive 2’-hydroxyl group on the ribose sugar, rendering 

the DNA backbone more vulnerable to cleavage. rNMPs are further incorporated as RNA primers 

necessary for the initiation steps of DNA replication. Whereas leading strand replication initiates 

from a single origin and a single RNA primer, lagging strand replication requires 7-14 nucleotide RNA 

primers for the synthesis of each Okazaki fragment, which is normally  ~200 bp in length [7-9], 

meaning ribonucleotides are found through this DNA strand. RNA is also frequently found associated 

with genomic DNA in the form of R-loops: for instance, nascent RNA can become hybridised to the 

template DNA strand behind a transcribing RNA Pol, forming a heteroduplex and displacing a single 

strand of DNA [10]. Alternatively, R-loops can form in trans when RNA generated at one genomic 

location forms an RNA-DNA hybrid elsewhere in the genome [11-13]. Though R-loops have been 
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linked to several genomic functions[10, 14, 15], including transcription, DNA replication, 

chromosome segregation and telomere homeostasis, the RNA-DNA hybrids can also lead to 

instability and mutation [16-18], particularly when RNA biogenesis is compromised [19-23] and at 

sites of clashes between the DNA replication and transcription machineries, potentially contributing 

to replication fork collapse [24, 25]. 

All organisms encode RNase H enzymes that degrade RNA incorporated in DNA [26]. Though RNase 

H enzymes can contribute to the removal of DNA replication-associated RNA primers, two other 

nucleases, flap endonuclease 1 (FEN1) and Dna2, appear to play a larger role in ensuring these 

ribonucleotides remain only transiently in DNA [7, 27-29]. In contrast, RNase H enzymes play a more 

critical role in removing embedded ribonucleotides and R-loops. Most organisms encode two RNase 

H enzymes, type 1 and type 2. Eukaryotic type 2 RNase H is termed RNase H2 and is a complex made 

up of catalytic subunit, A, and two further subunits, B and C. In contrast, RNase H1, the type 1 

enzyme, is a monomer. Only RNase H2 is able to remove embedded ribonucleotides, which it does 

by initiation of the ribonucleotide excision repair (RER) pathway [30, 31]. In this reaction, RNase H2 

detects the 2’-OH group and cleaves 5’ of an embedded ribonucleotide, resulting in a DNA nick. DNA 

Pol  subsequently performs PCNA-dependent nick translation and displaces the ribonucleotide, 

which is then removed by FEN1. Finally, DNA ligase repairs the lesion. In contrast to the specific role 

of RNase H2 in RER, both eukaryotic RNase H enzymes are able to resolve R-loops [32], which they 

do by hydrolysing the RNA within the RNA-DNA hybrid. In yeast, both the RER and R-loop activities of 

RNase H2 are known to protect against genomic instability [33, 34], although the protein is not 

essential for cell viability, even when gene mutation is combined with loss of RNase H1 [34]. In 

contrast, RNase H1 and RNase H2 are both essential for mouse embryonic development: lack of the 

former impairs mitochondrial DNA replication, while lack of the latter results in increased levels of 

ribonucleotides and DNA lesions in the nuclear genome. In addition, in humans, mutations in all 

three RNase H2 subunits have been shown to cause the auto-inflammatory disease Aicardi–

Goutières syndrome (AGS) [35]. Mice lacking fully functional RNase H2 display features of AGS that 

result from aberrant activation of an innate immune pathway that normally targets foreign cytosolic 

DNA [36, 37]. However, what self-molecules cause aberrant autoimmunity in these AGS models, how 

they reach the cytosol, and what activity of RNase H2 causes their generation, remains unclear [38].  

In previous work we examined the distribution of R-loops across the genome of T. brucei, comparing 

mammal-infective wild type (WT) cells with mutants lacking T. brucei RNase H1 (TbRh1). The T. 

brucei genome, in common with all kinetoplastids [39], is arranged radically differently from most 

eukaryotes, since virtually all protein-coding genes (~8,000) are expressed by RNA Pol II from a 

relatively small number of multigenic transcription units, meaning each gene does not have its own 
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defined promoter, but many (sometimes hundreds) of genes share a transcription start site, where 

conserved RNA Pol II promoter sequences have not been found. Genes within a single polycistronic 

transcription unit (PTU) are initially encoded as a potentially multigene pre-mRNA before mature 

mRNAs are generated by coupled 5’ RNA trans-splicing (adding the cap) and polyadenylation [40]. 

RNA Pol II transcription initiation, as well as termination, has been mapped to so called strand switch 

regions (SSRs), which separate adjacent PTUs, including by RNA-seq  [41] and chromatin 

immunoprecipitation (ChIP) of modified and variant histones [42], modified base J [43], and a 

subunit of RNA Pol II [44]. Transcription in T. brucei also appears functionally linked with DNA 

replication, since at least one component of the origin recognition complex (ORC) binds to SSRs, 

although only a subset are activated during S phase [45, 46]. We have shown that the most 

abundant site of R-loop accumulation in the constitutively transcribed T. brucei ‘core’ genome is at 

intergenic sequences within the RNA pol II PTUs, where the RNA-DNA hybrids display precise 

association with regions of low nucleosome density, suggesting a relationship with polyadenylation 

and, perhaps, trans-splicing [47]. R-loops are also notably enriched at SSR boundaries where RNA Pol 

II transcription initiates, whereas little or no R-loop signal is observed at SSRs where transcription 

termination takes place. Although R-loops increase at various loci after deletion of TbRH1 [47], no 

cell cycle or growth defects are observed, even though it might be predicted that R-loops in the PTUs 

present an obstacle to replication and transcription, or that they might form at potentially 

predictable sites of clashes between the T. brucei replication and transcription machineries, perhaps 

suggesting TbRH1-independent mechanisms to avoid such conflict. 

Gene expression in T. brucei displays further novelty in that some proteins are transcribed by RNA 

Pol I, not II. Whilst resident in the mammalian host, trypanosomes express a dense ‘coat’ of variant 

surface protein (VSG), from one of ~15 telomeric multigene RNA Pol I VSG bloodstream form 

expression sites (ES) [48]. Co-transcribed with the VSG are multiple expression site-associated genes 

(ESAGs), most of which also encode surface proteins [49]. In order to evade host immunity T. brucei 

continually switches between expression of antigenically distinct VSGs, a process termed antigenic 

variation [50]. One mechanism for VSG switching is silencing transcription from the single active ES 

and activating transcription from a previously silent ES, containing a different VSG.  Additionally, 

recombination mechanisms allow VSG sequences (from ~2,000 genes and pseudogenes) to be 

copied from silent subtelomeric arrays, minichromosomes or the silent ES into the active ES [50, 51].  

R-loops are found at low levels in the active ES of WT T. brucei, suggesting they form co-

transcriptionally[52]. Upon deletion of TbRH1, R-loop signal significantly increases in both active and 

silent ES, and is associated with the accumulation of DNA damage in the active ES and increased 

levels of expression of previously silent VSGs [52]. Though these data implicate R-loops targeted by 
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TbRH1 in VSG switching, how the RNA-DNA hybrids are linked to transcriptional and recombinational 

switching, and whether they are solely recognised by TbRH1 is unknown. For instance, increased 

DNA damage is mainly detected in S and G2 phase TbRH1 mutant parasites, but if and how DNA 

replication converts R-loops into ES DNA breaks is unknown [46, 53]. Moreover, overexpression of 

TbRH1 has been shown to decrease VSG switching in TbRAP1-depleted cells [54], but how such a 

telomere function relates to VSG transcription and recombination is unclear. 

Here we describe the function of RNase H2 in T. brucei, which we examined to attempt to clarify 

how R-loop formation and resolution contributes to RNA Pol II core transcription and to VSG 

transcription and recombination. We show that loss of the T. brucei RNase H2A catalytic subunit, 

TbRH2A, is lethal and leads to cell cycle stalling associated with extensive nuclear DNA damage, but 

without loss of DNA synthesis. Mapping reveals that DNA damage accumulates specifically at 

transcription initiation sites after loss of TbRH2A, which also causes a decrease in R-loops at the 

same loci. Loss of TbRH2A also causes R-loop and DNA damage accumulation across the VSG ES, with 

increased changes in VSG expression. Finally, RNA-seq details differential gene expression of both 

RNA Pol I and II transcribed genes after TbRH2A loss. Thus, we demonstrate a separation of function 

between the two nuclear T. brucei RNase H enzymes in the context of multigene RNA Pol II 

transcription, but overlap in functions during antigenic variation.  

 

Results 

RNase H2A is an essential nuclear protein in bloodstream form T. brucei 

In order to identify putative type 2 RNase H proteins in T. brucei, BLAST and protein domain analyses 

were employed, searching the T. brucei genome with both type 1 and type 2 RNase H proteins from 

E. coli and a range of eukaryotes (Table S1). As we [52] and others [55] have described, a single 

RNase H1 can be readily detected in T. brucei (TbRH1). In addition, three candidates for the T. brucei 

RNase H2 complex were revealed: Tb427.10.5070 was predicted to encode a protein highly similar 

to eukaryotic catalytic RNase H2A subunits, and Tb427.01.4220 and Tb427.01.4730 encode likely 

orthologues of RH2B and RH2C, respectively (Table S1, Fig.S1A). Surprisingly, synteny between these 

orthologues and three previously described RNase H2-like genes in Leishmania major [56] is not 

simple to discern. For instance, the putative T. brucei RNase H2A (TbRH2A) encoded by 

Tb427.10.5070 by shows greatest homology to, and is syntenic with, LmjF.36.0640, which has 

previously been named RNase HIIB [56](Fig. S1B). Moreover, Tb427.10.5070 is not syntenic with 

LmjF.13.0050, despite this gene being predicted to encode a type 2 RNase H (named RNase 

HIIA)[56]. The predicted amino acid sequence of Tb427.10.5070 revealed conservation of active site 
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and catalytic residues described in type 2 RNase H enzymes in other organisms (Fig. S1B), consistent 

with the gene encoding the catalytic subunit of RNase H2. To begin to test for function, TbRH2A was 

C-terminally tagged with 6 copies of the HA epitope and expressed from its endogenous locus in 

mammalian-infective (bloodstream form; BSF) parasites (Fig.S2B, C). Immunofluorescence with anti-

HA antiserum revealed signal throughout the nucleus in all cell cycle stages and without any 

discernible sub-nuclear localisation (Fig.S2C), features shared with TbRH1 [52], suggesting the 

presence of two RNase H enzymes in the T. brucei nucleus. Also in common with TbRH1, TbRH2A-

6HA fluorescence signal increased in cells undergoing nuclear DNA replication (Fig. S2D).  

Attempts to generate TbRH2A null mutants were unsuccessful (data not shown), suggesting the 

protein is essential. To test this prediction, we employed tetracycline (tet)-inducible RNA 

interference (RNAi)  [57]. TbRH2A transcript levels were reduced to ~3% of the parental cells when 

TbRH2ARNAi cells were cultured in the presence of tet for 36 hr (Fig.1A). Indeed, TbRH2A RNA levels 

were ~19% lower in TbRH2ARNAi cells than in the parental cells even when grown in the absence of 

tet, indicating some expression of the RNAi-inducing TbRH2A stem-loop RNA prior to induction, 

consistent with some altered phenotypes prior to RNAi induction (described below). Nonetheless, 

tet-induction of RNAi caused a severe growth defect relative to uninduced cells, with cell 

proliferation stalling 24 hr post-induction (Fig.1B). Cell cycle progression (as analysed by staining 

nuclear (n) and kinetoplast (k) DNA with DAPI) was also severely altered: after 24 hr of RNAi 

induction, the proportion of cells with one nucleus and two kinetoplasts (1N2K) increased to ~40% of 

the population (Fig.1C), representing a ~4-fold increase compared with uninduced cells (where ~10% 

were 1N2K) and suggesting a stall in nuclear G2/M phase. Small numbers of cells with 1 nucleus and 

more than 2 kinetoplasts (1NXK) could also be detected at 24 hrs, and increased substantially at 30 

hr induction, indicating kDNA replication continued after depletion of TbRH2A (Fig.1C, D). Similarly, 

the small numbers of cells (~3%) seen after 24 hr induction that had multiple nuclei or aberrant 

nuclear staining, as well as >2 kinetoplasts (YNXK), increased after 30 hrs of RNAi (Fig.1C, D). These 

complex perturbations in growth after loss of TbRH2A, suggestive of a partial cell cycle stall and 

some further, ineffective nuclear replication and division, appeared not to increase from 36-72 hrs 

(Fig.1C), consistent with the lack of population growth or death during this time (Fig.1B). To further 

investigate the effects of TbRH2A depletion on the cell cycle, flow cytometry was used to examine 

DNA content (Fig.1E, F). Reduction in cells with 2N content (G1 phase) was apparent, consistent with 

the loss of 1N1K cells in the DAPI staining. However, the proportion of cells with 4N content (G2/M) 

decreased until 36 hr of tet-induction (~18.2%), which is inconsistent with the increased number of 

1N2K cells seen by DAPI. An explanation most likely lies in the pronounced increase of cells detected 

with more than diploid genome content (>4N, from ~7% at 0 hr to ~47 % at 36 hr), suggesting that 
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many of the cells scored as 1N2K, and apparently stalled in the cell cycle at G2/M, continued to 

synthesise nuclear DNA but mainly failed to effectively execute mitosis. 

DNA synthesis continues in RNase H2A depleted T. brucei despite increased nuclear DNA damage   

To ask if loss of TbRH2 affects nuclear genome functions, we measured levels of DNA damage before 

and after TbRH2 RNAi using antiserum recognising Thr130-phosphorylated histone H2A (γH2A), a 

known marker of DNA damage in T. brucei [58, 59]. Consistent with previous reports [58], 

immunofluorescence (IF) with anti-γH2A antiserum revealed nuclear signal in a small fraction (~10%) 

of uninduced cells (Fig.2A,B). In contrast, IF of cells grown for 12, 24 and 36 hr in the presence of tet 

(Fig.2A,B) revealed dramatic time-dependent increases in nuclear γH2A signal, reaching ~75% of the 

RNAi induced cells in the population after 36 hr (Fig.2B). Western blotting of whole cell protein 

extracts confirmed the IF data, with γH2A levels showing large increases 24 and 36 hrs after RNAi 

induction compared with uninduced cells (Fig. 2C). To explore how such widespread nuclear damage 

relates to replication of the nuclear genome, we incubated RNAi induced and uninduced parasites 

with the thymine analogue 5-ethynyl-2′-deoxyuridine (EdU) and detected its incorporation via Click-

IT chemistry (Fig.2D,E; Fig.S3). ~99% of cells, cultured in the absence of tet, incorporated EdU in the 

nucleus after a 4 hr incubation with the analogue (Fig.2E, S3), which is as expected for asynchronous 

BSF T. brucei cells with a cell cycle time of ~6 hr, since virtually all cells should, at least partially, 

undergo nuclear S phase and take up EdU. Even after 36 hr of RNAi induction, when population 

growth had stopped (Fig.1B), ~93% of cells incorporated EdU (Fig.2D,E; Fig.S3A). Hence, loss of 

TbRH2A had little, if any effect, on DNA synthesis (Fig.1E,F). Moreover, since virtually all the RNAi-

induced cells that had γH2A signal in their nucleus had also incorporated EdU, with overlap of the 

two signals (Fig.2D; Fig.S3A), the extensive nuclear DNA damage caused by loss of TbRH2 did not 

appear to impede DNA replication, consistent with flow cytometry indicating increased DNA content 

in the absence of effective mitosis (Fig.1C,E,F).  

R-loop abundance at transcription start sites decreases after depletion of RNase H2A 

To ask if the extensive nuclear genome damage seen after TbRH2A RNAi relates to R-loop 

distribution, we used monoclonal antibody S9.6 [60] to immunoprecipitate DNA-RNA hybrids from 

formaldehyde-fixed chromatin derived from RNAi-induced or uninduced cells, evaluating distribution 

by mapping reads to the T. brucei genome after next generation DNA sequencing (DRIP-seq). Fig.S4 

shows genome-wide DRIP-seq mapping after 24 hr of growth with and without tet-induced RNAi, 

revealing widespread R-loop enrichment and some correlation with DNA repeats. To understand 

how R-loop distribution in the TbRH2ARNAi cells compared with similar analysis in TbRH1 null mutants 

and WT T. brucei cells [47], DRIP-enriched regions were defined as locations with ≥1.2 fold-change 
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increase in IP mapped reads relative to pre-IP samples. Analysis of these enriched regions showed 

they were mainly found in RNA Pol II PTUs (~88% of uninduced, and ~86% of RNAi induced; Fig.S5), a 

very similar distribution to that previously reported for WT and TbRH1 null mutant DRIP-seq data. 

Moreover, DRIP enriched regions within the PTUs, before and after TbRH2A RNAi, were most clearly 

associated with intergenic sequences (~58% of uninduced, and ~60% of RNAi induced samples; 

Fig.S6A,B), a localisation bias that appeared slightly increased compared with WT cells (~50% of 

intra-PTU enriched regions; Fig.S6A). Correspondingly, the number of DRIP enriched regions 

associated with gene coding DNA sequence (CDS) was reduced in both the TbRH2A uninduced (6,715 

regions) and, even more so, in the RNAi induced (5,300 regions) DRIP-seq data compared with WT 

(8861 regions; Fig.S6A). Heatmaps of DRIP-seq enrichment around every RNA Pol II gene confirmed 

the predominant enrichment around the CDS, with relatively precise signal localisation upstream 

and downstream of each CDS, as was seen in WT cells (Fig.S7) and TbRH1 null mutants [47]. Taken 

together, these data indicate relatively stable accumulation of R-loops within the RNA Pol II PTUs, 

which is not markedly altered by loss of TbRH2A or TbRH1 [47]. Indeed, outside the RNA Pol II PTUs, 

DRIP-seq of both induced and uninduced TbRH2ARNAi cells revealed R-loop enrichment in Pol I and 

Pol III transcribed genes, retrotransposon hotspot (RHS) genes, and in centromeres (Fig.S4, S5), in 

each case at comparable levels to WT cells and TbRH1 null mutants [47], suggesting many of the R-

loops that form in the T. brucei genome are relatively unaffected by loss of either RNase H activity. 

However, within this context of global R-loop stability, two regions displayed notable changes in 

DRIP-seq profile after TbRH2A loss: transcription start sites, and VSG genes (as described below). 

Previously, we described pronounced accumulation of DRIP-seq signal around the sites of 

transcription initiation in the SSRs that separate adjacent RNA Pol II PTUs [47]. Here, mapping of 

DRIP-seq in the same loci revealed differences in signal between the tet-treated RNAi-induced cells 

and both RNAi uninduced and WT cells. Fig.3A shows DRIP-seq signal plotted over every SSR, with 

the loci separated into the following classes: divergent SSRs, representing sites of transcription 

initiation in both sense and antisense directions; convergent SSRs, which are sites of transcription 

termination; and head-to-to tail SSRs, where transcription both terminates and initiates on the same 

strand. Fig.3B provides detailed mapping at examples of each class of SSR. In all cases DRIP-seq 

signal was largely equivalent between the uninduced and WT cells. Unexpectedly, upon depletion of 

TbRH2A, DRIP-seq signal was substantially reduced compared with uninduced and WT cells around 

the two locations of transcription initiation in divergent SSRs, and at the single site of transcription 

initiation in the head-to-tail SSRs (right and central panels, Fig.3A,B). In contrast, the same loss of 

DRIP-seq signal was not detected at the convergent SSRs, or at the locations of transcription 

termination in head-to-tail SSRs (central and left panels, Fig.3A,B). To examine this effect of TbRH2A 
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loss change further, genes were separated into those predicted to be first within a PTU (i.e. proximal 

to the transcription start sites; n, 110) and all others (n, 8278; internal to the PTU) and the pattern of 

DRIP-seq examined around the genes’ ATG (Fig.S8). For all genes DRIP-seq abundance peaked 

upstream of the ATG and was depleted downstream of the ATG. Moreover, like we described in 

TbRH1 null mutants [47], increased DRIP-seq was seen upstream of the ATG in the uninduced 

TbRH2ARNAi cells compared with WT, perhaps due to ‘leaky’ RNAi causing some loss of TbRH2A. In 

contrast, after TbRH2A RNAi a notable loss of DRIP-seq signal was seen around the ATG of 

transcription start site-proximal genes but not PTU-internal genes, consistent with loss of the RNase 

H mainly affecting R-loop abundance around sites of transcription initiation. Next, we re-grouped 

the SSRs according to whether or not they have been identified as origins of DNA replication [45] 

and re-analysed DRIP-seq distribution (Fig.S9). This analysis revealed reduction of DRIP-seq signal 

across both types of SSRs in the RNAi induced cells compared with uninduced and WT, indicating 

that it is transcription, and not DNA replication, of the SSRs that dictates the change in DRIP-seq 

signal after loss of TbRH2A.  

TbRH2A RNAi induces DNA damage at transcription start sites in the core genome and results in 

gene expression changes 

Given the highly localised changes in R-loop abundance after TbRH2A RNAi and the pronounced 

accumulation of γH2A, we next sought to ask if the effects are connected. To address this, we 

performed chromatin-immunoprecipitation (ChIP)-seq with anti-γH2A antiserum to map sites of 

accumulation of the modified histone, comparing read depth in tet-induced and uninduced cells 

grown for 24 and 36 hrs (Fig.3C,D; Fig.S10). In all cases read depth in the IP samples was first 

normalised with pre-IP (input) samples, before fold-change in the RNA-induced cells was calculated 

relative to uninduced at each time point; Fig. S10 shows the resulting ratios of γH2A ChIP signal 

across the whole genome. Little change in γH2A localisation or signal was detected 24 hrs after 

TbRH2A RNAi induction (Fig.3C, D; Fig.S10), despite increased γH2A signal in IF and western analyses 

(Fig.2). However, after 36 hr of RNAi induction, clear increases in γH2A signal could be discerned that 

coincided with the boundaries of the PTUs in the core genome (Fig.3D). To ask if this accumulation 

was specific for transcription start sites, the γH2A ChIP-seq data was mapped to SSRs grouped, as 

before, into divergent, convergent and head-to-tail classes (Fig.3C). Increased reads were clearly 

apparent 36 hrs after RNAi across the convergent SSRs and around the sites of transcription 

initiation in the head-to-tail SSRs, but increased reads could not be detected at convergent SSRs. 

Hence, increase in the DNA damage marker closely correlates with the locations of RNA-DNA hybrid 

loss, albeit with R-loop decrease seen before the accumulation of Thr130-phosphorylated H2A. 

Nonetheless, these data indicate that depletion of TbRH2A has localised effects, not seen after 
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ablation of TbRH1 [47], which connect R-loops and DNA damage at sites of multigenic transcription 

initiation in T brucei.  

To ask if TbRH2A loss after RNAi affects gene expression, RNA-seq analysis was conducted, 

comparing mRNA abundance after 24 and 36 hrs of RNAi relative to uninduced control cells. After 24 

hrs of TbRH2A RNAi, remarkably few changes in gene expression were seen: no genes displayed 

significantly reduced RNA abundance, while 32 showed significantly increased abundance (Fig.4A,B). 

More marked changes were found 36 hr post-induction: 113 gene-specific RNAs significantly 

increased in abundance, and 396 were significantly reduced (Fig.4A,B). Interestingly, and as 

described further below, in keeping with our previous finding that R-loops can induce VSG switching 

in T. brucei [52], 30 of the up-regulated genes after 24 hr of TbRH2A depletion were annotated as 

VSGs (5) or ESAGs (25), a number that increased further after 36 hrs (37 VSGs, 14 ESAGs). At the 

same time more procyclin genes were significantly increased, suggesting effects on RNA Pol I 

transcription (Fig. 4B), as well as increased numbers of RHS-associated genes, where R-loops could 

be mapped (Fig.1). 

The remaining 42 up-regulated genes detected after 36 hrs RNAi, as well as the larger number of 

down-regulated genes, were more diverse in function (Fig.S11). However, GO term analysis revealed 

that several of the down-regulated genes were involved in small molecule biosynthesis pathways, 

and prominently represented were genes involved in nucleotide and ribonucleotide synthesis and 

salvage (Fig. S11). Other terms found to be over-represented in the down-regulated gene set were 

metabolic processing of other small molecules, including cellular carbohydrates, ketones and organic 

acids (Fig. S11). We could find no correlation between altered RNA abundance and gene position 

within a PTU. 

R-loops and DNA damage accumulate in VSG expression sites after RNase H2A depletion  

We have previously reported increased BES-associated R-loops in TbRH1 null mutant BSF T. brucei, 

coinciding with increased levels of VSG switching and increased replication-associated DNA damage 

[52]. To ask if these antigenic variation-directed effects are limited to TbRH1 activities, we first 

plotted DRIP-seq before and after TbRH2A RNAi across all the available BES sequence [48], 

comparing the mapping to DRIP-seq in WT cells (Fig.5A,B; Fig.S12). To limit cross-mapping of short 

reads to related BES we applied MapQ filtering [61]. After 24 hr, both uninduced and induced cells 

showed substantially increased DRIP-seq signal across both the active (BES1) and all inactive BESs 

(Fig.5A,B; Fig.S12) in comparison with WT. Increased signal in the uninduced cells is presumably due 

to leaky expression of the TbRH2A-targetting stem-loop RNA, consistent with the slight reduction in 

TbRH2A RNA (Fig.1A). Strikingly, the pattern of R-loop distribution in the BES compared well with 
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TbRH1 null mutants, with prominent signal in the 70 bp-repeats and little localisation to sequences 

between the ESAGs, distinguishing the RNA-DNA hybrid distribution from the RNA Pol II PTUs 

(Fig.6A, Fig.S12). Surprisingly, we found no evidence for further increases in DRIP-seq signal after 

RNAi induction, for reasons that are unclear. To establish if the DRIP-seq detects RNA-DNA hybrids, 

and to ask if the structures increase in abundance after prolonged RNAi depletion of TbRH2A, DRIP-

qPCR was performed with samples prepared after 36 hr of growth with and without tet induction 

(Fig.5B), including, in each case, with a parallel IP that was treated with E. coli RNase HI (EcRH1) to 

degrade the RNA within the hybrids. ESAGs 6 and 8 were targeted to examine R-loops within all BES, 

while primers recognising VSG221 and VSG121 were used to examine the predominantly 

transcriptionally active (BES1) BES and one transcriptionally silent BES (BES3), respectively. In all 

cases, increased RNA-DNA hybrids were detected in the RNAi induced samples relative to 

uninduced, indicating DRIP-seq may underestimate the effect of TbRH2A loss in the BES, and 

treatment with EcRH1 reduced IP levels for nearly all samples, validating detection of R-loops (Fig. 

5B). 

To ask if the BES R-loops also correlate with damage in this component of the genome, we next 

mapped γH2A ChIP-seq to the BESs, comparing signal fold-change in the RNAi-induced samples 

relative to uninduced (Fig.5C,D; Fig.S13). These data revealed a number of features. First, extensive 

accumulation of γH2A signal was seen across the entire length of both active and inactive BESs 

(Fig.5C), as confirmed by DRIP-qPCR (Fig.5D). The extent of the accumulation, and the presence of 

phosphorylated H2A in both active and inactive BES, is distinct from the γH2A ChIP-seq profile seen 

in TbRH1 null mutant cells [52], where γH2A is only significantly mapped to telomere-proximal 

regions of the active BES, not the silent sites. Second, accumulation of γH2A in the BES was clearly 

discernible 24 hrs post RNAi induction, unlike in the core genome, where signal was only seen after 

36 hrs RNAi. In addition, accumulation of the modified histone was not limited to, or more 

pronounced at, the promoter of the BES. Thus, loss of TbRH2A has a more rapid and widespread 

effect on BES integrity than is seen in the core genome. Third, in contrast with the strong DRIP-seq 

signal across the 70 bp repeats after TbRH2A loss, γH2A ChIP-seq was notably limited on this BES 

feature relative to all other parts of the BESs, perhaps indicating a particular effect of repeat 

composition on generation or spreading of the modified histone.  

Loss of RNase H2A leads to changes in the VSG expression 

As discussed above, RNA-seq analysis revealed increased RNA levels of several VSG, ESAGs and 

procyclin genes in response to TbRH2A depletion (Fig. 4). To examine this in more detail, we first 

used RT-qPCR to examine levels of VSG221, which is expressed from the predominantly active BES, 

and four VSGs housed in normally transcriptionally silent BESs, after 24 and 36 hr of TbRH2A RNAi 
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(Fig. 6A).  Levels of VSG221 transcript did not change significantly after TbRH2A knockdown, but 

levels of two silent VSGs increased after 24 hrs RNAi, and all four silent VSG levels increased relative 

to uninduced samples after 36 hr of TbRH2A knockdown (Fig. 6A). To investigate changes in VSG 

transcription more widely, RNA-seq reads were mapped to all the BESs (Fig. 6C, Fig.S14), as well as a 

collection of 2470 VSG sequences described in the T. brucei Lister 427 genome [62](Fig.6B,D), and 

differential expression analysis was repeated.  20 VSG sequences were found to be significantly up-

regulated after 24 hr of TbRH2A depletion, a cohort that increased to 50 VSGs after 36 hr of RNAi 

(Fig. 6B). Of these, 40% and 60% were classified as pseudogenes in the 24 hr and 36 hr samples, 

respectively. Of the remaining VSG sequences up-regulated after 24 hr of RNAi, 25% were classified 

as intact genes found within subtelomeric arrays, 20% as intact genes associated with mini-

chromosomes, 10% as metacyclic (M) ES VSGs, and the remaining 1 VSG as BES-housed (Fig. 6B). 

After 36 hr, a similar proportion of up-regulated VSGs were array-associated (26%), 10% were 

housed in the BESs, and 2% (1 VSG) were MES-associated (Fig. 6B); no mini-chromosome associated 

VSGs were significantly up-regulated at this time point. Hence, VSG sequences from across the 

diverse genome repertoire were found to be transcribed after TbRH2A depletion. Within the silent 

BESs, RNA-seq mapping suggested that not only did VSG RNA levels increase after RNAi, but also 

levels of promoter-proximal ESAGs (most clearly seen as ESAG 6 and 7; Fig.6C), explaining the 

increased levels ESAG-associated reads described in Fig. 4. 

In order to ask if changes in VSG RNA levels in response to TbRH2A depletion extended to VSG 

protein changes on the parasite surface, expression of two VSGs, VSG221 (active BES1) and VSG121 

(inactive BES3), was analysed via immunofluorescence with specific antisera (Fig.7A,B). 

Unpermeabilised cells were probed for expression of both VSGs after 12, 24 and 36 hr growth with 

and without tet-induction of RNAi. In the absence of RNAi, across all time points, virtually all 

parasites solely expressed VSG221 (~99%) (Fig. 7B), with only 1% detected that did not stain for 

either VSG. After 12 hr of induction, singular VSG expression did not significantly change. However, 

after 24 hr of RNAi nearly 2% of cells did not stain for either VSG, and ~0.2% expressed both VSGs 

simultaneously. By 36 hr of induction, the number of cells expressing both VSG221 and VSG121 

increased further to ~0.7% of the population, parasites expressing neither VSG also increased to 

~4.5% and, at this time point alone, a small number of cells (~0.2%) could be detected that 

expressed VSG121 but not VSG221. Taken together, these data indicate that loss of TbRH2A results 

in an increased frequency at which T. brucei cells inactivate expression of VSG221, as well as causing 

loss of the controls that ensure monoallelic expression of a single VSG in one cell. 

 

Discussion 
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RNase H enzymes that hydrolyse RNA within an RNA-DNA hybrid or remove ribonucleotides in DNA 

are ubiquitous in nature, with all organisms appearing to encode at least one RNase H, and most 

encoding two types of RNase H [26, 32]. Though such ubiquity suggests crucial roles, including in 

DNA replication, repair and transcription, loss of RNase H has so far only been described as being 

lethal during development in mammals [63] and Drosophila melanogaster [64]. In this study, we 

describe the roles played by RNase H2 in T. brucei, revealing the first example, to our knowledge, of 

an RNase H being essential in a single-celled eukaryote. The lethality we describe after TbRH2 loss 

contrasts with the non-essentiality of T. brucei RNase H1 [47, 52] and our data indicate that at least 

one explanation for this separation of function is that TbRH2 plays a specific and potentially novel 

role in processing R-loops at sites of multigenic RNA Pol II transcription initiation. Despite this 

distinction between the two T. brucei RNase H enzymes, we also reveal overlapping roles in targeting 

R-loops in RNA Pol I transcription units, contributing to the control and execution of immune evasion 

by antigenic variation [52]. Finally, gene expression analysis reveals changes in nucleotide and 

ribonucleotide synthesis and salvage pathways after TbRH2 loss, indicating that impairment of the 

parasite RNase H2 has cellular effects that parallel phenotypes described in humans with the 

autoimmune syndrome AGS [65], which can be caused by RNase H2 mutation.  

RNAi-mediated depletion of TbRH2A led, within 24 hrs (approximately 3-4 cell cycles), to a growth 

arrest of BSF T. brucei cells that was accompanied by a pronounced impairment in the cell cycle, 

manifest initially as accumulation of 1N2K (G2/M phase) cells and then by the appearance of 

aberrant cells that failed to effectively divide their nucleus. Over the same period, TbRH2A RNAi 

resulted in increased expression of γH2A, which could be detected throughout the nucleus of most 

cells in the population, indicating more severe levels of nuclear genome damage than are seen after 

ablation of TbRH1 [52]. Unlike in yeast, where both RNase H genes can be deleted [33, 34], lack of 

continued proliferation of T. brucei cells after depletion of TbRH2A appears more comparable with 

truncated mammal embryogenesis seen in RNase H2B and RNase H2C mutants [63, 66]. Indeed, the 

nucleus-focused phenotypes after loss of RNase H2A in T. brucei are reminiscent of increased levels 

of γH2AX in cells from RNase H2 mutant mice [63, 66], and with fibroblasts taken from RNase H2B 

mutant mice showing slowed growth and accumulation in the G2/M phase of the cell cycle [66]. 

However, DNA content analysis revealed some differences when comparing RNase H2 mutant 

mouse cells and TbRH2A-depleted T. brucei parasites: flow cytometry and EdU incorporation analysis 

indicate that loss of TbRH2A does not prevent DNA synthesis, whereas RNase H2 mutant mice 

embryonic cells display reduced incorporation of EdU [63]. While this difference may only reflect 

variation between mouse and T. brucei cells in eliciting a cell cycle checkpoint in response to damage 

resulting from loss of RNase H2, perhaps due to changes in DNA damage signalling, it is also possible 
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that genome replication is not the process primarily affected by TbRH2 loss in T. brucei. A less likely 

explanation, given the increased DNA content seen during flow cytometry in TbRH2A RNAi cells, is 

that T. brucei, unlike mice, enacts robust DNA repair synthesis, such break-induced replication, in 

response to lesions caused by loss of RNase H2. 

Unlike RNase H1, RNase H2 has the capacity to excise ribonucleotides incorporated into the genome 

by initiating ribonucleotide excision repair [30, 32, 67], and lack of this activity has been proposed to 

underlie the embryonic lethality of mice RNase H2 mutants [63, 66]. However, yeast RNase H2 

mutants also display increased levels of DNA-embedded ribonucleotides, leading to increased 

genome instability [33, 34], but survive. Equally, D. melanogaster RNase H1 mutants, which are likely 

to be unaltered in their capacity to remove ribonucleotides from the genome, display curtailed 

development during metamorphosis as a result of altered gene expression [64]. In this context, we 

suggest that the highly localised accumulation of γH2A and altered R-loop abundance we describe at 

sites of multigenic transcription initiation in the genome core after TbRH2A RNAi may provide an 

explanation for the importance of RNase H2 in T. brucei. We have shown previously that, amongst 

the widespread distribution of R-loops across the T. brucei genome, RNA-DNA hybrids display a clear 

association with the ~200 mapped sites of RNA Pol II transcription initiation [47], with a strong 

correlation in localisation relative to epigenetic features found at such SSRs [42, 44, 68]. We now 

show that TbRH2A depletion results in pronounced γH2A accumulation only at these RNA pol II 

transcription initiation sites, not at termination sites or within the PTUs, and that these same loci are 

the only regions in the genome where DRIP-seq detects clear loss of R-loop abundance after RNAi. 

Strikingly, neither accumulation of damage nor loss of R-loops at the these sites is seen in TbRH1 null 

mutants [47]. The combined loss of R-loops and increased damage at these loci argue that these 

phenotypes are not the result of localised, increased levels of embedded ribonucleotides, but 

instead that RNase H2 has a specific role, not possessed by RNase H1, in processing R-loops 

associated with RNA Pol II transcription initiation. Why R-loop abundance might be reduced at 

transcription start sites after TbRH2 loss is unclear, but one explanation may be that the absence of 

RNase H2 allows inappropriate factors (perhaps even TbRH1) to attempt to remove the RNA-DNA 

hybrids, leading to damage [69]. Alternatively, failure to remove the R-loops due to loss of TbRH2 

may stall RNA Pol II’s movement away from the start site, and the cross-linking we used to isolate R-

loops might then occlude DRIP-seq signal. In these conditions, RNA pol II impediment of DNA 

replication [25], or activation of nucleotide excision repair due to stalling of RNA Pol [70], might lead 

to localised DNA lesions marked by γH2A. 

Though there is clear evidence that R-loops are associated with genome instability, the processes 

that lead from an R-loop to DNA damage are less clearly understood [10, 71, 72]. Recently, 
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Costantino and Koshland [73] mapped DNA damage in yeast cells impaired in R-loop removal, 

providing clear evidence for genome-wide correlation between sites of RNA-DNA hybrid formation 

and localisation of a damage marker, Rad52. Like we have described here, not all sites of R-loop 

formation in yeast lead to damage, indicating other processes much act to generate genome lesions. 

However, despite this similarity, significant differences are found in our data compared with the 

study by Costantino and Koshland [73]. First, damage accumulation in yeast requires mutation not 

only of both RNase Hs but also Senataxin or Topoisomerase I, whereas in T. brucei loss of only RNase 

H2 function leads to damage. Second, there was no evidence that the R-loop-associated damage in 

yeast shows the precise co-localisation with sites of transcription initiation that we have mapped in 

T. brucei. Thus, though it is conceivable that the damage we see, which was detected via γH2A, 

might also be sites of single-stranded DNA bound by Rad52 [73], distinct routes of damage formation 

are likely. Intriguingly, mounting evidence has linked the generation of DNA breaks and the action of 

DNA repair factors in transcriptional activation [74-76], including regulating elongation of RNA Pol at 

mammalian protein-coding and non-coding RNA genes [77, 78], and altering chromatin to activate 

gene expression during Caenorhabditis elegans embryogenesis [79]. Thus, our data suggest it is 

possible that DNA breaks are also a feature of transcription initiation in T. brucei, with their extent or 

persistence increased by loss of RNase H2. Mapping RNA Pol II by ChIP has revealed accumulation at 

transcription start sites, consistent with pausing [44], which correlates with R-loops at these sites 

[47]. It is important to note, however, that there is no evidence for T. brucei RNA Pol II transcription 

being controlled at the point of initiation [44], so whether the precise association we observe 

between RNase H2-associated DNA damage and R-loop levels at the start of multigenic transcription 

in T. brucei might have parallels with single gene, regulated transcription in other eukaryotes is 

currently unknown. Nonetheless, R-loops are readily detected at CpG island promoters in the human 

and mouse genomes [80, 81]. Moreover, near genome-wide multigenic RNA Pol II transcription is 

common to all kinetoplastids [39], meaning it is likely that RNase H2 plays related roles in 

transcription initiation throughout this grouping of microbes and may be fertile ground for new 

therapies against diseases caused by the parasites.  

The RNA-seq we describe here evaluates differential expression of gene-specific transcripts before 

and after TbRH2A RNAi, which reveals two aspects of TbRH2 function. First, as discussed more fully 

below, the genes most rapidly and most strongly affected by loss of TbRH2 are transcribed by RNA 

Pol I, not RNA Pol II. Second, amongst the cohort of differentially expressed RNA Pol II transcripts, 

we reveal parallels with emerging understanding of human disease caused by loss of RNase H2. AGS 

has emerged as a valuable model for complex autoimmune disorders because the disease can be 

caused by a single gene mutation [65], including in all three subunits of RNase H2 as well as several 
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other genes that encode enzymes with nucleic acid or nucleotide targeting activities [35]. Mouse 

models of AGS carrying RNase H2 mutations have shown that activation of the cGAS-STING immune 

sensing pathway elicits a type I interferon response associated with AGS pathological symptoms [36, 

37]. Cyclic GMP-AMP synthase (cGAS) normally detects cytosolic DNA via the cyclic GMP-AMP 

receptor STING, mediating one arm of the innate immune response against pathogens [82]. Since 

the absence of fully functional RNase H2 leads to AGS, it is considered likely that increased 

abundance of DNA with embedded ribonucleotides, or RNA-DNA hybrids could aberrantly activate 

the cGAS-STING pathway [36, 37]. Over-expression of RNase H1 in RNase H2B null mutant mice is 

unable to reduce DNA damage levels or interferon simulated gene expression to WT levels, 

implicating DNA with embedded ribonucleotides as the main nucleic acid activating the immune 

response associated with AGS [37, 83]. However, it remains possible that aberrant breakdown and 

release of some forms of RNA-DNA hybrid, which RNase H1 may be unable to efficiently resolve, 

could also induce the cGAS-STING pathway. In T. brucei we have identified a specific activity of 

RNase H2 at RNA Pol II transcription initiation sites, a role which T. brucei RNase H1 appears not to 

perform [47]. RNA-seq analysis of TbRH2A depleted parasites revealed downregulation of nucleotide 

and ribonucleotide synthesis and salvage pathways, which was not seen when RNA-seq compared 

gene expression in TbRH1 null and WT parasites [47], suggesting increased levels of dNTP and rNTP 

pools in the parasites. A key question in the development of AGS is the source and form of the host 

cytoplasmic nucleic acid that causes autoimmunity. The RNA-seq profiles we describe seem to 

indicate that loss of T. brucei RNase H2, but not RNase H1, releases nucleic acids, leading to altered 

gene expression, perhaps as part of wider metabolic regulation. Such an effect may, like in AGS, be 

due to RER, but may also relate to the locus-specific damage and aberrant R-loop processing during 

transcription we describe after TbRH2A loss, which may also occur during AGS but has not yet been 

examined.  

Despite the pronounced, localised effect of TbRH2A RNAi at sites of RNA Pol II transcription 

initiation, RNA-seq revealed that a stronger and earlier effect was exerted on protein-coding genes 

expressed by RNA Pol I. Most notably, TbRH2A loss resulted in increased RNA levels of previously 

silent VSGs, leading to changes in the surface coat. As these changes in VSG expression were 

concomitant with increased accumulation of R-loops and DNA damage in the telomeric VSG BES, and 

reflect similar findings described in TbRH1 null mutants [52], the data provide further evidence that 

R-loops acted upon by RNase H are an important driver of antigenic variation through VSG switching. 

Similarities and differences in the VSG-associated phenotypes seen after TbRH2A RNAi and ablation 

of TbRH1 suggest overlap in the function of the two enzymes in this reaction, but also some 

divergence. In both TbRH2A-depleted and TbRH1 null cells, R-loop levels appeared to increase to 
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similar levels in both the active and silent BES. Though these data suggest that loss of either RNase H 

impairs resolution of BES R-loops and leads to VSG switching, how the RNA-DNA hybrids accumulate 

in the silent ES, which are not transcribed to the same extent as the main active ES, remains unclear. 

Despite this similarity, levels of BES damage measured by γH2A ChIP differed: whereas loss of TbRH1 

results mainly in increased damage towards the telomere of the active BES, TbRH2A depletion 

caused greater amount of yH2A accumulation throughout both the active and silent BES. This 

difference may reflect a greater impact of TbRH2A depletion on transcription, although greater 

damage induction due to persistence of ribonucleotides in the BES cannot be ruled out; indeed, 

increased incorporation of uracil into DNA, due to loss of uracil-DNA glycosylase, has been shown to 

lead to DNA lesions and VSG switching [84]. Nonetheless, two pieces of evidence suggest that loss of 

TbRH2A affects BES transcription more that ablation of TbRH1. First, whereas RNA-seq only revealed 

increased expression of VSGs in TbRH1 mutants, increased levels of RNA from promoter-proximal 

ESAGs, as well as from ES VSGs, was detected by the RNA-seq described here. Second, in TbRH2A 

depleted parasites, significantly higher numbers of cells were found that expressed two VSGs 

simultaneously on their surface compared with the same IF analysis of TbRH1 null mutant cells. 

Hence, loss of RNase H2 compromises more strongly the strict monoallelic expression of VSG BES 

normally employed by T. brucei [85]. Whether this is because the TbRH2 complex recruits factors 

involved in monoallelic control, while TbRH1 does not, is worthy of investigation; for instance, it is 

known that RNase H2B in other eukaryotes interacts with PCNA [86]. We have argued that DNA 

damage induced in the BES by R-loops, and accentuated by loss of TbRH1, is a plausible route for the 

initiation of recombination of silent VSGs [52]. This argument is supported here by the finding that 

TbRH2A RNAi also led to increased BES damage and expression of silent VSGs from throughout the 

repertoire, including intact subtelomeric genes, minichromosome genes and pseudogenes, which 

are unlikely to be transcribed without movement to the BES. Nonetheless, how, when and where 

BES R-loops are converted into DNA damage, and the nature of the lesions that arise, remain open 

questions.  

 

Methods 

T. brucei cell line generation and culture 

C-terminal endogenous epitope tagging was carried out by cloning 604 bp of the 3’ TbRH2A 

sequence, PCR-amplified using primers CGACGAAGCTTGAACACGCTTAGCCATCAAAC and 

GACGTCTAGAAGGGACTTCCCGCGACAAA, into a version of the pNAT plasmid containing 6 copies of 

the HA sequence [87].  The construct was linearized by digestion with ApaI, before stable 
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transfection into BSF T. b. brucei strain Lister 427 MITat1.2, where the construct was integrated 

immediately downstream of the TbRH2A coding sequence.  Inducible RNAi targeting TbRH2A was 

accomplished using a genetically modified strain derived from Lister 427 MITat1.2, named 2T1 [88].  

Two inverted copies of 432 bp of the TbRH2A ORF, PCR-amplified using primers 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCCGCAGCTATGACAGGTGTA and 

GGGGACCACTTTGTACAAGAAAGCTGGGTCTCGAAGACGATAGGGATG, were cloned into the pGL2084 

vector [57] using Gateway BP Clonase.  The construct was then linearised and transfected into the 

parental 2T1.  Incubation of the resulting TbRH2ARNAi cell line with 1 µg.mL-1 tetracycline induced  

transcription of the TbRH2A-specific hairpin RNA molecules, triggering RNAi.  Lister 427 and 2T1 

cells, as well as transformants derived from each, were maintained in HMI-9 (HMI-9 (Gibco), 20 % 

v/v FCS (Gibco), Pen/Strep (Sigma) (penicillin 20 U/ml, streptomycin 20 µg/ml)), and HMI-11 (HMI-9 

(Gibco), 10 % v/v FCS (Gibco, tet free), Pen/Strep (Sigma) (penicillin 20 U/ml, streptomycin 20 

µg/ml)) media, respectively. During EdU uptake assays, cells were instead incubated in thymidine-

free HMI-11 media (Iscove's Modified Dulbecco's Medium (IMDM) (Gibco), 10% (v/v) FBS (Gibco, tet 

free), 1% (v/v) Pen/Strep (Gibco), 4% (v/v) “HMI-9 mix” (0.05 mM bathocuproine disulphonic acid, 1 

mM sodium pyruvate and 1.5 mM L-cysteine) (Sigma Aldrich), 1 mM hypoxanthine (Sigma Aldrich) 

and 0.0014% 2-mercaptoethanol (Sigma Aldrich)). In all cases, 2T1 cells lines were grown in the 

presence of 0.5 μg.mL-1 puromycin (InvitroGen) and 2.5 μg.mL-1 phleomycin (InvitroGen), and 

TbRH2ARNAi parasites were cultured with 2.5 μg.mL-1 phleomycin (Invitrogen) and 5 μg.mL-1 

hygromycin B (Calbiochem) to maintain the RNAi construct. 

Fluorescent-activated cell sorting (FACS) 

~3 x106 cells were collected per sample and fixed with 1% formaldehyde (FA) for 10 min at room 

temperature before being permeabilized with 0.01 % Triton X-100 for 30 min on ice.  Cells were 

incubated with 100 µg.mL-1 RNase A and 15 µg.mL-1 propidium iodide (PI) for 30 min before PI was 

detected using the BD FACSCalibur™ (BD Biosciences).  Data was analysed using FlowJo_V10™ 

software (FlowJo, LLC). 

Immunofluorescence imaging 

All immunofluorescence assays were performed as previously described [52]. For detection of 

epitope-tagged TbRH2A and γH2A, cells were fixed with 4% FA for 4 min before quenching with 100 

nM glycine and permeabilization with 0.2% Triton X-100 for 10 min.  3% bovine serum albumin was 

using to block samples before staining with primary (α-myc Alexa Fluor 488 conjugated (Millipore), 

1:500; α-γH2A, 1:1000) then secondary antibodies (Alexa Fluor 488 goat α-rabbit (Molecular Probes), 

1:1000) and mounting in Fluoromount G with DAPI (Cambridge Bioscience, Southern Biotech). For 
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VSG immunofluorescence cell were fixed in 1% FA and blocked in 50% foetal calf serum, before 

staining with primary (α-VSG221, 1:10,000; α-VSG121, 1:10,000: gift from D. Horn) and secondary 

(Alexa Fluor 594 goat α-rabbit (Molecular Probes) 1:1000; Alexa Fluor 488 goat anti-rat (Molecular 

Probes), 1:1000) antibodies and DAPI mounting as above. Fluorescent imaging was performed with 

an Axioscope 2 fluorescence microscope (Zeiss) and a Zeiss PlanApochromat 63x/1.40 oil objective. 

High-resolution images were taken using an Olympus IX71 DeltaVision Core System microscope 

(Applied Precision) and SoftWoRx Suite v2.0 (Applied Precision) software. Either an Olympus 

PlanApo 60x/1.42 or an UplanSApo 100x/1.40 oil objective was used. Z- stacks of 5-6 μm thickness 

were acquired in 25 sections, then deconvolved with the ‘conservative’ method and high noise 

filtering. Fiji software was then used to generate maximum projection images. Super-resolution 

structured illumination microscopy (SR-SIM) was performed with an ELYRA PS.1 Microscope (Zeiss), 

using a Plan-Apochromat 63x/1.40 Oil DIC objective and 405, 488 and 594 nm lasers. Z-stack sections 

were ~0.15 μm in thickness and totalled ~10 μm. Image reconstruction was performed with ZEN 

Black software (Ziess) and 3D rendering with Imaris software (Bitplane) to produced 3D models. 

Western blot 

Whole cell protein extracts were harvested from ~ 2.5 x 106 cells per sample by boiling in 10 μl 

loading buffer (1X NuPAGE® LDS Sample Buffer (Life Technologies), 0.1% β-mecaptoletanol, 1X PBS) 

for 10 min.  Proteins were separated using NuPAGE Novex® 10-12% Bis-Tris protein gels (Life 

Technologies) and transferred to PVDF membranes.  Proteins were detected with anti- γH2A 

(1:1000) and mouse anti-Ef1α clone CBP-KK1 (1:25,000; Millipore) primary antibodies, and goat anti-

mouse/rabbit IgG (H+L) horseradish peroxidase conjugates (1:5000; Life Technologies).  

EdU incorporation assays 

Cells were incubated with 150 μM 5-ethynyl-2′-deoxyuridine (EdU) for 4 hr prior to fixation at each 

time point with 1% FA at room temperature for 10 min, then permeabilised in 0.5% Triton X-100 for 

20 min.  EdU was detected by incubation for 1 hr with the follow Click-It reaction mix: 21.5 l 1X 

Reaction Buffer, 1 l CuSO4, 0.25 l Alexa Fluor 555 Azide and 2.5 l 1X Additive Buffer. For dual 

staining for γH2A, cells were washed before incubating with γH2A antisera (1:1,000) then anti-rabbit 

Alexa Fluor 594 (1:1,000), both in 3% BSA, and mounted in Fluoromount G with DAPI.  

DRIP/ChIP analysis 

Immunoprecipitation of both RNA-DNA hybrids (DRIP) and γH2A was performed using the ChIP-IT 

Enzymatic Express kit (Active Motif) with formaldehyde fixed chromatin samples, using the hybrid-

targeting S9.6 (4.5 ng, Kerafast) and α-γH2A (10 l, homemade) antibodies respectively.  Both were 
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carried out as described previously [47].  DRIP-ChIP-qPCR analysis was carried out as described 

previously [52] with on-bead E. coli RNase HI treatment of DRIP samples.  

DNA libraries were prepared using the TruSeq ChIP Library Preparation Kit (Illumina). Fragments of 

300 bp, including adaptors, were selected with Agencourt AMPure XP (Beckman Coulter) and 

sequenced using the Illumina NextSeq 500 platform.  Analysis of DRIP-seq and γH2A ChIP-seq data 

was analysed as previously published [47].  To allow downstream analysis to focus on the γH2A 

signal specific to the TbRH2A depletion induced DNA damage, the ratio of read enrichment was 

calculated for tet-induced samples relative to un-induced sample coverage (having first normalised 

to the respective input sample) for both 24 and 36 hr timepoint data sets.  All normalisation and 

metaplot analysis was performed with the deepTools software suite [89].  

RNA-seq analysis 

Total RNA was extracted, in duplicate, from 1 x 107 cells using the RNeasy Mini Kit (Qiagen) and the 

TruSeq Stranded mRNA kit (Illumina) was used to prepare poly(A) selected libraries of ~300 bp 

fragments. Sequencing was performed with the NextSeq 500 platform giving paired-end reads of 75 

bp. Mapping was performed with HiSat2 v2.0.5 using default parameters with the exception of not 

permitting splice alignments (--no- splice-alignment), to either a “hybrid” reference genome, 

consisting of the 11 Mb chromosome assemblies of the T. brucei TREU927 v5.1 genome, 14 BES 

contigs and 5 mVSG ES contigs [61], or a collection of 2470 VSG coding regions of the T. brucei 

Lister427 strain [62]. Reads with MAPQ score <1 were removed before counting with HTseq-count 

software using default parameters. Normalisation and differential expression was carried out with 

DESeq2 v1.18.1 [90], considering data from 24 and 36 hr time points separately. GO term analysis 

was performed using  Cytoscape v3.6.1 [91] plugin BiNGO [92] with hypergeometric statistical 

testing of significance and multiple testing correction with the Benjamini and Hochberg False 

Discovery Rate (FDR) correction. FDR adjusted P values < 0.01 were deemed significantly enriched 

terms.  

 

Figure legends 

Figure 1. RNase H2A is essential for bloodstream form T. brucei viability. A) Levels of TbRH2A 

transcripts in tetracycline induced (+) and uninduced (-) cells after 24 hr of culture, relative to 2T1 

cells (levels set at 100%), determined by RT-qPCR; error bars show SD of two independent 

experiments. B) Cumulative growth curves of tet+ and tet- TbRH2A RNAi cultures, showing cell 

densities over 72 hr. C) Bar graph showing, at multiple time points, the percentage of tet-induced 

cells in the population that correspond to the following cell types, defined by DAPI staining of the 
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nucleus (N) and kinetoplast (K): 1N1K, 1N2K, 2N2K, 1NxK (>2 K foci), YNXK (>2 K foci and aberrant N 

number or morphology), and other (do not conform to the above). Tet – shows the average of 

uninduced samples from all time-points. D) Example images of (tet +) induced and un-induced (tet -) 

cells after 30 hr of growth; scale bar, 5 μm. E) Profiles of propidium iodide (PI) stained uninduced 

(tet-, pink) and RNAi induced (tet +, blue) populations after 6, 12, 24 and 36 hr growth; y-axes show 

cell counts, and x-axes shows PI-area fluorescence. F) Graph showing the percentage of cells in each 

expected cell cycle stage (G1, S and G2-M), or cells with genome content >4N, based on measuring 

proportion of the population with 2N, 2N-4N, 4N and >4N content; tet- shows the average of all tet - 

time points. In B), C) and F), error bars shown SD of three independent experiments. 

Figure 2. TbRH2A-depleted parasites accumulate DNA damage yet continue to synthesise DNA. A) 

High-resolution imaging of DAPI (blue) and γH2A (green) immunofluorescence with (tet +) and 

without (tet -) RNAi induction, at various time points; images to the right show increased 

magnification of the boxed nuclear DNA. B) Bar graphs showing the percentage of tet + and tet - 

populations positively staining for γH2A after 12, 24 and 36 hrs growth; error bars show SD of three 

independent experiments. C) Western blot detection of γH2A in whole cell protein extracts after 12, 

24 and 36 hrs growth of tet + and tet - cells; EF1α staining is shown as a loading control. D) Example 

SR-SIM images of DAPI, γH2A and EdU staining are shown, along with 3D reconstructions (model). 

TbRH2A RNAi cells were cultured in the presence (tet +) or absence of tet (tet -) for 36 hr before 

imaging; scale bar = 1 μm. E) Bar graph showing the percentage of tet + and tet - populations 

positively staining for EdU incorporation after 12, 24 and 36 hrs of growth; error bars show the SD 

for three independent experiments (further examples of immunofluorescence images of EdU and 

γH2A staining are shown in Fig. S3). 

Figure 3. After TbRH2A depletion RNA-DNA hybrids decrease, and DNA damage increases at sites 

of RNA Pol II transcription initiation.  A) Average DRIP-seq signal is shown as metaplots plotted for 

WT (pink), TbRH2A RNAi un-induced (tet -, blue) and RNAi induced (tet +, orange) data sets over 

divergent (left), head-to-tail (middle) and convergent (right) SSRs (+/- 1 kb). In all cases 5’ and 3’ 

denote SSR boundaries defined by flanking transcript coordinates. Transcription direction is shown 

above the plots by dashed arrows. Standard error is shown as shaded regions. B) Example 

screenshots of DRIP-seq signal in tet + and tet - cells at individual SSRs in each class; CDS (thick 

black), UTR (thin black lines) and snRNA/tRNA genes (red) are shown below the DRIP-seq tracks. C) 

Metaplots of γH2A ChIP-seq signal in TbRH2A RNAi induced samples relative to un-induced is shown 

after 24 hr (pink) and 36 hr (green) of RNAi induction; average signal is plotted across SSRs as for (A). 

D) γH2A ChIP-seq signal in induced relative to un-induced cells is also shown plotted across 

chromosome 8 after 24 hr (pink) and 36 hr (green) of growth (scale 1-3 fold-change). Upper track 
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shows genes on sense (black) and antisense (red) strands, and arrows highlight transcription 

direction; the lowest track shows tandem repeat sequences. 

Figure 4. Gene expression is altered upon depletion of TbRH2A. A) Volcano plots displaying 

differential expression of genes after TbRH2A knockdown. Each data point represents a gene. Genes 

were deemed significantly differentially expressed when RNA-seq indicated an adjusted p value < 

0.05 of gene-specific RNA in induced cells relative to uninduced. X-axes show the log2 fold-change 

between un-induced and induced after 24 hr (left) and 36 hr (right) of culture, and y-axes shows log2 

adjusted p value. Data was generated with two independent replicates for each condition and time 

point. Significantly differentially expressed genes are shown in red or blue (denoting VSG); all other 

genes, including VSGs, are shown in black. B) Number of genes significantly up-regulated in tet-

induced TbRH2A RNAi cells relative to uninduced, after 24 (left) and 36 hr (right) of growth, are 

shown annotated as VSGs, ESAGs, procyclin, RHS-associated, and other genes; total numbers are 

shown below each chart. 

Figure 5. R-loop and yH2A levels increase across VSG BESs in cells depleted of TbRH2A. A) 

Localisation of R-loops is shown in BES1 (active site of VSG transcription in WT cells) and BES3 (one 

normally transcriptionally silent site), comparing DRIP-seq signal in TbRH2A RNAi cells  grown for for 

24hr in the absence (tet -; blue) or presence (tet +; orange) of RNAi induction, and compared with 

WT cells (pink). BES features are shown as follows: promoter (aqua), ESAGs (blue, numbered), 70-bp 

repeats (purple) and VSGs (red); pseudogenes are indicated (ψ), and the end of the available BES 

sequence is denoted by a black circle. B) DRIP-qPCR using primers targeting the sequences of ESAG6, 

ESAG8, VSG221 (BES1) and VSG121 (BES3), with or without E.coli RNase HI (EcRHI) treatment, 

showing the percentage of amplification in the IP sample relative to input from tet induced (tet+) 

and non-induced (tet -) cells grown for 36 hr. Error bars display SEM for three replicates. C)  yH2A 

ChIP-seq signal enrichment is shown mapped to BES1 and BES3 as a ratio of reads in tet-induced 

samples relative to un-induced (each first normalised to the cognate input sample) after 24 (purple) 

and 36 (green) hr growth; γH2A ChIP-seq signal (normalised to input) is shown in WT cells for 

comparison (pink). D) γH2A ChIP-qPCR, as in (B): data is shown for tet induced (tet +) and non-

induced (tet -) cells after 36 hr of growth. Error bars display SD for two replicates. 

Figure 6. Depletion of TbRH2A results in increased transcription of silent VSGs. A) Graph of RNA 

levels for 5 VSGs, determined by RT-qPCR, in tet-induced TbRH2A RNAi cells, plotted as fold-change 

relative to levels of the cognate VSG RNA in un-induced cells after both 24 hr and 36 hr of culture; 

VSG221 (pink) is in the active BES (BES1) of WT cells, while VSG121 (yellow), VSG800 (blue), VSGT3 

(green) and VSG13 (grey) are in silent BESs; error bars show SD for three independent experiments. 

B) Graph depicting the number of VSG genes whose RNA levels display significant upregulation in 
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RNAi-induced RNA-seq samples relative to un-induced, both 24 hr and 36 hrs after growth; the total 

number is sub-categorised depending on whether the VSGs have been localised to the BES, are 

intact genes in the subtelomeric arrays (array), are in minichromosomes (MC), are pseudogenes 

(pseudo), or are in a metacyclic VSG ES (MES). C) Normalised RNA-seq read depth abundance (y-

axes) is plotted for two independent replicates (overlaid orange and blue) in TbRH2A RNAi parasites 

after 24 and 36 hr of growth, with (tet +) or without (tet -) RNAi induction. Read depth is shown 

relative to gene position (x-axes) for BES1 and BES3. D) As in (C), showing for RNA-seq read depth 

abundance (y-axes) across a selection of non-BES VSG CDS (x-axes), after 36 hr of growth.  

Figure 7. Depletion of TbRH2A induces switching of the VSG coat.  A) Co-immunofluorescence 

imaging of VSG221 (pink) and VSG121 (yellow) surface expression. Example images are shown of 

cells after 24 hr of culture with (tet -) or without (tet +) RNAi induction (Scale bar, 5 μm). B) Graph of 

the percentage of uninduced (tet -, all time points) and RNAi-induced cells (after 12, 24 and 36 hr of 

culture with tet) expressing only VSG221 (pink) or only VSG121 (yellow) on their surface, as well as 

cell with both (orange) or neither (grey) of the two VSGs on their surface, as determined by co-

immunofluorescence imaging with anti-VSG221 and VSG121 antiserum. >200 cells were analysed for 

each time point and three experimental replicates (error bars denote SEM). The table below shows 

the average percentage of the three replicates in each case.  
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Supplementary figure legends 

Table S1. Identification of genes encoding class 1 and class 2 RNase H enzymes in the genome of 

Trypanosoma brucei. 

Figure S1. Protein sequence analysis of putative T. brucei type 2 RNase H proteins. A) Structural 

models of putative RNase H2 subunits A (Tb427.10.5070), B (Tb427.01.4220) and C (Tb427.01.4730), 

as predicted by InterPro analysis.   Conserved domains are shown, and active site and catalytic 

residues are highlighted as white boxes and red diamonds above predicted domains, respectively. B) 

Amino acid alignments of putative RNase H2A catalytic proteins from T. brucei, T. cruzi, L. major, E. 

coli and T. maritina. Predicted sequences of the RNase H (H-)domain is highlighted in blue, active site 

residues in cyan, and catalytic residues are indicated by red dots.  

Figure S2. TbRH2A is a nuclear protein in bloodstream form T. brucei parasites. A) Western blot 

detection, using anti-HA antiserum, of C-terminally 6HA-tagged TbRH2A protein expressed from its 

endogenous locus in clonal bloodstream form T. brucei.  A sample from untagged wild-type (WT) 

parasites is shown for comparison along with the expected protein size (kDa). B) Representative 

immunofluorescent images of T. brucei parasites expressing 6HA-TbRH2A; WT cells are shown for 

comparison. Anti-HA signal is shown in magenta and DAPI staining in cyan. The cell outline is shown 

by differential interference contrast microscopy (DIC). Scale bar, 5m. C) Super-resolution structured 

illumination imaging of TbRH2A and nuclear DNA (magenta and cyan respectively in the merged, 

uncoloured images), detected with anti-HA antiserum and DAPI respectively. A respective cell of 

each cell cycle stage is shown along with graphs plotting length across the nucleus (x-axis, pixels) 

versus mean pixel intensity at each point (y, arbitrary units) for DAPI (cyan) and TbRH2A (magenta). 

Scale bars, 5m. D) Graphs depicting mean fluorescence intensity (arbitrary units, a.u.) of DAPI (left, 

cyan) and anti-HA- staining (right, magenta) to detect TbRH2A expression. Cells are separated by 

discernible cell cycle stages (determined by number of nuclear (N) and kDNA (K) signals visualised by 

DAPI staining; 1N1K, 1N1elongatedK (1N1eK), 1N2K and 2N2K). Each data point denotes the mean 

fluorescence of an individual cell and the median values (horizontal lines) and interquartile range 

(error bars) are shown. Significance was determined by the Kruskal-Wallis non-parametric test: (**) 

p-value <0.01, (***) p-value <0.001, (****) p-value < 0.0001.  

Figure S3. DNA synthesis occurs in the presence of DNA damage upon depletion of TbRH2A in T. 

brucei. A) Immunofluorescence detection of nucleic acid (DAPI staining; cyan), thymidine analogue 

EdU incorporation (via Click-IT chemisty; yellow) and H2A (anti-H2A antiserum; magenta) in 

TbRH2A RNAi parasites grown in either the absence (tet -) or presence of tet-induction (tet +) for 12, 

24 or 36 hr. EdU and H2A signal colocalization within several cells is also shown as merged images. 
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Scale bars, 5m. B) SR-SIM images of DAPI, γH2A and EdU staining are shown, along with 3D 

reconstructions (model), of TbRH2A RNAi cells grown in the absence (tet -) or presence (tet +) of tet-

induction. Scale bars, 1 μm.  

Figure S4. DRIP-seq signal across the 11 Mb-sized chromosomes of T. brucei before and after 

TbRH2A depletion. DRIP-seq signal for TbRH2A RNAi parasites grown without (blue) and with 

(orange) tet-induction for 24 hr is plotted as fold-change of IP sample coverage relative to input 

sample coverage (scale: 1-4 fold change). Upper track shows genes encoded in the sense (black) and 

antisense (red) directions. Known centromeres are shown as peach ovals. Lowest track shows 

predicted tandem repeat sequences.  

Figure S5. Distribution of DRIP enriched regions across the 11 Mb-sized chromosomes. The 

distribution of DRIP-seq enriched regions (> 1.2 fold change DRIP signal relative to input signal) in 

TbRH2A RNAi tet-induced (tet +) and uninduced (tet -) parasites. The composition of the Mb-sized 

chromosomes is shown to the left for comparison.  

Figure S6. Distribution of DRIP enriched regions across the RNA Pol II transcribed polycistronic 

units. A) The distribution of DRIP enriched regions between CDS, 5’ UTR, 3’ UTR and intergenic 

sequences within the RNA Pol II transcribed PTUs is shown for WT , TbRH2A RNAi uninduced (tet -) 

and induced (tet +) cells. Total numbers of DRIP enriched regions defined are displayed below plots. 

B) DRIP-seq signal coverage (normalised to input sample coverage; scale 1-3 fold-change) across an 

example regions of a PTU within Mb chromosome 2, for TbRH2A RNAi uninduced (tet -) and induced 

(tet +) samples. CDS regions are indicated by thick black lines below tracks, UTR sequences are 

indicated by thin black lines, and white arrows indicate transcription direction.  

Figure S7. DRIP-seq signal is enriched in regions flanking CDS of RNA Pol II transcribed genes. 

Heatmaps of DRIP-seq signal (normalised to input signal) across each RNA Pol II transcribed protein-

coding CDS, plus 1 kb of upstream and downstream flanking region, are shown for WT, TbRH2A RNAi 

uninduced (tet -) and induced (tet +) cells. Profiles of the average DRIP-seq of all CDS is shown above 

each heatmap.  

Figure S8. DRIP-seq signal mapping across the translational start sites of RNA Pol II transcribed 

genes. Average DRIP-seq signal coverage (normalised to input coverage; x axes) is plotted across 1 

kb surrounding the ATG start sites (y axes) of the first gene in each RNA Pol II transcribed PTU (left), 

and all other genes contained with the PTUs (right). Average signal is shown for WT (pink), TbRH2A 

RNAi uninduced (blue; tet -) and induced (orange; tet +) cells. Shaded areas show SEM.  

Figure S9. Levels of DRIP-seq signal are not altered in DNA replication origins SSRs compared with 

non-origin SSRs. A) The average DRIP-seq signal coverage (normalised to input sample coverage) is 
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plot across SSRs, plus 1 kb of upstream and downstream flanking regions, which are known origins of 

replication (ORI) for WT (pink), TbRH2A uninduced (blue; tet -) and induced (orange, tet +) cells. The 

5’ and 3’ boundaries of each SSR were defined as the end and start of flanking transcripts. Shaded 

areas represent SEM. An example of DRIP-seq signal coverage is shown to the right of the average 

profiles plot for one ORI SSR. B) As in A, but for SSRs not defined as origins (nonORI).  

Figure S10. H2A ChIP-seq signal is specifically enriched at sites of transcription initiation after 

TbRH2A depletion. Levels of H2A ChIP-seq signal in TbRH2A RNAi induced sample coverage is 

plotted relative to uninduced sample coverage (each first normalised to input samples) for 24 hr 

(purple, low track) and 36 hr (green, upper track) time points in all 11 Mb-sized chromosomes. Scale: 

1-3 fold-change. Other annotations are as in Fig. S4.  

Figure S11. Gene ontology analysis reveals genes associated with antigenic variation are up-

regulated after TbRH2A depletion, and those associated with small molecular biosynthesis 

pathways are down-regulated. Gene ontology analysis of biological process terms associated with 

genes found to be significantly up-regulated or down-regulated in RNA-seq analysis comparing RNA 

abundance after 36 hr TbRH2A of depletion via RNAi compared with uninduced cells. Parent terms 

are also depicted. Terms found to be enriched in the upregulated and downregulated genes are 

coloured green and orange, respectively. Colour intensity indicates significance, which was 

determined as adjusted p value. Terms with values > 0.01 were deemed not significant (white).  

Figure S12. DRIP-seq signal is enriched across the BESs after TbRH2A depletion. DRIP-seq signal 

coverage (normalised to input coverage) is plotted across the BESs for WT (pink), TbRH2A uninduced 

(blue; tet -) and induced (orange, tet +) cells. The lowest track shows the structure of each BES; 

promoters (cyan), ESAGs (blue), 70-bp repeats (purple), VSGs (red) and other genes (green) are 

annotated as boxes. Black circles denote the end of the BES sequence assembly.  

Figure S13. H2A ChIP-seq is enriched across the BESs after TbRH2A depletion. Levels of H2A ChIP-

seq signal in TbRH2A RNAi induced sample coverage is plotted relative to uninduced sample 

coverage (each first normalised to input samples) for 24 hr (purple, low track) and 36 hr (green, 

upper track) time points, across each BESs. Scale, 1-3 fold-change. The lowest track shows the 

structure of each BES; promoters (cyan), ESAGs (blue), 70-bp repeats (purple), VSGs (red) and other 

genes (green) are annotated as boxes. Black circles denote the end of the BES sequence assembly.  

Figure S14. Silent BES-housed VSGs are transcribed after TbRH2A depletion. RNA-seq read 

coverage is plotted over the coding regions of VSGs housed within silent BESs for two independent 

replicates (blue and orange) of TbRH2A RNAi parasites grown for 36 hr in the absence (tet -) or 

presence (tet +) of tet-induction. The VSG names and BESs in which they are contained are indicated.  
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Query protein  Query species Query ID Hit ID E-value Identity Score 

RNase HI E. coli YP_006780767.1 Tb427.07.4930 4.00E-10 55.5 

RNase H1 

L. major LmjF.06.0290  Tb427.07.4930 1.00E-21 90.9 

S. cerevisiae NP_013961.1 Tb427.07.4930 7.00E-09 55.1 

M. musculus NP_035405.2 Tb427.07.4930 4.00E-31 118 

H. sapiens NP_002927.2 Tb427.07.4930 2.00E-31 119 

RNase HII E. coli YP_006780795.1 
Tb427.10.4730 1.00E-16 76.6 

Tb427.10.5070 6.00E-05 41.6 

RNase H2A 

L. major LmjF.13.0050  Tb427.10.4730 1.00E-08 53.9 

S. cerevisiae NP_014327.1 
Tb427.10.5070 2.00E-40 145 

Tb427.10.4730 9.70E-02 32.7 

M. musculus  NP_081463.1 
Tb427.10.5070 5.00E-42 148 

Tb427.10.4730 1.00E-05 45.1 

H. sapiens NP_006388.2 
Tb427.10.5070 8.00E-40 142 

Tb427.10.4730 1.00E-06 47.8 

RNase H2B 

L. major LmjF.36.0640  
Tb427.10.5070  8.00E-113 332 

Tb427.10.4730 1.10E-02 35.8 

S. cerevisiae NP_010565.3 Tb427.07.3160 2.10E-01 32.3 

M. musculus NP_080277.1 
Tb427.01.4220 3.00E-08 53.1 

Tb427.08.4240 3.00E-01 31.6 

H. sapiens NP_078846.2 
Tb427.01.4220 2.00E-08 53.5 

Tb427.08.4240 2.50E-01 31.6 

RNase H2C 

L. major LmjF.36.0330 
Tb427.10.4730 0.00E+00 526 

Tb427.10.5070 5.40E-02 34.3 

S. cerevisiae NP_013255.1 Tb427.02.5040 1.00E+00 26.9 
M. musculus NP_080892.1 Tb427.01.4730 2.40E-01 29.6 

H. sapiens NP_115569.2 Tb427.01.4730 8.20E-02 31.2 

Table. S1 
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