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Stimulus-aware spatial filtering for single-trial neural response

and temporal response function estimation in high-density

EEG with applications in auditory research

Neetha Das†?, Jonas Vanthornhout?, Tom Francart?, Alexander Bertrand†

Abstract

Objective. Neural responses recorded using electroencephalography (EEG) and magnetoencephalography (MEG)

can be used to study how our brain functions, as well as for various promising brain computer interface (BCI)

applications. However, a common problem is the low signal to noise ratio (SNR) which makes it challenging to

estimate task-related neural responses or the temporal response function (TRF) describing the linear relationship

between the stimulus and the neural response, particularly over short data windows. To address these, we present

an algorithm that takes advantage of the multi-channel nature of the recordings, and knowledge of the presented

stimulus, to achieve a joint noise reduction and dimensionality reduction using spatial filtering. Methods. Forward

modeling is used to project the stimulus onto the electrode space. The second-order statistics of this estimated desired

signal and the raw neural data are used to estimate spatial filters that maximize the SNR of the neural response,

based on a generalized eigenvalue decomposition. Main Results. 1. For synthesized EEG data, over a range of SNRs,

our filtering resulted in significantly better TRF estimates from 20 s trials, compared to unfiltered EEG data. 2. On a

dataset from 28 subjects who listened to a single-talker stimulus, our method resulted in correlations between predicted

neural responses and the original EEG data that were significantly higher compared to standard approaches. 3. On

a dataset of 16 subjects attending to 1 speaker in a two-speaker scenario, our method resulted in attention decoding

accuracies which were higher compared to existing forward modelling methods. Significance. Our algorithm presents

a data-driven way to denoise and reduce dimensionality of neural data, thus aiding further analysis, by utilizing the

knowledge of the stimulus. The method is computationally efficient, and does not require repeated trials, thereby

relieving experiment design from the necessity of presenting repeated stimuli to the subjects.

Index Terms

EEG processing, temporal response function, speech entrainment, spatial filtering, denoising, forward modeling,

attention decoding.

I. INTRODUCTION

Understanding how auditory stimuli influence neural activity is one of the goals of auditory neuroscience research.

Towards this goal, several methods have been proposed to model the relationship between the auditory stimuli and
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the elicited neural responses. In magnetoencephalography (MEG) or electroencephalography (EEG) studies, forward

models based on linear temporal response functions (TRFs) are often used to model the path between the stimulus

and each of the electrodes/sensors [1, 2]. In this work we focus on the EEG modality but the methods discussed

are not limited to EEG. In case of speech stimuli and multitalker scenarios, TRFs have often been used to linearly

map speech stimulus features such as stimulus envelopes, speech spectrograms, phonemes etc. of both attended and

unattended speakers, to the neural activity of the listener [2–5]. TRFs not only have high temporal precision, but

are also sensitive to attentional modulation [3, 6]. Forward modeling thus comes with the advantages of being able

to investigate the TRFs and gain a better understanding of how our brain handles auditory stimuli [2, 4, 7], and

also the possibility to identify the brain regions involved with stimulus processing [2, 3, 8, 9].

On the other hand, linear backward modeling, where the stimulus features are reconstructed from the neural

activity, is also a commonly used method [2, 10–14]. Unlike the forward model, this approach makes use of inter-

channel covariances to design the decoder. The correlations between the reconstructed and the original stimulus

features are thus higher, than those of predicted and original neural responses in the forward modeling approach.

However, the decoder coefficients themselves can not directly be interpreted, unlike forward models, where TRFs

for different channels can be visualized using topoplots.

In algorithms that deal with neural activity, often dimensionality reduction is key [6, 15, 16]. Dimensionality

reduction works on the assumption that the data of interest lies in a lower dimensional space than its original

representation. As mentioned earlier, forward models map the auditory stimulus to each of the electrodes, thus

preserving spatial information of stimulus-related cortical activity. However, unlike algorithms that employ backward

modeling, they do not use cross-channel information to regress out non-stimulus related activity [17]. In such

cases, dimensionality reduction can help to transform neural recordings from a multi-electrode system, into a signal

subspace with fewer components (than electrodes) and better SNR of the stimulus following responses. The algorithm

may then use these components themselves to achieve its goal, or project the components back to the electrode

space, effectively performing a denoising operation, before further processing. Thus, dimensionality reduction goes

hand-in-hand with denoising.

Principal component analysis (PCA) is often used for dimensionality reduction, in which case the principal

components corresponding to lower variance are discarded [18, 19]. However, this approach relies on the assumption

that low variance corresponds to non-relevant activity, which can be a rather restrictive assumption to make,

particularly for EEG data, where the SNRs are poor, and large artifacts with high variance are common. Another

approach, independent component analysis (ICA) [20], works on the assumption that the components (or sources)

are statistically independent. It is often used to remove components corresponding to artifacts with specific patterns

(like eye-blinks) [21]. ICA, however, does not perform well in the extraction of signal components that are far below

the noise floor, as is the case for neural responses to speech. Another method, joint decorrelation [22] follows the

formulation of linear denoising source separation (DSS) [23] to improve the SNR of the activity of interest in the

neural data through a double PCA step, one for pre-whitening the data and one for dimensionality reduction. In the

most commonly used version of DSS, a criterion of stimulus-evoked reproducibility is used, maximizing the evoked

to induced ratio. This, however, required repeated trials, which renders it impractical for many EEG applications.
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Canonical correlation analysis (CCA) also reduces dimensionality by finding separate linear transformations for the

stimulus as well as neural responses, such that in the projected subspace, the neural response and the stimulus are

maximally correlated [19, 24, 25]. This method, however, could filter out certain (frequency) components of the

stimulus and/or the neural responses to maximize the correlation coefficient, thereby leading to distorted TRFs or

neural response estimates.

Except for CCA, all methods mentioned above do not exploit the knowledge of the stimulus. In this work, we

propose a data-driven stimulus-aware method for dimensionality reduction of neural responses, which finds a set

of spatial filters using the generalized eigenvalue decomposition, with the goal of maximizing the SNR of stimulus

following responses. For neural responses to continuous speech stimuli, we show that the proposed method results

in effective dimensionality reduction/denoising without the need for data from repeated stimulus trials as in the

DSS method or phase-locked averaging techniques. We validate the performance of the proposed method in the

following three contexts.

1) Short-term TRF estimation, where short trials are used to estimate TRFs that map the auditory stimulus

envelope to the neural responses. Estimation of TRFs from short trials has multiple advantages: a) TRFs to

different stimuli can be visualized to track the effect of attention on the TRF shapes, and eventually to even

decode attention in realtime without any prior training of decoders [6, 26], b) TRFs also may be visualized

using topoplots to gain an understanding of the brain regions that are actively involved in the auditory attention

process.

2) Stimulus envelope tracking, where in a single speaker scenario, neural responses to the stimulus envelope are

predicted using forward modeling, i.e., finding TRFs that map the stimulus envelope to the neural responses.

The correlations between the original neural responses and the predicted stimulus following responses are

analyzed [5, 27]. The analysis of these correlations can not only contribute to advancing our knowledge of

how the brain responds to auditory stimuli under different conditions, but also has potential to act as objective

measures of speech intelligibility [4, 28–31].

3) Auditory attention decoding, where an estimate is made as to which of multiple speakers, a person is attending,

using forward modeling [17]. Attention decoding finds application in brain computer interfaces (BCIs) such

as neuro-steered hearing prostheses where accurate information about a person’s auditory attention can be

used to steer the noise suppression beamformer towards the direction of the attended speaker [32–35]. In

particular, for real-time tracking of auditory attention, forward models are popular [6, 16, 26], in which case,

dimensionality reduction is an important ingredient.

The outline of the paper is as follows. In Section II, we describe the algorithm for denoising and dimensionality

reduction. In Section III, we describe the validation within the three aforementioned contexts. The strengths of our

method as well as similarities and differences with existing denoising and dimensionality reduction methods are

discussed in Section IV. Finally, we summarize and draw conclusions in Section V.
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Fig. 1: Block diagram of the proposed method.

II. ALGORITHM

The main goal of this work is to find a spatial filter, or a group of spatial filters, that combine the EEG channels

in such a way that the power of the auditory stimulus following responses is increased in comparison to the rest

of the neural activity captured by the electrodes. We aim to achieve this goal using the following steps to train the

filters: 1) Estimate the spatial covariance of the desired neural response across the different EEG channels, using

the known stimulus as side information, 2) find a signal subspace were the ratio of the power of the desired neural

response to the power of the background EEG signal (i.e. SNR) is maximized, 3) project the EEG data into the new

signal subspace, thereby performing a joint dimensionality reduction and denoising, 4) back-project the data into

the channel space if necessary, and then perform the necessary analysis. The steps of the algorithm are illustrated

in figure 1 and explained in detail below.

A. Neural response covariance estimation

The EEG signal, at a time index t, is defined as a C-dimensional vector m(t) = [m1(t),m2(t), ...mC(t)]T ∈ RC

where C denotes the number of channels, and mi(t) represents the EEG sample from the ith channel at time index

t. In a scenario where the subject listens to a speech signal s(t), it is known that the neural responses of the person

entrain to the envelope of the speech stream. Therefore, the EEG signal can be assumed to be the sum of the

activity driven by the speech stimulus x(t) and the rest of the neural activity n(t) at time t.

m(t) = x(t) + n(t). (1)

The stimulus following neural response x(t) can be modeled by a linear temporal response function (TRF) [1, 2, 4]

that maps the stimulus envelope (including Nl-1 time lagged versions of it) s(t) = [s(t), s(t−1), ..., s(t−Nl+1)]T ∈

RNl to the neural response.

x(t) = WT s(t), (2)

where W ∈ RNl×C is a matrix containing the per-channel TRFs in its columns. W can be estimated by minimizing

the mean square error (MMSE) between x(t) and m(t) :

W̃ = argmin
W

E{||WT s(t)−m(t)||2}, (3)

where E{.} denotes the expected value operator. The solution of (3) is given by
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W̃ = R−1
ss rsm, (4)

where Rss = E{s(t)s(t)T } ∈ RNl×Nl is the covariance matrix of the stimulus envelope, and rsm = E{s(t)m(t)T } ∈

RNl×C is the cross-correlation matrix between the stimulus envelope and the EEG data.

Consider we have N samples of data, with which to estimate the TRF W̃. The stimulus envelope S =

[s(1), s(2), ..., s(N)] ∈ RNl×N and the EEG signal M = [m(1),m(2), ...,m(N)] ∈ RC×N taken over N

samples, can be used to estimate the covariance matrix of the stimulus envelope as Rss ≈ (SST )/N and the

cross-correlation matrix between the stimulus envelope and the EEG data as Rsm ≈ (SMT )/N which can

then be used in (4) to estimate the TRF matrix W̃. With the estimated TRF, the desired neural response X =

[x(1),x(2), ...,x(N)] ∈ RC×N can be computed using (2), the spatial covariance matrix of which can then be

estimated as Rxx = E{XXT } ≈ (XXT )/N .

Here, we are essentially estimating long-term TRFs over a large amount of data (i.e., N is very large). This will

ensure that we have a good estimate of the second order statistics of the neural response, allowing us to compute

spatial filters (the next step) to improve the SNR of the EEG data. This higher SNR EEG data should enable us to

better estimate short-term TRFs over much shorter windows with fewer samples.

B. Spatial filter estimation

Having estimated the spatial covariance matrix Rxx of the desired neural response x(t), the next step is to find

a set of spatial filters that maximizes the SNR at their outputs. Consider the matrix PK ∈ RC×K which contains

K spatial filters in its columns. By multiplying the EEG data matrix with PT
K , the C EEG channels are combined

into K output channels where K < C, in such a way that the SNR at the output is maximized. For the sake of

simplicity, we first assume K = 1, thus reducing PK to a single spatial filter denoted by the vector p ∈ RC . The

maximum-SNR criterion thus becomes:

argmax
p

E{(pTx(t))2}
E{(pTn(t))2}

= argmax
p

pTRxxp
pTRnnp

. (5)

The stationary points of (5) can be shown to satisfy1

Rxxp = λRnnp. (6)

which defines a generalized eigenvalue problem for the matrix pencil (Rxx,Rnn) [36–38], which can also be

solved by considering the equivalent eigenvalue problem

Rp = λp. (7)

involving the matrix R = R−1
nnRxx. From (6), it follows that

1A brief derivation is given in Appendix A for the interested reader.

February 5, 2019 DRAFT

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/541318doi: bioRxiv preprint 

https://doi.org/10.1101/541318


6

pTRxxp = λpTRnnp⇔ λ =
pTRxxp
pTRnnp

(8)

which implies that λ is equal to the output SNR of the spatial filter. Therefore, in order to maximize the SNR, we

should set p equal to the (generalized) eigenvector corresponding to the largest (generalized) eigenvalue λ.

So far, we have considered a spatial filter p which combines the C EEG channels in an optimal way to obtain

a channel with SNR maximized. This can be further extended to solving the problem of finding a filter bank

PK ∈ RC×K consisting of K spatial filters that maximizes the total output SNR, by finding K generalized

eigenvectors corresponding to the K highest eigenvalues from the GEVD of (Rxx,Rnn).

In this work, we apply the GEVD to the matrix pair (Rxx,Rmm) where Rmm = E{m(t)m(t)T } ∈ RC×C

contains both noise and desired neural responses. This is equivalent to solving the optimization problem of

maximizing the signal to signal plus noise ratio (SSNR). Rmm can easily be computed from the raw EEG data

as Rmm ≈ (MMT )/N , while Rxx is estimated by first estimating long-term TRFs as discussed in section II-A.

Assuming the stimulus following responses x(t) and the background EEG (noise) n(t) are uncorrelated, the maximal

SSNR criterion reduces to the maximal SNR criterion as shown in Appendix B. We refer to the resulting spatial

filterbank as the stimulus-informed GEVD (SI-GEVD) filter.

C. Project EEG signal onto the new subspace

The top K eigenvectors from the GEVD corresponding to the K largest λ values can be used to reduce the

dimensionality of the raw EEG data with C channels, to K filtered EEG components. If PK = [p1,p2, ...,pK ] is

the matrix containing the top K eigenvectors in its columns, then the EEG signal in the new subspace is

mproj(t) = PT
Km(t). (9)

There are many ways to choose K. The cumulative λ values can be plotted and the top K values for which

the cumulative sum shows a significant increase can be chosen. The optimum K can also be chosen based on the

application. For example, in the case of auditory attention decoding using forward modeling or correlation analysis,

one can use cross validation to select the number of components K that eventually results in the highest attention

decoding accuracy or the best correlations respectively.

D. Back-projection to the electrode space

Back-projection to the electrode space can be done based on the matrix QC = P−T
C , where PC contains all the

generalized eigenvectors of the pencil (Rxx,Rmm) in its columns. Note that PK contains a subset of the columns

of PC . By selecting the subset with the same column indices from QC , we obtain the matrix QK , which can be

used to project the compressed data mproj(t) back to the electrode space with minimal error in the least squares

sense (see Appendix C):

m̄(t) = QKmproj(t). (10)

This results in a denoised version m̄(t) of the original EEG channels m(t). The denoised signals can then be used

for short-term TRF estimation, attention decoding, etc.
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III. VALIDATED EXPERIMENTS

A. Data collection and pre-processing

1) Dataset I: This dataset consists of EEG data collected during the experiments described in [8]. The data

consists of 64 channel EEG recordings at 8192 Hz collected from 16 normal hearing subjects (8 male, 8 female)

between the age of 17 and 30 years. The subjects were asked to attend to one of two stories that were simultaneously

presented to them. We refer to [8] for details on the experiment conditions. For the analyses in this paper (including

those in section III-D), we used only the data corresponding to conditions where the presented stimuli were filtered

by head-related transfer functions (HRTFs) (≈38 minutes per subject), in order to provide a realistic acoustic

impression of the location of the speakers. In [8], it has been shown that this data resulted in significantly better

attention decoding performance in comparison to dichotically presented unfiltered stimuli. The multi-channel Wiener

filtering (MWF) method in [39] was used on the EEG data for artifact removal. The EEG data was bandpass filtered

between 1 and 9 Hz. In [2, 8, 40, 41], it was shown that cortical envelope tracking in this frequency range results

in the best attention decoding performance. The audio envelope was determined by filtering the speech waveform

with a gammatone filterbank (with 15 filters) followed by powerlaw compression (exponent = 0.6) on the absolute

value of each filter’s output signal [12]. The resulting signals from all subbands were then summed, after which

the resulting signal was downsampled to 32 Hz and filtered using the same 1-9 Hz bandpass filter as for the EEG

signal. The EEG data was referenced to the Cz electrode (therefore, C = 63). All data were normalized to have

zero mean and unit standard deviation.

2) Dataset II: This dataset consists of EEG data from [30]. In this study the EEG (64 channels at 8192 Hz) was

recorded from 27 normal hearing subjects (8 male, 19 female, average age: 23 years). The participants listened to a

14-minute story in silence (Milan, narrated in Flemish by Stijn Vranken) and to Matrix stimuli. A Matrix stimulus

consists of a concatenation of 40 Matrix sentences [42] with a 1-s silence between each sentence. As each sentence

is approximately 2 s long, this yields a stimulus of 120 s with 80 s of speech. Each Matrix stimulus was repeated 3

or 4 times, yielding 6 to 8 minutes of EEG recordings. All stimuli were presented diotically. In the original study

[30] the Matrix sentences were presented in silence and in noise. For this study, we only used the data without

background noise.

Preprocessing of the EEG data was done similar to [30]. The EEG was highpass filtered (second order Butterworth

with cut-off at 0.5 Hz) and downsampled to 256 Hz before applying the MWF for artifact rejection [39]. It was

then re-referenced to the Cz electrode (therefore C = 63). Next, the EEG was bandpass filtered within the delta

band (0.5 - 4 Hz). This band was found to be the most useful to predict speech intelligibility [30]. Finally, the EEG

was downsampled to 128 Hz. The stimulus envelope was estimated using a gammatone filterbank with 28 filters.

A powerlaw compression was then applied (exponent = 0.6) to the absolute values in each of the subbands. The

resulting 28 subband envelopes were bandpass filtered (as was done for the EEG data) and averaged to obtain one

single envelope, and downsampled to 128 Hz. The EEG data and stimulus data were normalized to have zero mean

and unit standard deviation.

B. Short-term TRF estimation
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1) EEG synthesis: In order to reliably estimate any improvement that SI-GEVD filtering might bring to the

problem of TRF estimation from short trials, we use synthesized EEG built from an underlying template of a

TRF. The EEG data synthesis was based on a real EEG recording from [8]. Details of the data collection and

preprocessing can be found in section III-A1. The data from each subject was split into 38 trials of 60 s duration.

The ‘mTRF’ toolbox [43] was used to find the TRFs mapping the attended speech envelope (and it’s lagged versions

up to 400 ms) to the EEG data, per subject per trial. The TRFs were then averaged across trials and subjects. The

TRF corresponding to the channel ‘Tp8’ was then taken to generate a base TRF template. The TRFs for all other

channels were taken to be scaled versions of this base template, with the scaling corresponding to the relative root

mean square value of the TRFs in those channels, with respect to that of ‘Tp8’. Thus a C-channel TRF matrix

Wbase ∈ RNl×C containing the per-channel TRFs in its columns was synthesized. Lags of 0 to 400 ms were used

corresponding to Nl = 32 Hz × 400 ms + 1 = 14 samples.

The stimulus following response was then synthesized by convolving the per-channel TRFs with the attended

speech envelope and the results are put in a matrix X ∈ RN×C where N is the total number of EEG samples

(38 minutes). Noise N to be added to the stimulus following response was synthesized by flipping in time, the

concatenated 38 minute EEG from a subject. The flipping operation ensures that the neural response in the EEG

data is uncorrelated to the synthesized neural response. EEG responses M to the attended speech were simulated

by adding noise N to X at different SNRs. SNR is defined here as 20 times the logarithm (base 10) of the ratio

of the mean (over channels) of root mean square (rms) values of the neural response (X) to the mean of the rms

values of the noise (N).

2) TRF estimation: Once EEG data was synthesized using the base TRF template, we focused on estimating

short-term TRFs from the synthesized EEG as well as it’s SI-GEVD filtered version, and assessing the quality of

these TRF estimates in comparison to the base TRF template. We estimated TRFs Wraw ∈ RNl×C from 20 s trials of

the unfiltered EEG data M using a standard ridge regression technique using the mTRF toolbox [43]. For the forward

modeling, the regularization parameter for ridge regularization was automatically chosen (on a per trial basis) as

the maximum absolute value among all the elements in the corresponding trial’s speech covariance matrix RSS

(default choice in the ‘mTRF’ toolbox). In addition, a leave-one-trial-out cross validation was used for estimating

the SI-GEVD filter, and estimating the TRFs WSI-GEVD ∈ RNl×C on the SI-GEVD filtered data. This is explained as

follows. For the ith trial, the EEG data Mtest[i] = [m((i−1)L+1),m((i−1)L+2), ...,m(iL)] ∈ RC×L formed the

ith test trial, while the EEG data from all trials except the test trial, formed the training set Mtrain[i] ∈ RC×(N−L),

where L = 32 Hz × 20 s = 640 samples and N = 32 Hz × 20 s × 115 trials = 73600 samples. Similarly, the

stimulus envelope of the test trial was taken as Stest[i] = [s((i − 1)L + 1), s((i − 1)L + 2), ..., s(iL)] ∈ RNl×L

where s(t) is a vector containing Nl = 14 samples corresponding to Nl delays, as seen in (2). Stimulus envelopes

from all trials except the test trial of index i, were concatenated to form the training set Strain[i] ∈ RNl×(N−L).

We estimate the SI-GEVD filters PK [i] on the training data Strain[i] and Mtrain[i] based on the method described

in section II. Since, in all cases, there was a single dominant generalized eigenvalue, only one generalized eigenvector

(K = 1) was used as the SI-GEVD filter. The test trial was then SI-GEVD filtered and back-projected to obtain

the denoised EEG data M̄test[i]. The TRFs WSI-GEVD[i] were then estimated from M̄test[i] and Stest[i] within the
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Fig. 2: Relative MSE between base TRFs and estimated TRFs using the two approaches: Vanilla using raw EEG Vs SI-GEVD

filtered EEG. Each box contains one datapoint per trial. Comparison between the methods were done using Wilcoxon’s signed-

rank test: ‘****’ for p < 0.0001.

20 s trial, in the same way as how Wraw[i] were estimated.

3) Results: For each trial, the estimated TRFs of all channels were concatenated into a single vector estimated

TRF: ŵraw[i] ∈ RCNl×1 from the raw EEG data, and ŵSI-GEVD[i] ∈ RCNl×1 from the denoised EEG data. The base

TRFs of all channels were also concatenated to obtain a single vector base TRF ŵbase[i] ∈ RCNl×1. In order to

eliminate any differences due to scaling, a scaling factor was estimated by applying a least squares fitting such that

the estimated TRF vector (referred to, in general, as ŵ) was scaled to fit ŵbase[i] in the minimum mean squared

error sense. This scaling factor was found as follows:

α[i] = (ŵT [i]ŵ[i])−1ŵT [i]ŵbase[i]. (11)

The mean squared error (MSE) between the scaled estimated TRF vector and the base TRF vector was computed

for all the trials. The MSE values were normalized by the square of the norm of the base TRF vectors to find

relative MSEs in the range of 0 to 1 resulting in the following definition:

MSErel[i] =
||α[i]ŵ[i]− ŵbase[i]||2

||ŵ2
base[i]||2

. (12)

For a range of SNRs, figure 2 shows the relative MSE for TRF estimation from raw EEG (‘vanilla’) and from

SI-GEVD filtered EEG (after back-projection). The relative MSEs for the two approaches were compared using

Wilcoxon’s signed-rank test (with Bonferroni correction). While no significant difference was found between the

performance of the two approaches at SNR = 0 dB (i.e. signal power = noise power), the relative MSEs corresponding

to the TRFs estimated from SI-GEVD filtered EEG were found to be significantly lower (p < 0.0001) for more

realistic SNRs ranging from -5 dB to -25 dB, showing that SI-GEVD filter is effective in denoising the data which

translates into better TRF estimates over short trials.

C. Speech envelope tracking

1) Data Analysis: To analyze the effectiveness of the SI-GEVD filter in measures of envelope tracking, we used

the data from [30]. Details of the data collection and preprocessing can be found in section III-A2. The goal of
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this analysis was to use forward modeling to predict speech following neural responses. Correlations of the original

EEG and the predicted EEG were then used to quantify the effectiveness of denoising using the SI-GEVD filter. The

data from the story presentation was used only for training the SI-GEVD filters and the TRFs, and not for testing.

On the other hand, the Matrix dataset was used both in the training as well as the testing set while performing

leave-one-trial-out cross validation. This dataset was split into 6 trials, each trial consisting of 20 s of EEG data.

Thus, for each test trial (Matrix), the SI-GEVD filter and the TRF was trained on a) the remaining 5 Matrix trials

and their repetitions (3 repetitions × 5 trials × 20 s), and b) the data from the story presentation (14 minutes).

The ith test trial Mtest[i] ∈ RC×L contained L = 128 Hz × 20 s = 2560 time samples per channel, while the

training set Mtrain[i] ∈ RC×N consisted of N = (3 Matrix repetitions × 5 trials × L) + (14 minutes of story ×

60 s × 128 Hz) time samples per channel. Stimulus envelopes Stest[i] ∈ RNl×L and Strain[i] ∈ RNl×N consisted

of lags up to 75 ms, and hence Nl = 128 Hz × 75 ms + 1 = 11 samples.

For each trial, the training set data was used to find the SI-GEVD spatial filter PC [i] and the back-projection

matrix QC [i]. After choosing the number of components to be used (the method of choosing K is explained further

on), the EEG data in the test set was denoised by applying the SI-GEVD spatial filter and back-projected to the

C-channel space resulting in

M̄test[i] = QK [i]PT
K [i]Mtest[i]. (13)

This denoised EEG data was then used for TRF estimation. From the denoised training set and the raw training

set, the TRFs WSI-GEVD[i] and Wraw[i] ∈ RNl×C that mapped the attended stimulus data Strain[i] to the denoised

EEG data M̄train[i] and the raw EEG data Mtrain[i] respectively were computed as in section II-B using the

mTRF toolbox. The stimulus following responses of the test trial were predicted by convolving the obtained TRFs

with the stimulus envelope Stest[i] in the testing set:

Xraw[i] = WT
raw[i]Stest[i], (14)

XSI-GEVD[i] = WT
SI-GEVD[i]Stest[i]. (15)

The Spearman correlation coefficients between the EEG data (Mtest[i] (raw) and M̄test[i] (denoised)) and the

corresponding predicted stimulus following responses (Xraw[i] and XSI-GEVD[i]) were computed.

The correlation coefficients obtained were averaged across repetitions (from repeated stimulus trials) yielding

378 correlations (6 trials, 63 sensors). Next, we averaged the correlations in the sensor dimension using a trimmed

mean (percentage = 50%) to get one correlation per trial per subject. The number of components K was chosen

based on leave-one-trial-out cross-validation. For each of the 6 trials, we choose the number of components that

maximized the average correlation between the predicted EEG and the actual EEG on the other 5 trials.

In order to compare the results of SI-GEVD filtering with other methods which also aim for dimensionality

reduction, we also implemented the DSS approach [23]. DSS first performs a pre-whitening on the EEG data, then

averages the repeated trials in order to boost the SNR of the stimulus response, and then applies a PCA step on

the resulting signal to find a set of spatial filters for dimensionality reduction. It is noted that, in our case, only the
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Fig. 3: Mean correlations on 20 s trials: Comparison of mean correlations from forward modeling using raw data (‘vanilla’)

versus SI-GEVD filtered data (SI-GEVD). The dotted line indicates significance level (95%) for the correlations. Each box

contains one datapoint per subject. In the plot, comparison between the two methods was done using Wilcoxon’s signed-rank

test: ‘**’ for p < 0.0100.

Matrix data contains repetitions, so we can only use this part of the data for training the DSS filters. These filters

then replace the SI-GEVD filters in the procedure mentioned above. For the normal forward model (using Wraw)

based on unfiltered EEG data (referred to as ‘vanilla’), the correlations from the best 8 channels (with the highest

correlations) across subjects are averaged (channels Pz, POz, P2, CPz, Oz, O2, PO3 and FC1).

2) Results: Correlations from the 2 approaches, vanilla and SI-GEVD, were compared using Wilcoxon’s signed-

rank test with α = 0.05 (figure 3). The correlations of the SI-GEVD filtering approach were found to be significantly

higher than those of the vanilla approach (p < 0.0100,W = 81). For the DSS approach, in contrast to the SI-GEVD

approach, we found that the power ratio plot of DSS components, indicating SNR corresponding to each component

space, degraded slowly over the components, and therefore, it was clear that choosing a few top components from

the DSS approach for spatial filtering would not result in good denoising. As expected, the DSS approach resulted

in correlations that were significantly lower than those from the SI-GEVD approach (p < 0.0010, for any choice of

K), and not significantly different from those from the vanilla approach. This is probably due to the low number

of repetitions available.

In order to have a better understanding of the influence of the various GEVD components in the SI-GEVD

approach, we investigated the weights of the back-projection matrix (each column corresponds to a component), for

multiple components. Figure 4 shows the weights of each channel for the first component of the back-projection

matrix (QC) averaged over all training sets (each with one trial removed) and subjects. Note that the different spatial

filters consist of generalized eigenvectors, which are only defined up to an arbitrary scaling and sign. Therefore,

for each component, we normalized across channels, so that the sum of the absolute values of the weights equal

one, and averaged the normalized spatial filter of each trial after correcting for polarity. To find those channel

weights which are significantly different from zero across subjects, using one sample cluster mass statistics [44],

a reference distribution is built by repeatedly (n = 5000) and randomly swapping the sign of the weights in QK
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Fig. 4: Visualization of the SI-GEVD spatial filter’s first component: Red dots indicate channel weights that are significantly

different from zero.

across subjects and calculating a t-statistic per channel. The actual t-statistic per channel is then calculated without

swapping the sign. We obtained the p-value of each channel by calculating the proportion of random samplings

that have a higher t-statistic than the actual t-statistic. In this test we also take the position of the channels into

account as neighbouring channels can have similar weights, using this information to reduce the family-wise error

rate (details in [44]). This test will show a significance when the weights of the channel show a low variability

over subjects. In figure 4, channel weights significantly different from zero (p < 0.0100, one sample cluster mass

statistics) across subjects are shown in red.

When using only the first component, we observed two regions with an opposite polarity that contribute most

to the significant difference. One is the fronto-central region, and the other is the parietal-occipital region. This is

in line with other EEG research that estimates spatial filters based on speech processing [45] and EEG research

that shows the topography of speech processing in the brain [46–48]. For the second component we did not find

any significant channels. This is consistent with the results of the number of components needed to have optimal

correlations and with the SSNR of each component (1 GEVD component for 16 out of 27 subjects). All of this is

converging evidence that the GEVD-based spatial filter is very effective in denoising and dimensionality reduction.

D. Auditory attention decoding

1) Data Preprocessing: For attention decoding, we used the dataset described in section III-A1. Also as described

in III-A1, the preprocessing of the data was done similar to [8], and hence has differences with the preprocessing

done in section III-A2 (based on [30]). The preprocessed data set at a sampling rate of 32 Hz was divided into 112

trials of 20 s per subject.

2) Data Analysis: Adopting a leave-one-trial-out cross-validation approach, for each test trial, we used the

remaining 111 trials as the training set for spatial filter estimation and TRF estimation. The difference of this

application’s algorithm with that of envelope tracking is that here EEG is predicted from both the stimuli (attended

and unattended), and an attention decoding decision is made based on how well these predictions correlate to the

original EEG data, as will be explained further on. We perform forward modeling in the SI-GEVD component

space, and no back-projection is performed.
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Fig. 5: Attention decoding performance on 20 s trials: SI-GEVD based forward modeling compared to forward modeling with

mean of correlations over all channels (‘vanilla’). The dotted line indicates chance level (95 percentile). Each box contains one

mean decoding accuracy per subject, also indicated by colored points. In the plot, comparisons between methods are done using

Wilcoxon’s signed-rank tests: ‘**’ for p < 0.0100.

In the ith trial, EEG data Mtest[i] ∈ RC×L and the attended stimulus envelope Stest[i] ∈ RNl×L consisted of L

= 32 Hz × 20 s = 640 time samples, while the training set consisted of EEG data Mtrain[i] ∈ RC×N and attended

stimulus envelope Strain[i] ∈ RNl×N with N = 111 × L time samples. Stimulus envelope lags up to 400 ms were

used. Therefore Nl = 32 Hz × 400 ms + 1 = 14 samples.

For each trial i, the training set data was used to find the SI-GEVD spatial filter PC [i]. TRFs with respect

to the attended stimulus were estimated from the training set using the raw EEG data on the one hand, or the

SI-GEVD filtered data (no back projection) on the other hand. This resulted in two different TRF matrices, denoted

as Wraw ∈ RNl×C and WSI-GEVD ∈ RNl×K , respectively. The speech stimuli in the test trial, which was left out

during the training of the TRFs and the SI-GEVD filters, was convolved with these TRFs to predict the stimulus

following responses in the test trial. The predicted responses (from both the stimuli) were then compared with the

original EEG data m(t) (for Wraw) and the SI-GEVD filtered EEG data mproj(t) (for WSI-GEVD) by computing

the Spearman correlation over each channel.

In each case, i.e. for the raw EEG data as well as SI-GEVD filtered EEG data, the stimulus that resulted in a

reconstruction that yielded a higher mean correlation with the original EEG components was then considered to be

the attended stimulus. In this application, we used a different number of spatial filters K for each subject. In order

to do this, an optimal number of components was found for each trial by cross-validating the difference between

attended and unattended correlations when GEVD components were added one at a time, until there was no more

improvement. Then, for each subject, K was chosen to be the highest among the optimal number of components

among all trials. In the forward modeling approach using raw EEG data, referred to as ‘vanilla’ in figure 5, the

correlations from all the channels were averaged before making the attention decision. Since the dataset (from [8])

included recordings where the stimuli were repeated (3 repetitions × 2 minutes × 2 story parts), we also tested

attention decoding on EEG data which was filtered based on the DSS approach.

February 5, 2019 DRAFT

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/541318doi: bioRxiv preprint 

https://doi.org/10.1101/541318


14

Fig. 6: Mean attended (blue) and unattended TRFs from 120 s trials of each subject, estimated from raw data (‘vanilla’) as well

as after SI-GEVD filtering. The horizontal axis represents lags in ms.

3) Results: Attention decoding performance in the vanilla approach was compared with the SI-GEVD filtering

approach. In the SI-GEVD filtering approach, as per the criterion described before for the choice of the number

of GEVD components K, 3 GEVD components were used for 3 subjects, 2 GEVD components for 5 subjects,

and 1 GEVD component for the remaining 8 subjects. As can be seen in figure 5, the median decoding accuracy

with the SI-GEVD approach was found to be 74.1%, which was 8.9% higher than that of the vanilla approach

(65.2%). Using Wilcoxon’s signed rank test, this difference was found to be significant (p = 0.0050,W = 119.5).

We also used the available repetition trials in the data, to extract DSS components. However, similar to the results

from section III-C, the power ratio plot showed a gradual decrease of power ratio over components. Hence, there

were not just a few dominant components that could explain most of the variance in the biased matrix, and as a

consequence, choosing a small K would not be enough to ensure a high SNR in the filtered data. In short, this

approach did not meet the purpose of dimensionality reduction. Also, using only the first DSS component for AAD

resulted in accuracies of 9 out of 16 subjects being below chance level, and the results were significantly lower

than with the vanilla approach (Wilcoxon’s signed-rank test: p = 0.0020,W = 118).

To gain a better understanding of the denoising ability of our approach, in the context of TRF estimation on short

trials, we estimated TRFs (as in section III-B) for the attended and unattended stimuli on 120 s trials, employing

the vanilla as well as the SI-GEVD approach (in C channel space). Figure 6 shows the mean TRFs (averaged over

the channels ‘Tp7’ and ‘Tp8’, and over trials), and their standard deviation (area around the mean) for each of the

16 subjects. We can see clear differences between the two approaches. The SI-GEVD approach results in patterns

that have a better separation between attended and unattended TRFs compared to the vanilla approach. This could

be the reason for the better attention decoding accuracies that we see when the forward models are trained on
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SI-GEVD filtered data.

IV. DISCUSSION

We presented an algorithm for a joint denoising and dimensionality reduction of EEG data, with the goal of

maximizing SNR, in the context of auditory stimulus following responses. In order to obtain the spatial filters

that perform the dimensionality reduction, we employed a stimulus-informed generalized eigenvalue decomposition

(SI-GEVD) of the covariance matrix of the desired signal and the covariance matrix of the raw EEG signal. The

desired signal is the stimulus following response (attended stimulus in the case of attention decoding) which is

estimated from the raw EEG signal and the stimulus by forward model estimation (TRFs), and then convolving the

stimulus with the TRFs. We analyzed the performance of the proposed algorithm in 3 experiments in the context

of auditory neuroscience - short-term TRF estimation, speech envelope tracking and auditory attention decoding.

In the context of TRF estimation from short trials, we used synthesized EEG in order to have access to the ground

truth TRFs to assess performance. We found that, over a range of SNRs, SI-GEVD filtering effectively denoised

the EEG data, resulting in significantly lower relative MSEs with respect to the base TRFs, in comparison to

TRF estimation from unfiltered EEG data (vanilla). For speech envelope tracking in a single speaker scenario,

the correlations between the EEG data and the stimulus following responses (predicted) were also found to

be significantly better when using the SI-GEVD filter, compared to DSS or hand-picking channels. For multi-

talker scenarios, SI-GEVD filtering resulted in significantly higher attention decoding accuracies than by averaging

correlations over a set of raw EEG channels, and then making attention decoding decisions. The attention decoding

performance was also found to be better than when DSS-based spatial filtering was employed. It is important to

note here that the DSS-based approach relies on data from stimulus repetitions, and the lower performance for this

method can be attributed to the lack of repetitions present in our data to have a good estimate of the covariance

matrix of the desired signal. Another difference is that DSS makes an estimate of the stimulus response by averaging

repetitions, without knowledge of the stimulus, whereas our method uses forward modeling for a better estimate of

the desired signal using the attended stimulus envelope. DSS is often used to denoise MEG responses with a small

number of repetitions [2, 16, 26], but the SNR in EEG responses is considerably lower [49].

The xDAWN algorithm [50] addressed the problem of dimensionality reduction in the context of brain computer

interfaces - specifically a P300 speller. The goal of discriminating epochs containing a P300 potential evoked by a

target stimulus (visual) and epochs corresponding to non-target stimuli was tackled by estimating the P300 subspace

from raw EEG data, and projecting the raw EEG onto this subspace, effectively enhancing the P300 evoked potentials

[50, 51]. The xDAWN algorithm also uses a forward encoding model to estimate a template for the event-related

potentials (ERPs) using knowledge of the stimulus onsets, and consequently, the second order statistics of the neural

responses evoked by the target stimulus pulses. In [51], it is also stated that the computationally expensive QR

decompositions and singular value decomposition (SVD) used for estimation of the spatial filter can be replaced

by a GEVD on the matrix pair of the correlation matrices of the stimulus evoked responses and the raw EEG data.

Thus, we can draw parallels between our proposed method and the xDAWN algorithm, with the difference that,

here, we aim for SNR improvement of neural responses evoked by continuous stimuli, for which the statistics are
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estimated using knowledge of the continuous stimulus waveform (instead of activation times of repeated pulsed

stimuli in [51]), and we make use of a GEVD, which is computationally more efficient.

Spatial filtering to denoise neural data thereby separating stimulus-related activity from non-stimulus related

activity was also addressed by [52]. They utilized DSS [23] where PCA and normalization is used to pre-whiten the

data. The whitened data is then submitted to a bias function, followed by another PCA to determine the orientations

that maximize the bias function, i.e., essentially the power of the biased data. The bias function averages the epochs

under the same stimulus condition, thereby reinforcing stimulus-evoked activity. PCA on the biased data results in a

rotation matrix which can be applied to the whitened data to get signal components which can be kept or discarded

depending on their bias score. The remaining components can be projected back to the sensor space resulting in

denoised responses. The steps of pre-whitening and PCA to find the rotation matrix can in principle be replaced

by a GEVD on the correlation matrix of the biased data (with enhanced stimulus following responses) and the

correlation matrix of the raw data, as done in the procedure explained in Section II. The key difference between

our proposed method and [52] using DSS is the way we estimate the covariance matrix of the stimulus response.

Our method estimates a TRF between the (known) stimulus and the recorded EEG data, after which the stimulus

is convolved with the TRF to obtain an estimate of the stimulus response in each channel. [52] uses the method

of epoch-averaging on pre-whitened data. Here, the stimulus does not have to be known, but a major practical

limitation comes with the condition that it can only be performed if there are enough repetitions of the same

stimulus in the data to effectively enhance the stimulus following responses by averaging. In addition, the GEVD

approach renders pre-whitening and the PCA steps unnecessary, resulting in improved computational efficiency.

The joint decorrelation method proposed by [22] generalized the DSS based denoising approach with the freedom

to choose a bias filter based on the task at hand, and also cited equivalence in results with the two-step procedure

for diagonalizing two correlation matrices described by [53, 54].

Our method also has similarities with the method of common spatial pattern analysis (CSP) [55–57] that aims

to solve a binary classification task. To achieve this, the algorithm finds a set of spatial filters that maximize the

variance of the projected data for one class, and minimize the variance for the other, such that the output power of

the filters can be used as features in a classification task. Similar to DSS and our approach, the solution is found

by a GEVD, yet on a different set of covariance matrices, namely the two covariance matrices corresponding to

both classes. Similar to the DSS approach in [52], in CSP, epochs of data are sometimes averaged, per class, in

order to have a good estimate of the covariance matrix of the desired signal.

Another common way of dimensionality reduction is to handpick channels from brain regions that are expected

to have the strongest neural responses to the stimulus of interest, or simply use all channels, and calculate a mean

over these channels for the parameter (e.g., correlation) analyzed in the problem [5, 17, 58]. Another method is

to exhaustively train and test the system (eg. attention decoders, or forward models) dropping one channel at a

time [13, 14, 59] until the desired goal is achieved with fewer channels. Other methods include PCA which has an

underlying assumption that the desired responses are also those that exhibit the largest variance in the data (which is

definitely not the case for auditory responses), independent component analysis (ICA) which produces statistically

independent components, etc. These approaches, however, are not guided by the signal of interest - neural responses
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that entrain to the stimulus envelope. In [52], the better performance of the DSS approach compared to these methods

was already demonstrated. With our work, we present a data-driven dimensionality reduction/denoising approach

which makes use of stimulus information to find a spatial filter that can project the neural responses to a signal

space where the power of the stimulus following responses is maximized. The method is computationally more

efficient than DSS, and it also relieves the experiment design from the necessity of recording neural responses for

multiple repetitions of the stimulus for the purpose of averaging condition specific epochs.

V. CONCLUSION

Dimensionality reduction and denoising are important steps in the procedure to analyze neural responses, and

particularly EEG data which often has low SNRs. In the context of analyzing stimulus following neural responses,

methods like DSS and PCA are often used in order to denoise and/or reduce the dimensionality of the data. When it

comes to forward modeling approaches, often researchers handpick channels based on their knowledge of locations

of the strongest stimulus following cortical activity. In this paper, we present and evaluate a stimulus-informed

GEVD-based filtering approach which makes use of predicted stimulus following responses to find a spatial filter

that maximizes the SNR at its output. Not only is the proposed method computationally efficient in dimensionality

reduction/denoising, but also has the advantage of not relying on repeated trials for the spatial filter estimation.

We have shown the benefits of using our approach by analyzing 3 different applications in the field of auditory

neuroscience, and compared the performance of the proposed method with other approaches like DSS or averaging

over selected channels.

APPENDIX

A. Spatial filter estimation

Since p is only defined up to an arbitrary scaling, we can fix the output noise to have unit variance, thus fixing

the denominator in (5). The optimization problem can then be redefined as:

p = argmax
p

pTRxxp,

s.t.,pTRnnp = 1.

(A.1)

The Lagrangian of this constrained optimization problem is given by:

L(p, λ) = pTRxxp + λ(pTRnnp− 1). (A.2)

The solution can then be found by setting the partial derivative of (A.2) with respect to p to zero.

∂L(p, λ)

∂p
= 2(Rxx − λRnn)p = 0, (A.3)

Rxxp = λRnnp. (A.4)
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B. Optimization problem equivalence

The SI-GEVD filter is found by solving of the optimization problem

argmax
p

pTRxxp
pTRnnp

(B.1)

resulting in the GEVD of the matrix pencil (Rxx,Rnn). It is shown below that solving the optimization problem

for maximizing the SSNR (derivation was taken from [60])

argmax
p

pTRxxp
pTRmmp

(B.2)

results in the same solution as that for maximizing the SNR (B.1).

argmax
p

pTRxxp
pTRmmp

= argmax
p

pTRxxp
pT (Rxx + Rnn)p

= argmin
p

pT (Rxx + Rnn)p
pTRxxp

= argmin
p

(1 +
pTRnnp
pTRxxp

)

= argmin
p

pTRnnp
pTRxxp

= argmax
p

pTRxxp
pTRnnp

(B.3)

Thus, it can be concluded that the GEVD of the matrix pencil (Rxx,Rmm) would result in the same SI-GEVD

filter as for (Rxx,Rnn).

C. Back-projection to the electrode space

If PC contains the set of generalized eigenvectors of the matrix pencil (Rxx,Rmm) in its columns, and QC =

P−T
C , it follows that

Rmm = QCΛmQT
C (C.1)

Rxx = QCΛxQT
C (C.2)

where Λm and Λx are diagonal matrices such that Λ = Λ−1
m Λx [36]. Here Λ is the diagonal matrix containing all

the generalized eigenvalues. The goal is to find a filter V ∈ RK×C which projects the compressed K-component

data mproj(t) back to the electrode space with minimal error in the least squares sense:

V = argmin
V

E{||VTmproj(t)−m(t)||2}. (C.3)

This is a standard minimum mean squared error problem of which the solution is given as

V = (E{mproj(t)mproj(t)
T })−1E{mproj(t)m

T }. (C.4)
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This can be rewritten using the notation introduced in section II as

V = (PT
KRmmPK)−1PT

KRmm

= (ET
KPT

CRmmPCEK)−1ET
KPT

CRmm

(C.5)

where EK ∈ RC×K is a matrix that chooses the first K columns of PC so that PK = PCEK . Since QC = P−T
C ,

from (C.1) it follows:

V = (ET
KQ−1

C (QCΛmQT
C)Q−T

C EK)−1ET
KQ−1

C (QCΛmQT
C)

= (ET
KΛmEK)−1ET

KΛmQT
C

= Λ−1
m,k[Λm,k|0]QT

C = [IK |0]QT
C

= ET
KQT

C = QT
K

(C.6)

where Λm,k is a diagonal matrix containing the first K diagonal values of Λm, and [Λm,k|0] represents the

concatenation of Λm,k with C −K columns of all zero values (equivalent to choosing the first K rows of Λm).

The derivation shows that the filter that should be used to back-project mproj(t) to the electrode space is VT =

QK = P−T
C EK .
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