
Emergence of hierarchical organization in
memory for random material

Michelangelo Naima,+, Mikhail Katkova,+, Stefano Recanatesib,+, and Misha Tsodyksa,*

aDepartment of Neurobiology, Weizmann Institute of Science, Rehovot 76000, Israel
bDepartment of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA

+These authors contributed equally to this work
*misha@weizmann.ac.il

Structured information is easier to remember and recall than
random one. In real life, information exhibits multi-level hier-
archical organization, such as clauses, sentences, episodes and
narratives in language. Here we show that multi-level group-
ing emerges even when participants perform memory recall ex-
periments with random sets of words. To quantitatively probe
brain mechanisms involved in memory structuring, we consider
an experimental protocol where participants perform ‘final free
recall’ (FFR) of several random lists of words each of which was
first presented and recalled individually. We observe a hierar-
chy of grouping organizations of FFR, most notably many par-
ticipants sequentially recalled relatively long chunks of words
from each list before recalling words from another list. More-
over, participants who exhibited strongest organization during
FFR achieved highest levels of performance. Based on these re-
sults, we develop a hierarchical model of memory recall that is
broadly compatible with our findings. Our study shows how
highly controlled memory experiments with random and mean-
ingless material, when combined with simple models, can be
used to quantitatively probe the way meaningful information
can efficiently be organized and processed in the brain, so to
be easily retrieved.

Free recall | Model | Chunking | Language | Graph theory

Significance Statement
Information that people communicate to each other is highly
structured. For example, a story contains meaningful ele-
ments of various degrees of complexity (clauses, sentences,
episodes etc). Recalling a story, we are chiefly concerned
with these meaningful elements and not its exact wording.
Here we show that people introduce structure even when re-
calling random lists of words, by grouping the words into
‘chunks’ of various sizes. Doing so improves their perfor-
mance. The so formed chunks closely correspond in size to
story elements described above. This suggests that our mem-
ory is trained to create a structure that resembles the one it
typically deals with in real life, and that using random mate-
rial like word lists can be used to quantitatively probe these
memory mechanisms.

Introduction
One of the goals of neuroscience is to establish a link between
neuronal processes and cognitive functions, such as memory,
emotions, or language (1). Within this scope is memory re-
call, which is a challenging memory task for human partic-

ipants, has been found to shed light on a number of mem-
ory and linguistic phenomena. For example, when retrieving
random lists of words, people remember a very limited num-
ber of words even for lists of moderate lengths (2, 3). We
showed recently that two simple principles are sufficient to
explain free recall performance for randomly assembled lists
of words for a wide range of list lengths (1):

1. The encoding principle states that each memory item
is encoded (“represented”) in the brain by a specific
group of neurons in a dedicated memory network.
When an item is retrieved (“recalled”), either sponta-
neously or when triggered by an external cue, this spe-
cific group of neurons is activated.

2. The associativity principle for which, in the absence
of specific retrieval cues, the currently retrieved item
plays the role of an internal cue that triggers the re-
trieval of the next item.

From these two principles, we were able to theoretically de-
rive that, on average, 2.1

√
L words out of the presented L

words would be recalled. This simple expression is compat-
ible with earlier experimental results (4) and with the very
limited recall performance of individual lists of words (5),
and was also confirmed by our recent experiments (6).
Nevertheless, people exhibit a striking ability to give long
talks or recite lengthy poems by heart. How do they achieve
this? And why are some people better than others in terms
of their capacity to retrieve information from memory? It is
well known that the more information is structured the easier
it is to remember. For example, a story may contain distinct
episodes that relate to each other in multiple logical chains
that give rise to its ‘meaning’ and makes it more memorable
(7–9). Often speakers introduce organization to the material
to be communicated in order to improve its retention; one of
the most prominent organizational strategies is grouping (the
parceling of information into smaller parts). Pausing at ap-
propriate places while speaking, allows listeners to divide the
speech into meaningful parts (3). Evidence shows that encod-
ing our experiences into distinct entities (‘chunks’), results in
a hierarchical representation of information, that facilitates
its subsequent retrieval (7, 10, 11). In support of this view,
we recently showed that participants employing chunking as
a retrieval strategy outperform other participants even when
recalling random lists of words (12). In this study we demon-
strate that in a memory task where information contains a
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Fig. 1. Experimental design and list-grouping results. (a) Experimental design – each day 16 lists were presented to human participants (colored lines on the left, with
numbers representing serial presented position of the word during the day, and color representing the list number from blue to brown with color code presented in the right),
after presentation of a list participants recalled as many words as they could (colored lines in the middle with a serial position of recalled words); at the end of some days
participants performed final free recall (FFR), where they recalled as many words presented during the day as they could (bottom line with each recalled word colored
according to the presentation list). (b) Number of recalled words during FFR vs grouping measure p16 (see details in the text); red line denotes linear fit. (c-e) are examples
of FFR trials for three levels of grouping: high (c), low (d) and intermediate (e). All words consecutively recalled from the presented list are shown as a vertical column with
color corresponding to list number and height to the number of words in the sequence. High level of grouping (c) is characterized by consecutive recalls of many words from
the same list, sometimes interleaved with 1 or 2 words from other lists. Low level of grouping (d) is characterized by frequent switches between lists with 1 or 2 words recalled
consecutively from the same list. Intermediate level of grouping (e) shows a mixture of high and low level grouping.

limited degree of structure, best performing participants em-
ploy a hierarchical recall strategy. By means of a theoretical
model we determine how properties of hierarchical represen-
tations, employing both representations of words and lists of
words, account for most of the experimental observations and
across subject variability.

Grouping over lists, induced by presentation
protocol
The protocol of the experimental dataset we analyze, ob-
tained in the lab of Prof. Kahana at the University of Penn-
sylvania (13), adheres to the following structure. Each par-
ticipant performed 16 Immediate Free Recall (IFR) trials a
day with randomly assembled non-overlapping lists of 16
words. On selected days they were subsequently asked to

recall all the words presented on that day (FFR; Fig. 1). Av-
eraged over roughly 900 FFR sessions, participants recalled
57 words per session. This level of performance can be com-
pared to the theoretical prediction resulting from modeling
the experiment (14) according to which, out of a list of L ran-
dom words, on average no more than 2.1

√
L words would be

recalled (1, 12). If one considers a FFR trial as the recall of
a random list of L = 256 words, participants would on av-
erage recall 32 words, i.e. the observed performance of 57
words per session is almost twice the theoretical prediction.
This discrepancy could be an indication that participants take
advantage of the structural organization of presented words
imposed by prior IFR trials. To prove that this is indeed the
case, we quantify the level of grouping in FFR over the pre-
sented lists with quantitative measure for which each FFR
trial is characterized by a value p16 that reflects the tendency
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Fig. 2. Fraction of chunk pieces of different length (number of words) recalled during
final free recall (FFR). (a) When chunk is recalled as a whole (all 4 words from
the chunk are recalled consecutively) in Immediate Free Recall (IFR). (b) When all
words from a chunk recalled in IFR, but there are interleaving words from different
chunks, i.e. a chunk is not recalled as a whole.

to recall subsequent words from the same list before switch-
ing to another list (see Materials and Methods (12)). The
distribution of p16 over the data is very wide Fig. 1b, cov-
ering the range from 0 (random recall) to 0.9 (strong degree
of grouping; see Figs. 1c to 1e for three prototypical exam-
ples). Displaying the FFR performance versus the grouping
measure p16 revealed a striking correlation between the two
(r = 0.62, p = 4× 10−97), with the bulk of data well char-
acterized by linear dependence of performance on p16. In-
terestingly, in the limit p16 → 0, i.e. when no grouping is
employed, performance approached a value of 30 words, sup-
porting the theoretical prediction (1). We also observe that in
FFR sessions with highest values of p16 participants occa-
sionally recalled single words from a list in between longer
sequences from other lists (Fig. 1c; see e.g. a single word
from the 15th list recalled between two groups of words from
the 4th list). We speculate that these short ‘intrusions’ are
analogous to famous ‘slips of the tongue’ in natural speech
(5).
A possible interpretation of the above results is that partici-
pants perform FFR by applying a mixture of two recall strate-
gies, one that treats all the words as one long random list,
and another one that operates on two levels, namely indi-
vidually presented lists and words within a list. As the sec-
ond strategy gains prominence, recall becomes progressively
more grouped and the value of p16 increases, accompanied
by the increase in performance. In particular, the participants
could develop stable representations of each list as a separate
entity and ‘recall’ a list before recalling words from that list.

Spontaneous grouping within presented lists
The grouping over lists exhibited in Fig. 1 is induced by the
experimental protocol as lists are first presented and recalled
individually in the IFR protocol. Another level of grouping,
that was not induced by the protocol, was identified in FFR
through the analysis of IFR data: a small proportion of par-
ticipants develops chunking strategies in IFR (15, 16). These
participants divide lists of 16 words into groups of 3 or 4 con-
secutively presented words and recall these chunks as single
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Fig. 3. Three examples of FFR sessions with strong list chunking. Each plot dis-
plays the structure of a FFR session. Each bar represents a sequence of words
recalled from a single list with the height of the bar indicating the number of words
in a sequence and the color corresponding to the list chunk number. On top is
reported the number of words recalled (WR) in each of these sessions.

entities (12). This kind of chunking is not imposed by the
protocol; hence, it must emerge from active manipulation of
the presented list, for example representing chunks of words
as separate items in memory. Here we wondered whether the
chunks observed during IFR remained in memory till FFR
trials. It is hard to infer whether chunking occurred in ev-
ery single trial, hence we assumed that a chunk is recalled
as a unit when all words from that chunk are recalled con-
secutively (not necessarily in the correct order). We there-
fore isolated all chunks of size 4 that were recalled during
IFR trials, and considered the recall of the constituting words
during FFR. We computed the probability for the different
number of words from this chunk to be recalled. The results
are shown in Fig. 2a. We found that for the first three chunks
in the list, probability has two peaks, at 0 and 4 words, in-
dicating the tendency for all 4 words in these chunks to be
recalled or omitted as a single unit. Interestingly, the proba-
bility curve for the last chunk in a list decays monotonically,
indicating that words from that chunk are recalled indepen-
dently. A plausible explanation of this effect is that the last
several words in a list are typically recalled immediately dur-
ing IFR since they are maintained in working memory after
the list is presented, and hence their recall is effortless and
does not lead to the formation of a chunk representation in
memory. A similar explanation also accounts for a recently
reported ‘anti-recency’ effect in FFR, where the last words
in a list have lower probability to be recalled, as opposed to
the well-documented positive recency effect during IFR (17).
For comparison, if the same analysis is performed for IFR tri-
als where the same four words were recalled but with at least
one intervening word, the corresponding probabilities do not
exhibit a peak at four words recalled (Fig. 2b).

Spontaneous grouping of lists
Some of the best participants who employ a strong over the
list grouping imposed by the presentation protocol, also ex-
hibit a higher-level grouping of lists. In particular, they tend
to recall lists in chunks of four consecutive lists, as illustrated
in figure Fig. 3.
Taking together, the results presented above illustrate that our
memory is trained to create a structure on different levels of
organization, including those that are not directly imposed by
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Fig. 4. (a) Cartoon of the encoding of information in the dedicated memory networks. 3 subnetworks encoding words, lists and sessions are shown. Each row corresponds
to a word and each column to a neuron. Colored neurons are encoding word (blue color), list (red color) or session (green color). Each word in word subnetwork is encoded
by small fraction of random neurons, whereas words recalled in the IFR from the same list have the same encoding neurons in the list network. All words recalled in IFR from
the same session have the same session encoding neurons. (b) An example of possible transitions induced by the model during the retrieval of 16 words from the same list.
(c) An example of possible transitions in the FFR trial with large biding constant ε (see details in text). Intralist transitions are colored in black, and extralist transitions are
colored in green. Red circle is an initial item recalled.

the presentation protocol.

Hierarchical model of memory recall
In this section we show how the two principles presented
above (encoding and associativity principle) account for the
bulk of experimental findings. We build a hierarchical model
of memory based on these two principles and show that it‘s
behavior is in agreement with experimental results presented
above.

A. Modeling the Encoding. We extend the encoding prin-
ciple formulated above for the recall of single lists in the
following way. We postulate that different distinct levels of
information (words, chunks, lists, context..) are encoded in
the form of sparse random neuronal populations in the corre-
sponding distinct subnetworks (see Fig. 4a), in line with the
TCM model (18)). In the experimental paradigm words are
presented in lists of 16 items and each session consists of 16
lists. Accordingly, each word W ls labeled by the triple of
indexes: W = (w,l,s), corresponding to the presentation po-
sition in the list, the serial position of the list, and the session,
respectively. Mathematically, each wordW is represented by
a binary pattern ξW consisting of three parts:

ξW = 0100100001...10︸ ︷︷ ︸
word encoding ξw

0110010100...10︸ ︷︷ ︸
list encoding ξl

1010111000...1︸ ︷︷ ︸
session encoding ξs

(1)

The length of the three vectors equals the number of neurons
in each subnetworkNw,Nl,Ns. Each neuron encodes a word
W with probability f so that the total number of neurons
which encode a word W is on average f · (Nw+Nl+Ns) =
f ·N .
In our previous studies (1, 19), transitions between words
were driven by similarity matrices encapsulating resem-
blance of words representations and a neural dynamic induc-
ing such transitions was proposed in (20, 21). The similarity
between any two words W1 and W2 can be decomposed in
three parts:

SW1,W2
tot = Sw1,w2

word +αSl1,l2list +βSs1,s2
session , (2)

where Sw1,w2
word is the similarity matrix between wordsW1 and

W2 in words subnetwork; Sl1,l2list is the similarity between
lists l1 and l2 in list subnetwork; Ss1,s2

session is the similarity
of sessions s1 and s2 in the session subnetwork; parameters
α and β reweigh the relative strength of the list and session
context populations respectively in driving the retrieval pro-
cess, in order to account for inter-subject variability (see be-
low; cfr. Methods for details). The values of such similarities
across all words determine the properties of the FFR process
as we will further illustrate in modeling the associative prin-
ciple and with it the retrieval dynamics.
A critical feature of the experimental dataset arises from the
fact that words were not only presented in lists of 16 items,
but also retrieved in immediate free recall IFR trials, Fig. 4b.
The effect of IFR on the encoding process is crucial as 87%
of the words recalled in IFR are later retrieved in FFR, as
opposed to 13% of words not recalled in IFR. Because of the
importance of IFR retrievals we model this phenomena by
considering IFR as overruling the list presentation. In other
words the similarity between two presented words induced
by the list subnetwork will only be kept if both of the words
were recalled in the subsequent IFR trial and otherwise will
be put to zero (cfr. Methods).

B. Associative transitions. The model of the encoding
principle provides a simple mathematical characterization of
words representation, but it does not describe how these rep-
resentations are exploited in the retrieval dynamics. This is
described within the scope of the associative principles which
determines the rules that dictates transitions between words
during the recall session.
According to the associativity principle the currently re-
trieved item functions as an internal cue that triggers the re-
trieval of the next one. This suggests that transitions between
words are brought about by similarities between the active
word – the last retrieved one – and other encoded words.
Mathematically this means that if we assume the FFR ses-
sion to start with any word W1, recalled during IFR, then
transition to the next word W2 is driven by the total simi-
larity SW1,W2

tot . The word which is most similar to the one
active is then activated and the process continues leading to
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the retrieval of more and more words. Importantly the last
retrieved word cannot be activated so that a transition which
just happened cannot immediately happen in the reverse di-
rection. The dynamical recall process is solely driven by the
associative principle and continues until it enters a loop when
the same transition is repeated twice (see (14); cfr. Fig. 4b)
after which the process would recapitulate the same words
already retrieved: here is where the hierarchical representa-
tion of words comes at hand. When the process enters a loop,
we assume that the next transition is overruled by a transi-
tion that does not follow the full similarity matrix Stot to
determine the most similar word to the last retrieved one, but
rather:

SW1,W2
tot−l = Sw1,w2

word +βSs1,s2
session , (3)

where the similarity between words arising from being in
the same IFR trial l is suppressed. We call these transi-
tions random transitions in contrast with the structured tran-
sitions induced by Stot. Upon triggering the retrieval of a
new word through this transition the process reverts to using
the full similarity matrix Stot until it eventually enters a big
loop Fig. 4c exemplifies this dynamic, the process starts in
the word represented by the red dot, then a few transitions
induced by Stot take place (black arrows) until an already
retrieved word is activated and a random transition occurs
(green arrow). Then the same process starts over again un-
til a random transition triggers the activation of a word al-
ready retrieved (blue arrow) which concludes the retrieval.
Importantly, structured transitions are not confined to happen
between words of the same list and similarly random transi-
tions may happen between words that were in the same list
or IFR trial.
The process just illustrated is mathematically formalized as
a mixture model where transitions are triggered in either of
two ways - structured transitions and random transitions of
encoded word (cfr. Fig. 4c).
The hierarchical representation is exploited as, through it,
different kind of transitions may occur. We will give reason
for the biological plausibility of this model in the discussion,
a neural network implementation of the random transitions
here defined is discussed in (20, 21).

C. Comparison between data and model simulation.
We now turn to deploying this model in simulating the exper-
imental paradigm analyzed previously. To qualitatively com-
pare the model to experimental findings, we examine how the
sequences generated by our model present grouping of items
as measured by p16. In the model, the parameter α controls
the relative strength of the list representation and thus higher
levels of list grouping are achieved for higher values of α. We
let α vary and with it we vary β according to β= α

3 +γ where
γ is a constant that allows the contribution of session part of
similarity to remain positive when list grouping controlled by
α approaches zero. This is important as in the data we notice
the two trends to be independent: even in FFR sessions that
do not show any grouping induced by the IFR trial identity,
words which were retrieved in a IFR trial had a higher prob-
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Fig. 5. Hierarchical model results. (a) Value of the induced p16 in the model sim-
ulations as a function of α. Blue line is the average of the value of p16 with a
confidence interval of 95%. (b) Scatter plot of the performance as a function of
p16 both data and model. For each session the number of words retrieved in FFR
is shown against the p16 score. (c) Scatter plot for the number of sequences re-
trieved as a function of p16 for each session both data and model. (d Scatter plot
for the percentage of words not retrieved in the IFR but recalled in the FFR retrieved
as a function of p16 for each session both data and model.

ability to be retrieved. Using the described model, 6500 ses-
sions of FFR were simulated. Each session first comprises
the simulation of 16 IFR followed by FFR session, starting
with a word previously recalled in IFR. All IFR sessions were
simulated according to a non-hierarchical model where only
Sword contributes to the similarity matrix, the matrix Stot
was computed and the FFR simulated for each of the 13 val-
ues of α linearly spanning the interval [0,60].
We compute p16 for all sessions of FFR so generated and find
that p16 monotonically increases with the value of α, Fig. 5a.
This is an expected behavior since large values of α force
structured recall. Similarly to experimental data the model
shows a linear dependence of the number of recalled words
as a function of p16, Fig. 5b (cfr. Fig. 1b). Intriguingly, the
number of sequences of words recalled from the same list as a
function of p16 shows a non-monotonic dependence, Fig. 5c
(blue data), which we also observed in the data (orange data).
For small values of α, and thus p16, the recall is unstructured
and the number of sequences is roughly equal to the num-
ber of recalled words (see Fig. 1d). When α and, therefore,
p16 increases the number of sequences increases since there
is a mixture of two recall processes - random and structured
(see Fig. 1e). For intermediate values of p16 the contribu-
tion of Sword and Slist to driving structured transitions are
comparable and across lists transitions may still be triggered
by structured transitions. As we further increase α the recall
becomes very structured and the words from a single list are
predominantly recalled before words from other lists are re-
called (see Fig. 1c). Consequently the number of sequences
becomes comparable, or even smaller than the number of pre-
sented lists. To further assess the validity of our model we
compute the percentage of newly recalled words in FFR (the
words that were not recalled in IFR). Fig. 5d shows that this
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steadily decreases with p16 for both the model (blue points)
and the experimental data (orange points).

Discussion
We studied the final free recall of sets of 256 unrelated words
that were previously presented and recalled on the same day
as 16 lists of 16 words each. We found that FFR trials ex-
hibit various degrees of hierarchical organization: within-
list chunking that spontaneously emerged in IFR, over-the-
list organization induced by the presentation protocol, and
finally list chunking for the very best participants (see Figs. 1
to 3 above). The dominant level, exhibited in the bulk of
the data, was the tendency to recall subsequent words from
the same list. This type of grouping strongly correlated with
performance, cfr. Fig. 1b. When extrapolated to the limit
of random recall, the performance dipped below the level of
30 words that closely matched our theoretical prediction for
structure-less recall. The average performance was almost
twice higher than this level, indicating a strong effect of in-
formation structure on memory retrieval. We also found that
within-list chunks that emerged spontaneously in a limited
number of trials in IFR (12) have a high probability to be re-
called or omitted as single units during FFR trials as well.
Taken together, our results strongly indicate that people tend
to organize information to be remembered in a way that fa-
cilitate subsequent recall, even when information itself lacks
any meaning, as in the case of free recall of random words.
From a theoretical point of view we extended the model of
associative memory recall (14) to take into account the hierar-
chical representation of information in FFR that we found in
experimental data. More specifically, we added list and ses-
sion context subnetworks including random and structured
transitions. The effect of list and session context represen-
tations was limited to only words recalled in IFR and the
strength of binding was a one-dimensional parameter in the
model, α. The resulting model is compatible with proposed
principles of sparse encoding and associative transitions. The
simplicity of the model provides an interpretable description
of the data as a function of strength parameter α providing
insight to the processes involved in episodic memory storage
and retrieval. The model is also easily generalizable to any
number of hierarchical levels by adding additional layers of
representations, similar to list representation.
In the current model the similarity matrix defining transitions
consists of a weighted sum of similarity matrices describ-
ing the similarity in the different layers of hierarchy: words
similarity, lists similarity and session context similarity. The
binding between word similarities and lists similarities sug-
gests the mechanisms for different observed phenomena. For
example, both the non-monotonic dependency of the number
of sequences and the constantly decaying number of newly
recalled words in FFR are easily understood given the model
(cfr. Fig. 5c and Fig. 5d). It can be argued that intrusions of
words that were not presented during the day into FFR trials
has a similar origin.
At the current level of realism, we propose to view the pre-
sented model as a platform for further development of realis-

tic neural network models of information retrieval and other
related types of cognitive tasks. Altogether we are able to in-
terpret the complex structure of FFR data in terms of a model
build on first principles (encoding and associativity). The ca-
pability of our model to shed light on multiple features of
the dataset we analyze exploits the pivotal role of hierarchi-
cal representations in memory retrieval processes. We thus
bridge between the cognitive ability of retrieval and the un-
derlying neural dynamics pointing out, in simple terms, how
individual differences in the ability of retrieving information
may be interpreted by simple hierarchical properties of the
encoded word representations.

Materials and Methods

Experimental methods. The data reported in this
manuscript were collected in the lab of M. Kahana as part of
the Penn Electrophysiology of Encoding and Retrieval Study
(see (13) for details of the experiments). Here we analyzed
the results from the 217 participants (age 17−30) who com-
pleted the first phase of the experiment, consisting of 7 ex-
perimental sessions. Participants were consented according
the University of Pennsylvania’s IRB protocol and were com-
pensated for their participation. Each session consisted of
16 lists of 16 words presented one at a time on a computer
screen and lasted approximately 1.5 hours. Each study list
was followed by an immediate free recall test. Words were
drawn from a pool of 1638 words. For each list, there was a
1500 ms delay before the first word appeared on the screen.
Each item was on the screen for 3000 ms, followed by jittered
800−1200 ms inter-stimulus interval (uniform distribution).
After the last item in the list, there was a 1200−1400 ms jit-
tered delay, after which participants were given 75 seconds to
attempt to recall any of the just-presented items. In 4 out of
7 experimental sessions, following the immediate free recall
test from the last list, participants were shown an instruction
screen for final-free recall, informing them to recall all the
items from the preceding lists in any order. After a 5 s delay,
a tone sounded and a row of asterisks appeared. Subjects had
5 minutes to auditory recall any item from the preceding lists.

Grouping measures. For each final-free recall trial we
consider the ordered set of recalled words (W ) defined as
w1 → w2 → ·· · → wn where n is the number of words re-
called in a given trial and w1 (w2, . . . ,wn) denotes the in-
put serial position during the day of the first (second,...,last)
word recalled, which is the number between 1 and 256 (see
Fig. 1a). We introduce the grouping measure (p), and as-
sign the probability to each transition by assuming that the
next word recalled is chosen from the same list as the cur-
rently recalled word with probability p and a random word is
chosen with probability 1−p. The probability for the whole
sequence is computed as a product of individual transition
probabilities. Formally, if li is the number of the list (from 1
to 16) from which word wi was presented, the probability Pi
of transition (wi→wi+1) and the total logarithm probability
of the whole sequence (log-likelihood) are
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Pi =
{
pδ(li+1,li)

mi
+ 1−p
L−i mi > 0

1
L−i mi = 0

l (W |p) =
n−1∑
i=1

log(Pi)
(4)

wheremi ∈ [0, . . . ,15] is the number of not yet recalled words
from the list li ∈ [1, . . . ,16] and L = 256 is the total number
of words presented during the day. The grouping measure
p16 for the FFR trial is then obtained as the value of p that
maximizes the likelihood of the sequence l (W |p).

Theoretical model details. The model builds on the idea that
words are represented as binary population vectors, Eq. (1).
The full similarity matrix between two words is then given
by Eq. (2). Given two words W1 and W2 the contributions of
the different terms is given by

Sw1,w2
word =

Nw∑
i=1

ξw1
i ξw2

i '

{
B(Nw,f), w1 = w2

B(Nw,f2), w1 6= w2

Sl1,l2list = 1
Nlf

Ns∑
i=1

ξl1i ξ
l2
i

= 1
Nlf

IFR(W1) IFR(W2) ·
Nl∑
i=1

ξl1i ξ
l2
i

' 1
Nlf
B(Nl,f) · IFR(W1) IFR(W2) · δl1,l2

Ss1,s2
session = 1

Nsf

Ns∑
i=1

ξs1
i ξ

s2
i

= 1
Nsf

IFR(W1) IFR(W2) ·
Ns∑
i=1

ξs1
i ξ

s2
i

' IFR(W1) IFR(W2) · δs1,s2

(5)

where w1,w2 index the word coding part of the population
vector ξ, l1, l2 the list coding part, s1,s2 the session context
coding part, while IFR(W ) is an indicator function that word
W was recalled in the IFR trial following the list presenta-
tion, i.e. IFR(W ) = 1 was retrieved and 0 otherwise. To
speedup simulations we neglected the correlations between
elements in similarity matrices and approximate them by in-
dependent binomial random variables B(Nw,f2) for word
similarities and B(Nl,f) for list similarities. We neglected
similarities between different lists and different sessions and
also assumed session similarities to be equal to each other.
The list and session similarity matrices were normalized to
have entries on the order of 1.
According to the associative principle, given an active word
Wk the formal equation that defines the next word retrieved
during structured recall is

Wk+1 = argmax
W /∈Mk

S
Wk,W
tot , (6)

where M1 = {W1}, and Mk = {Wk−1,Wk}. Similarly for
random transitions

Wk+1 = argmax
W /∈Mk

S
Wk,W
tot−l (7)

where Stot−l is given by Eq. (3).
In the simulations we consider N = 300000 and f = 0.1,
Nw = N

3 , Nl = N
3 , Ns = N

3 , γ = 15. This value for γ was
chosen to match the proportion of new words recalled dur-
ing FFR on sessions with little over the list grouping (see
Fig. 5d).
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