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Abstract6

Algorithms to infer isoform expression abundance from RNA-seq have been greatly improved in7

accuracy during the past ten years. However, due to incomplete reference transcriptomes, mapping er-8

rors, incomplete sequencing bias models, or mistakes made by the algorithm, the quantification model9

sometimes could not explain all aspects of the input read data, and misquantification can occur. Here, we10

develop a computational method to detect instances where a quantification model could not thoroughly11

explain the input. Specifically, our approach identifies transcripts where the read coverage has significant12

deviations from the expectation. We call these transcripts “expression anomalies”, and they represent in-13

stances where the quantification estimates may be in doubt. We further develop a method to attribute14

the cause of anomalies to either the incompleteness of the reference transcriptome or the algorithmic15

mistakes, and we show that our method precisely detects misquantifications with both causes. By cor-16

recting the misquantifications that are labeled as algorithmic mistakes, the number of false predictions of17

differentially expressed transcripts can be reduced. Applying anomaly detection to 30 GEUVADIS and18

16 Human Body Map samples, we detect 103 genes with potential unannotated isoforms. These genes19

tend to be longer than average, and contain a very long exon near 3′ end that the unannotated isoform20

excludes. Anomaly detection is a new approach for investigating the expression quantification problem21

that may find wider use in other areas of genomics.22
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1 Introduction24

While modern RNA-seq quantification algorithms [e.g. 1–7] often achieve high accuracy, there remain situ-25

ations where they give erroneous quantifications. For example, most quantifiers rely on a predetermined set26

of possible transcripts; missing or incorrect transcripts may cause incorrect quantifications. Read mapping27

mistakes and unexpected sequencing artifacts introducing technical biases also lead to misquantifications.28

Incomplete sequencing bias models can mislead the probability calculation of which transcripts generate the29

reads. Quantification algorithms themselves could introduce errors since their objectives cannot typically be30

guaranteed to be solved optimally in a practical amount of time.31

When interpreting an expression experiment, particularly when a few specific genes are of interest, the32

possibility of misquantification must be taken into account before inferences are made from quantifica-33

tion estimations or differential gene expression predictions derived from those quantifications. Expression34

quantification is the basis for various analyses, such as differential gene expression [8], co-expression infer-35

ence [9], disease diagnosis and various computational prediction tasks [e.g., 10–12]. Statistical techniques36

such as bootstrapping [13] and Gibbs sampling [1, 14, 15] can associate confidence intervals to expression37

estimates, but these techniques provide little insight into the causes of low confidence or misquantification,38

and detect a subset of misquantifications.39

Here, we introduce a method to identify potential misquantifications using a novel anomaly detection40

approach. This approach automatically identifies regions of known transcripts where the observed fragment41

coverage pattern significantly disagrees with what the coverage is expected to be. These regions indicate42

that something has gone “wrong” with the quantification for the transcripts containing the anomaly: perhaps43

a missing transcript, missing features in the probabilistic model, an algorithmic failure to optimize the44

likelihood, or some other unknown problem.45

One advantage of this model-based anomaly detection approach is that it does not require any known46

ground truth to discover potential errors. The expected and observed coverages are intermediate values in47

the quantifier. The expected coverage is derived from a bias correction model that is used by modern RNA-48

seq quantification algorithms to model fragment generation biases with varied GC content, sequence, and49

position in the transcript [7, 16]. In order to take into account other aspects of sequencing (such as read50

mapping quality, fragment length distribution), quantifiers sometimes cannot assign fragment in proportion51
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to the expected coverage. By comparing the expected and observed coverages, anomaly detection identifies52

cases where it is not possible to satisfy the assumed model of fragment generation.53

Another advantage of our proposed anomaly detection method is that it can provide more insight into54

what is causing the misquantification by identifying specific regions of specific transcripts for which the55

assumed theoretical model of read coverage does not match what is observed. These anomaly patterns can56

then be used to derive hypotheses about the underlying cause. For example, systematic lower-than-expected57

expression across an exon may indicate the existence of a unknown isoform that omits that exon. In this way,58

anomalies are more informative and suggestive of the cause of misquantifications than confidence intervals.59

A third advantage of the approach is that the anomalies can be used to design better quantification60

algorithms. When there is good reason to believe the transcriptome annotations and sequencing is of high61

quality, analyzing the cause of anomalies could reveal new features or aspects of the sequencing experiment62

that may improve the quantification model, and may therefore be used to inspire improvements to, e.g., bias63

correction models or optimization approaches.64

Anomaly detection has been applied to other areas in genomics where it has proved its usefulness. In65

genome assembly, anomaly detection has been used to detect low-confidence assembled sequences. Genome66

assembly algorithms seek a set of sequences that can concordantly generate the WGS reads and can be67

assumed to have near uniform coverage. The assembled sequences that do not fit this assumption can be68

hypothesized to contain errors and have low reliability [17]. Similarly, anomaly detection in transcriptome69

assembly identifies unreliable transcript sequences [18]. Low-confidence assembly detection has been used70

to analyze non-model organisms and incorporated into analysis workflows [19–21].71

In RNA-seq expression quantification, some research has been conducted on how to identify anomalous72

predictions. For example, Robert and Watson [22] identify uncertainties in gene-level quantification related73

to gene sequence similarity by comparing against an external ground truth. However, uncertainties do not74

necessarily indicate anomalous quantification. In addition, external information about sequence similarity75

provides limited insight on how to improve the quantification models. Soneson et al. [23] use a compatibility76

score of observed and predicted junction coverage to indicate genes with potential misquantification in its77

transcripts. With this anomaly score, it is possible to narrow down the misquantified transcripts by the78

anomalous splicing junctions. Nevertheless, it does not directly spot the misquantified ones, nor does it79
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predict the potential cause of the low quantification reliability.80

In this work, we detect quantification anomalies using the disagreement between the modeled expected81

distribution and the observed fragment coverage distribution that is obtained after the quantifier has allo-82

cated fragments to transcripts. We do this by introducing an anomaly metric to quantify regions of high83

disagreement. Specifically, we identify the contiguous regions that have the largest difference between these84

two distributions. This metric has the natural biological meaning as the largest over- or under-expression85

(compared with what is expected) of any region within the transcript. We further begin to categorize the86

anomalies by their causes: adjustable anomalies are the ones possibly caused by quantification algorithm87

mistakes, and unadjustable anomalies are those possibly caused by transcripts missing from the reference88

transcriptome. This categorization is done by correcting quantification deviations using a fragment re-89

assignment procedure based on linear programming (LP) to attempt to correct anomalies. Those anomalies90

that can be corrected this way are candidates for having been caused by algorithmic error. The fragment re-91

assignment procedure also generates an adjusted abundance estimation to when correcting the quantification92

of the adjustable anomalies.93

Because it includes a rich bias model, we use Salmon [7] as the base quantifier on which to build and test94

anomaly detection, and we term our implementation Salmon Anomaly Detection (SAD). However, the idea95

of anomaly detection can be applied to any method that generates an internal model of expected sequence96

coverage.97

Applied to 30 GEUVADIS [24] samples and 16 Human Body Map [25] samples, SAD identifies both98

adjustable and unadjustable anomalies. The anomalous transcripts often have a different set of protein do-99

mains from other isoforms in the same gene or belong to cell type marker genes. For example, a kidney cell100

type marker gene TAX1BP3 has an adjustable anomalous in one of its transcripts, suggesting a change read101

assignment across isoforms should be made. An isoform of the gene UBE2Q1 is identified to be an unad-102

justable anomaly, and the isoform is the only one in the gene to contain the ubiquitin-conjugating enzyme103

domain. Using the adjusted abundance estimates corresponding to the adjustable anomalies, the number104

of falsely detected differentially expressed transcripts can be reduced by 2.4% – 6% in the GEUVADIS105

samples.106

We observe some common patterns of the unadjustable anomalies that are shared among all GEUVADIS107
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and Human Body Map samples: genes containing the anomalies tend to be longer than average, and contain108

a long exon at the 3′ end. The hypothesized unannotated sequences tend to have an early transcription stop in109

the middle of the 3′ long exon. But we are not sure about the cause of generating the unannotated sequences,110

nor their functions.111

We further validate SAD’s prediction via simulation and show that, both adjustable and unadjustable112

anomalies of SAD precisely describe the corresponding types of misquantification. The read re-assignment113

procedure of SAD generates an adjusted quantification that is closer to the simulated expression and reduces114

the mean ARD distance by about 0.05. Surprisingly, in simulation, unadjustable anomalies reflect the exis-115

tence of novel isoforms with 3% – 35% higher precision compared with applying transcriptome assembly116

to the samples, when the novel isoforms contain alternative starting / ending sites.117

2 Results118

2.1 Overview of anomaly detection and categorization119

SAD defines transcripts with anomalous read coverage (Figure 1) as those for which the observed cover-120

age distribution contains a significantly over-expressed or under-expressed region compared to the expected121

coverage (Section 4.1). Both the observed and the expected distribution are calculated by the Salmon quanti-122

fier [7]. The observed distribution is the weighted number of reads assigned to each position in the transcript123

as processed by Salmon (Section 4.5). The expected distribution estimated by Salmon is the probability of124

generating a read at each position considering the surrounding GC content, K-mers, and the position in the125

transcript (Section 4.4). The anomaly metric can be confounded by either a low expression abundance or an126

estimation error of the expected distribution. To remove the confounding effect, we model the anomaly met-127

ric probabilistically (Section 4.2) and use the empirical p-value to determine whether the observed difference128

is statistically significant and whether the transcript should be labeled as an anomaly (Section 4.3).129

Anomaly categorization is done by re-assigning the reads across the isoforms using linear programming130

(LP) (Section 4.6) and checking whether the anomaly metric becomes insignificant after the re-assignment.131

Though it is possible that reads are mapped to multiple genes, the majority of reads are multi-mapped to132

isoforms within the same gene, and the re-assignment is performed within each gene to control the size133
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Calculate anomaly metric and significance

observed coverage expected coverage

Is anomaly metric significant?

Not an anomaly Anomaly

Re-assign reads using LP

Re-calculate anomaly metric and significance

Is anomaly metric significant?

Adjustable anomaly Unadjustable anomaly

no yes

no yes

Figure 1: Diagram of SAD. SAD detects anomalies by calculating an anomaly metric and the significance of
its value. To further distinguish the potential cause of the anomalies, it re-assigns the reads across isoforms
and checks whether the anomaly metric becomes insignificant after re-assignment. The anomalies whose
anomaly metrics become insignificant are categorized as adjustable anomalies, and considered to be caused
by quantification algorithm mistake. The anomalies whose anomaly metrics remain significant are catego-
rized as unadjustable anomalies, and considered to be caused by the unannotated transcript sequences, that
is, the incompleteness of the reference transcriptome.

of the LP. If the anomaly metric remains significant after the re-assignment, the anomaly is labeled as an134

unadjustable anomaly and considered to be caused by the incompleteness of the reference transcriptome.135

Otherwise, it is labeled as an adjustable anomaly and is potentially caused by quantification algorithm error.136

SAD gives rise to two outputs: (1) a list of unadjustable anomalies and (2) the transcript-level adjusted137

quantification for the genes containing the adjustable anomalies. Each output has a direct application: the138

unadjustable anomalies can be used as a predictor for novel isoforms; the adjusted quantification can replace139

Salmon’s quantification for the adjusted subset of transcripts and be used in any analyses depending on140

RNA-seq quantification.141
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2.2 Examples of detected anomalies142

We provide some examples of the detected anomalies after applying SAD to 30 GEUVADIS [24] and 16143

Human Body Map datasets [25]. The 30 GEUVADIS samples are the same as in the work of Patro et al.144

[7], in which 15 lymphoblastoid cell lines from the Toscani in Italia (TSI) population are sequenced, where145

each cell line is sequenced twice, at two different sequencing centers. The Human Body Map project data146

consists of 16 samples each from a different tissue, including adrenal, adipose, brain, breast, colon, heart,147

kidney, liver, lung, lymph, ovary, prostate, skeletal muscle, testes, thyroid, and white blood cells. The Pfam148

annotation [26] is used to label protein domains. Among the examples of anomalies, some contain protein149

domains that are different from other isoforms, and some belong to cell type marker genes.150

SAD identifies an adjustable anomaly in the gene TAX1BP3 in the kidney sample from the Human151

Body Map dataset. The TAX1BP3 gene is potentially a cell type marker gene for podocytes cells in kid-152

ney [27]. One isoform (ENST00000611779.4) of this gene has an under-expression anomaly in the first 200153

bp (Figure 2A). This under-expression anomaly can be adjusted by re-assigning reads between this and an-154

other isoform, ENST00000225525.3 (Figure 2B). The expression estimations are changed according to the155

adjustment: the abundance ratio between these two isoforms decreases from 4.5 to 0.9. The difference be-156

tween the two isoforms is that the second exon of ENST00000225525.3 is excluded in ENST00000611779.4157

(Figure 2C). This exon is located in the middle of the PDZ domain, the function of which is to help pro-158

tein scaffolding and receptor anchoring. Having a more accurate quantification of the two isoforms can be159

important in analyzing the effect of the middle exon using expression.160

Another example of an adjustable anomaly is within BIRC3 gene in one GEUVADIS sample. This161

gene is involved in apoptosis inhibition under certain conditions. The second half of the isoform162

ENST00000532808.5 is under-expressed under the read assignment of Salmon (Figure 3A). Re-assigning163

the reads between this isoform and another isoform ENST00000263464.7 removes the under-expression164

phenomenon (Figure 3B), and at the same time alters the expression level of both isoforms. The original165

expression abundances were similar to each other, but after SAD adjustment ENST00000263464.7 has 3166

times the expression of ENST00000532808.5. The two isoforms are different in their starting and ending167

positions but have the same set of internal exons. The protein domains between the two isoforms are the168

same according to Pfam annotations (Figure 3C). Nevertheless, a better read assignment can improve the169
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Figure 2: Adjustable anomalies in the kidney sample of the Human Body Map dataset. (A)Red and blue
points are the observed and expected coverage distribution before SAD adjustment. The anomaly transcript
ENST00000611779.4 has an under-expression in the first 200 bp (top), marked by the red box. Another
transcript is involved in the adjustment (bottom). (B) The distributions of the same pair of transcripts after
SAD adjustment. (C) The protein domain annotation of the two transcripts.

normalized abundance estimation of the whole gene.170

SAD also reveals unadjustable anomalies in isoforms that have a different set of protein domains from171

the other isoforms of the same gene. For example, gene UBE2Q1 gene and gene LIMD1 in the heart sample172

of the Human Body Map dataset contain unadjustable anomalies (Figure 4), suggesting the existence of173

unannotated isoforms. In both genes, the protein domains in the anomalous isoform are different from those174

in the other annotated isoforms: ENST00000292211.4 of gene UBE2Q1 is the only annotated isoform that175

has ubiquitin-conjugating enzyme domain, and ENST00000273317.4 of gene LIMD1 contains three zinc-176

finger domains while the other isoforms only contain two or zero. The unannotated novel sequences of both177

genes potentially have the same set of protein domains as the anomalies, as suggested by the over-expression178

region. The Scallop transcript assembler [28] is able to assemble a novel sequence of LIMD1 without the179

under-expression region, thus supporting this detected anomaly.180
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Figure 3: Adjustable anomalies in a sample of GEUVADIS dataset. (A) The top transcript
ENST00000532808.5 is identified to be adjustable anomaly, and its under-expression anomaly region is
marked by the red box. The bottom transcript is involved in the quantification adjustment. (B) The ob-
served and expected distribution after SAD adjustment. (C) The protein domain annotation of the previous
transcripts.

2.3 Adjustable anomalies give an adjusted quantification that reduces false positive differ-181

ential expression detections182

The adjusted quantification of SAD reduces the number of false positive calls in detecting differentially ex-183

pressed transcripts. Previously, Patro et al. [7] showed that the 30 TSI samples from GEUVADIS dataset [24]184

likely do not have differential expressed transcripts, but quantification mistakes can lead to false positive185

differential expression (DE) predictions across sequencing center batches. They also showed that a more186

accurate quantification can reduce the number of false positive detections. We apply SAD to the same187

samples and compare the number of differentially expressed transcripts detected using Salmon’s original188

quantification and SAD-adjusted quantification. SAD-adjusted quantification uses SAD-adjusted estimates189

for the adjustable anomalies and other isoforms involved in read re-assignment, but uses the Salmon [7]190

quantification elsewhere. Differential expression is inferred by DESeq2 [29] on the transcript level. On191
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Figure 4: Examples of unadjustable anomalies identified by SAD. (A) An anomaly isoform of gene UBE2Q1
(B) An anomaly isoform of gene LIMD1. Both examples are found in the heart sample of the Human Body
Map dataset. Red and blue points are the observed and expected coverage distribution of the anomaly
transcripts, and the blue shade is the standard deviation of the expected distribution estimation. The red
box indicates the under-expression anomaly region. For both genes, the transcript region near 5′ end is
over-expressed, and the region near 3′ end is under-expressed.

this data, the number of DE transcripts is reduced by about 2.4% – 6% with various FDR threshold when192

using SAD-adjusted quantification compared to Salmon’s original quantification (Table 1). This provides193

evidence that these anomalies are likely true errors, that are correctable using a different read re-assignment194

procedure from Salmon.195

2.4 Genes that contain common unadjustable anomalies tend to be long and have long exons196

There are unadjustable anomalies common to all GEUVADIS and Human Body Map dataset, and the genes197

containing them tend to have a larger gene length than average (Figure 5A). There are 103 common genes198

containing unadjustable anomalies in all 30 samples in GEUVADIS and 16 samples in Human Body Map199

(see Supplementary Table for the full list). These genes span 23 chromosomes and contain various number200

of annotated isoforms ranging from 1 to 24. One common pattern about these genes is that they tend to be201
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Table 1: Number of DE transcripts detected at given FDR threshold. Among the 30 samples, there should
not be any DE transcripts. With SAD-adjusted expression quantification, the number of false positively
detected DE transcripts is reduced.

FDR Salmon SAD-adjusted percentage reduced

0.01 6088 5723 6.00%

0.05 10132 9777 3.50%

0.1 13555 13228 2.41%

long, and the existence of unadjustable anomalies may be related to the gene structure.202

For most anomaly transcripts of these common genes, the over-expressed regions tend to mainly overlap203

with the first half of the transcripts near the 5′ end (Figure 5B). Correspondingly, the under-expressed regions204

are usually located towards the second half of the transcripts near the 3′ end. The under-expression anomaly205

regions usually only span one exon or a partial exon (Figure 5C). This tends to be true no matter whether206

their under-expression region mainly overlaps the first half or second half of the transcript. This suggests that207

there possibly exist unannotated transcripts that have the same intron chain but different transcript starting208

and ending locations from the known ones. We use single-exon-spanning region to refer to the region only209

spanning one or a partial exon.210

For the single-exon-spanning, under-expressed regions, the exon length distribution is shifted longer211

compared with the background exon length distribution (Figure 5D), where the background includes all212

annotated exons. For comparison, we compute exon length distributions of two other types of exons: the213

exons contained in the over-expressed regions and the exons in under-expressed regions when the regions214

cover more than one exon. For both of these two types of exons, the length distributions are similar to215

the background. Considering that the single-exon-spanning, under-expressed regions are the majority of all216

under-expressed regions (Figure 5C), we conclude the under-expression anomaly often occurs when there217

is a very long exon and when the long exon is near 3′ end of the transcript.218

About 50%–60% of the detected unadjustable anomalies have a corresponding novel isoform assem-219

bled by transcriptome assembly algorithms, specifically StringTie [30] and Scallop [28] (Supplementary220

Figure S1). (See Supplementary Text for the detail of running transcriptome assembly software.) An as-221

sembled isoform corresponds to a predicted unadjustable anomaly if the assembled isoform contains all the222

splicing junctions within the over-expressed region and excludes at least half of the under-expressed region.223
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Figure 5: (A) Density curve of gene length distribution of unadjustable-anomaly-containing genes and the
rest. Genes containing unadjustable anomalies tend to be long genes. (B) The start and end proportion
of the over-expression and under-expression region of anomalous transcripts of the common unadjustable-
anomaly-containing genes. The red diagonal line separates between anomalies of which the over- (under-)
expression regions mainly overlap with the first half (5′ half), and the second half (3′ half) of the transcripts.
For most of the anomalies, the over-expression region mainly overlaps with the first half of the anomalous
transcript, and the under-expression region mainly overlap with the second half of the anomalous transcript.
(C) Histogram of number of exons spanning under-expression region of the anomalies corresponding to the
103 shared genes. The count of y-axis is summed over all 46 samples. The under-expression region usually
only contain one or a partial exon. (D) Exon length distribution of the exons contained in the over-expression
region, under-expression region, and the background of all annotated exons. Two curves are plotted for
the exons spanning the under-expression region, corresponding to the case when under-expression regions
are single-exon-spanning, and when it spans more than one exons. For the single-exon-spanning under-
expression region, the exon tends to be much longer than average.
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Meanwhile, there are 40%–50% of the unadjustable anomalies that do not have a corresponding isoform224

assembled by transcriptome assemblers. Assuming the expected coverage distribution is modeled correctly,225

these unadjustable anomalies are likely to indicate true novel isoforms that are not able to be detected by226

transcriptome assemblers. This is somewhat surprising, but not entirely unexpected given the low overall227

sensitivity of transcript assembly methods.228

While we hypothesize that the unadjustable anomalies are caused by the existence of unannotated tran-229

scripts, it is not clear whether the unannotated ones are natural, well-functioning novel isoforms, or non-230

functioning sequences due to errors in transcription that terminates transcription early in long exons at the231

3′ end.232

2.5 Simulation supports the accuracy of SAD for detecting and categorizing anomalies233

On simulation data, both unadjustable and adjustable anomalies precisely reflect the misquantification due234

to those corresponding causes. We created 24 datasets by varying the number of simulated novel isoforms,235

the gene annotations, and the expression matrices. (See Supplementary Text for the details of the simulation236

procedure.)237

The unadjustable anomalies reflect the simulated novel transcript sequences with 3%–35% higher pre-238

cision compared to transcriptome assembly methods (Figure 6A, Supplementary Figure S2A). (See Supple-239

mentary Text for the detail of running transcriptome assembly software.) In this comparison, the precision240

is calculated only for novel isoforms without new splicing junctions, in which case transcriptome assembly241

could not use accurate spliced alignment to detect novel isoforms. We consider the following two types of242

assembled transcripts as novel isoforms: (1) the intron chain of the assembled transcript does not exactly243

match the intron chain of any existing transcript; (2) the intron chain exactly matches one existing transcript,244

but either transcript starting position or stopping position is more than 200 bp away from the matched exist-245

ing transcript. Transcriptome assembly methods tend to reconstruct novel isoforms for far more genes than246

the anomolies detected by SAD. To compare the precision on the same ground, we select the same number247

of predictions for transcriptome assembly and SAD by selecting those assembled transcripts with the highest248

coverage. The main advantage of SAD is precision, but not sensitivity, because not not all unannotated iso-249

forms will significantly alter the coverage of known ones (Supplementary Figure S2B). The higher precision250
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of SAD is possibly due to the accurate expected distribution used by Salmon, whereas transcriptome assem-251

bly methods usually assume a uniform coverage in the algorithms. When the simulated novel isoforms do252

not contain new splicing junctions, the coverage is the main indicator of new starting or ending sites of the253

isoform. In this case, SAD is able to detect the novel isoforms more precisely than transcriptome assembly254

methods by taking advantage of the accurate expected distribution.255

In addition, the adjusted quantification of SAD is more accurate compared to the original Salmon quan-256

tification [7] (Figure 6B, Supplementary Figure S3) on simulation data. SAD is able to reduce the level of257

misquantification for adjustable anomalies. The accuracy of quantification is measured by the mean ARD258

(absolute relative difference) [7] between the quantification and the simulated ground truth. ARD is the ab-259

solute difference between the estimation and the true value, normalized by the sum of the estimation and the260

true value. A smaller value of mean ARD indicates an estimator that is closer to the ground truth. However,261

the accuracy improvement of SAD decreases as more isoforms of one gene are involved in the quantification262

adjustment. The decrease of improvement is possibly because the estimation error in the expected distribu-263

tion is magnified when the LP coefficient matrix used by SAD is large in size and potentially ill-conditioned.264

When the coefficient matrix is ill-conditioned in the linear system, the output can greatly change even with265

a small error in the input.266

3 Discussion267

We present Salmon Anomaly Detection (SAD), an anomaly detection approach to identify misquantifica-268

tion of expression. SAD detects anomalies by comparing the expected and the observed coverage distribu-269

tion, and calculating the significance of the over- or under-expression. SAD also categorizes the anomalies270

into adjustable anomaly and unadjustable anomaly categories to indicate two possible causes of misquan-271

tifications: algorithmic errors and reference transcriptome incompleteness. The categorization is done by272

re-assigning reads across isoforms to minimize the number of significant anomaly scores. We show on sim-273

ulation data that the detected anomalies and the categorization is reasonable: the unadjustable anomalies274

predict the existence of novel isoform with higher precision than transcriptome assembly methods, and the275

read re-assignment leads to adjusted quantification that is closer to the simulated ground truth compared to276

the original quantification.277
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Figure 6: (A) Precision of novel isoform detection of SAD and StringTie. Point color and shape refers to
different simulation settings. With the refined expected distribution, the unadjustable anomalies in SAD
reflect the simulated novel isoforms more precisely compared to transcriptome assembly method, StringTie.
The simulated novel isoforms do not contain new splicing junctions, but only contain new starting / ending
sites, or new combinations of known splicing junctions. (B) Quantification accuracy improvement of SAD
compared to original Salmon. Each violin refers to a subset of transcripts where the corresponding gene
contain a certain number of isoforms in the adjustment according to the x-axis. “Overall” in the x-axis is
the overall mean ARD improvement of all adjusted isoforms without distinguishing the number of isoforms
involved. The improvement decreases as the number of involved isoforms increases, possibly because the
estimation error in the expected distribution is magnified when the LP coefficient grows large.
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Applying SAD on GEUVADIS and Human Body Map datasets, we are able to identify adjustable and278

unadjustable anomalies that affect isoforms with different protein domains from other isoforms and isoforms279

from cell type marker genes. Using the adjusted quantification associated with the adjustable anomalies,280

the number of false positive predictions of differentially expressed transcripts can be reduced. There are281

common unadjustable-anomaly-containing genes across all samples. Most of the common unadjustable282

anomalies have an under-expressed region towards the 3′ end of the transcript. The genes that contain283

the common unadjustable anomalies tend to be longer in length, and their 3′ exons tend to be longer than284

average.285

SAD is only able to detect the subset of misquantifications that have a distorted observed coverage286

from the expected one. However, some misquantifications may not alter the shape of the observed coverage287

distribution. For example, high sequence similarity between a pair of transcripts can also lead to severe288

mis-quantification, however, the read coverage can be close to the expectation for both. Alternatively, the289

coverage distribution of a lowly expressed existing isoform can be affected by a lowly expressed novel290

isoform. In this case, the p-value of the anomaly score may not be significant due to the large fluctuation of291

the observed coverage due to the low expression. Developing other metrics, for example, using transcript292

similarity or discordant read mapping, could potentially increase the sensitivity and the types of possible293

misquantification of detection.294

For novel isoform detection, only the existence is predicted by SAD, not the sequence or exon-intron295

structure of the novel isoforms. Retrieving the exon-intron structure remains a problem. Simply combining296

the existence prediction of SAD with the assembled sequences from transcriptome assembly does not solve297

the problem of reconstructing novel isoform sequences. About 40%–50% of SAD’s predictions are not298

assembled by transcriptome assembly methods in the GEUVADIS and the Human Body Map datasets.299

Incorporating the expected coverage distribution in transcriptome assembly may be a direction to predict the300

exact exon-intron structure of the novel isoforms.301

An improvement in the accuracy of the approximation of the expected distribution may further increase302

the accuracy in novel isoform prediction and re-quantification by SAD. Currently, the expected distribu-303

tion is approximated by a bias correction model that uses GC, sequence, and position biases. However, the304

sequence bias may also be affected by secondary structure of cDNA, which is not considered in current mod-305
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eling of biases. Additionally, different subtypes of biases can be coupled together, meaning that inferring306

each type of bias separately may not be sufficient.307

SAD takes about eight hours to run on each RNA-seq sample using eight threads. The long running time308

is mainly due to the sampling procedure in the empirical p-value calculation for all transcripts. A derivation309

of a p-value approximation to avoid sampling could potentially decrease the resource requirement for com-310

putation. Implementation tricks and engineering can also applied to reduce the running time, however this311

is out of the scope of this work.312

Our formulation of anomaly detection is an example of algorithmic introspection: algorithms that can313

automatically identify where their predictions do not fit the assumptions of the algorithm. This type of314

algorithmic reasoning is likely to become even more useful as the sophistication of bioinformatics analysis315

tools increases.316

4 Methods317

4.1 An anomaly detection metric318

Definition 4.1 (Expected coverage distribution). Given transcript t with length l, and a fragment f that is319

sequenced from t, the starting position of f is a random variable with the possible positions {1, 2, 3, · · · , l}320

as its domain. The expected coverage distribution of t is the probability distribution of the starting position321

of any fragment f . The expected coverage distribution for each transcript t sums to 1.322

With a non-zero fragment length, the viable starting position excludes the last several positions in the323

transcript. The probability of the last several positions in the expected coverage distribution is set to 0 to324

account for the fact that they are not viable. After aligning and assigning the sequencing reads to transcripts,325

the number of fragments starting at each position can be observed and counted; this is referred to as the326

observed coverage. The observed coverage can be converted to a distribution by normalizing the coverage327

to sum to 1. The normalized observed coverage is termed the observed coverage distribution, which is328

comparable to the expected coverage distribution.329

We use a slightly different definition of coverage from its classic meaning. We define the coverage of330
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each transcript position to be the number of fragments starting at this position, while the classic definition331

considers the number of fragments spanning the position. We use the fragment start definition for calculat-332

ing both the observed and the expected coverage distribution. The observed and the expected coverage are333

comparable if they are calculated using the same definition. Since the fragment length distribution is often334

assumed to be a Gaussian distribution with a smaller variance compared to the mean, the coverage distri-335

bution under the fragment start definition is approximately the same as the one under the classic definition336

plus a shift.337

Definition 4.2 (Regional over-(under-)expression score). Given transcript t with length l, denote the ex-338

pected coverage distribution as exp, and the observed coverage distribution as obs, the over-expression339

score of region [a, b] (1 ≤ a < b ≤ l) is340

Ot(a, b) = max

 ∑
a≤i≤b

(obs[i]− exp[i]), 0

 . (1)

The under-expression score of region [a, b] is341

Ut(a, b) = max

 ∑
a≤i≤b

(exp[i]− obs[i]), 0

 . (2)

The over-expression and under-expression scores are defined as the probability difference between the342

observed coverage and the expected coverage distribution within region [a, b]. The probability difference343

represents the degree of inconsistency between the two distribution at the given region. The scores indicate344

the fraction of reads to take away (or add to) from the region in order for the two distributions to match each345

other.346

Definition 4.3 (Transcript-level anomaly metric). For a transcript t with length l, the over-expression347

anomaly of the transcript is defined as348

OAt = max
1≤a<b≤l

Ot(a, b) . (3)
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The under-expression anomaly of the transcript is defined as349

UAt = max
1≤a<b≤l

Ut(a, b) . (4)

The transcript-level anomaly metric is defined by the largest over- or under-expression score across all350

continuous regions.351

4.2 Probabilistic model for coverage distribution352

The value of the anomaly metric cannot be directly used to indicate an anomaly because its value can be con-353

founded by transcript abundances and the estimation error of the expected distribution. When there are only354

a few reads sequenced from the transcript, randomness in read sampling can dominate the observed distri-355

bution. Because of this, the observed distribution will have large fluctuations along the transcript positions,356

and thus appear to have large deviation from the expected distribution. In addition, when the estimation357

of the expected distribution is inaccurate, the difference between the two distribution can also be large. To358

address these two confounding factors, we model the relationship between the coverage distributions using359

a probabilistic framework and calculate the p-value of the anomaly metric. With the statistical significance360

of an anomaly score, we are able to distinguish between true quantification anomalies and randomness from361

known confounding factors.362

We model the value of the anomaly metric probabilistically given the two confounding factors (Figure 7).363

We use the model to indicate the distribution of the anomaly metric under the null hypothesis that it is not364

a true anomaly. For the transcript abundance confounding factor, we assume the observed distribution is365

generated from the hidden expected distribution through a multinomial distribution parameterized by the366

given number of reads, n. For the estimation error of the expected distribution, we assume the error in367

the expected distribution is Gaussian. We model the true expected distribution with a hidden variable that368

is equal to the estimated distribution plus error. We further assume that the Gaussian estimation error is369

generally the same across all transcripts. In practice, transcripts have different lengths and the Gaussian370

error vectors differ relative to the lengths. We therefore bin the transcripts with similar lengths into the same371

number of bins, and estimate a shared mean shift parameter µ and covariance Σ for the transcripts with the372

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2019. ; https://doi.org/10.1101/541714doi: bioRxiv preprint 

https://doi.org/10.1101/541714
http://creativecommons.org/licenses/by/4.0/


exp

obs est Σ

µ

t

Multi(n, exp) N(exp+ µ,Σ)

Figure 7: The probability relationship among the expected distribution, the observed distribution, and the
estimator of the expected distribution. exp is the expected coverage, obs is the observed coverage, est is
the estimation for the expected coverage. Here, exp is a hidden variable, while obs and est are observed.
obs follows a multinomial distribution parameterized by the number of reads n and the expected coverage
exp. est follows a Gaussian distribution with mean shift µ and covariance matrix Σ. We assume that the
estimation errors of the expected coverage have the same pattern for all transcripts, and therefore µ and Σ
are shared among all transcripts.

same number of bins.373

The variables and parameters of the model (Figue 7) can be retrieved or estimated as follows. obs374

refers to the observed distribution and can be retrieved from the quantification algorithm (Section 4.5). est375

refers to the estimation of the expected distribution, which is processed from the bias correction result of376

the quantification (Section 4.4). exp stands for the expected coverage distribution that is latent. µ and Σ in377

the probability could be estimated with a Bayesian estimator or maximum a priori (MAP) estimator with a378

likelihood function. Using subscript t to represent transcripts, the likelihood function is379

L(µ,Σ) =
∏
t

∫
expt:expt≥0,

∑
expt=1

P(obst | expt)P(estt | expt, µ,Σ)P(expt)d(expt) . (5)

However, the above likelihood function does not have a closed form solution and may require using an380

expectation maximization (EM) approach for optimization, which is more than necessary. Instead, we381

estimate µ and Σ using the following approximation: the multinomial distribution for the observed coverage382

can be approximated by a Gaussian distribution when the number of reads n is large enough:383

obs ∼Multi (n, exp)
n−→∞−→ N

(
exp,

f(exp)

n

)
(6)

where f : Rm −→ Rm×m maps the m-dimension probability vector of the multinomial distribution into384

the covariance matrix of the approximating multi-variate Gaussian distribution. Therefore, the difference385
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between obs and est can be approximated by the following Gaussian distribution386

est− obs ∼ N
(
µ,Σ +

f(exp)

n

)
n−→∞−→ N(µ,Σ) . (7)

We therefore approximate µ and Σ by selecting transcripts with enough reads for each length group, and fit387

a Gaussian distribution to est− obs of the selected transcripts.388

This probabilistic model serves as the null model that assumes the transcript is not an anomaly. That is,389

the model describes the distribution of the anomaly metric under the case where the deviation between the390

observed and the expected distribution is only due to the two confounding factors: read sampling random-391

ness of sequencing and the estimation of expected distribution. When the deviation is so large that this null392

model cannot explain it, we attribute the deviation to an anomaly. To determine whether the deviation is so393

large that it is unlikely to be observed under the null model, the p-value is calculated, and the details of this394

calculation are explained in Section 4.3.395

4.3 Statistical significance of the anomaly metric396

The statistical significance of a value of the anomaly metric is the probability of observing an even larger397

anomaly value given the probabilistic model. Denote Ot(a, b) and Ut(a, b) to be the random variable of398

the regional over- and under-expression score of region [a, b], and denote ot(a, b) and ut(a, b) to be the399

corresponding observed values. Similarly, denote OAt and UAt to be the random variable of transcript-400

level anomaly score, and oat and uat to be the corresponding observed values. The p-values for a regional401

over- and under-expression score are402

p-value of Ot(a, b) = P(Ot(a, b) > ot(a, b) | exp, n, µ,Σ)

p-value of Ut(a, b) = P(Ut(a, b) > ut(a, b) | exp, n, µ,Σ)

(8)

where exp, n, µ and Σ are defined as in Figure 7. The p-values for transcript-level over- and under-403

expression anomaly metric are404

p-value of OAt = P (OAt > oat | exp, n, µ,Σ)

p-value of UAt = P (UAt > uat | exp, n, µ,Σ)

(9)
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The statistical testing of transcript-level anomaly metric is more strict to the null hypothesis than the405

regional one, and tends to have a larger p-value. Given transcript t and the largest over-expression region406

[i, j], we have407

p-value of OAt = P
(

max
1≤a<b≤l

Ot(a, b) > oat | exp, n, µ,Σ
)

= P
(

max
1≤a<b≤l

Ot(a, b) > ot(i, j) | exp, n, µ,Σ
)

≥ P(Ot(i, j) > ot(i, j) | exp, n, µ,Σ)

= p-value of Ot(i, j) .

(10)

Conceptually, because the whole transcript contains multiple regions that may have a large over- (under-)408

expression score, it is easier to observe a large over- (under-) expression score when we look at all possible409

regions compared to when we focus on only one specific region. From the perspective of statistical testing,410

the p-value of OAt and UAt tend to be larger and less significant than those of Ot(a, b) and Ut(a, b) for411

any region [a, b]. Taking advantage of the different level of strictness about the null model, we use the412

significance of Ot and Ut for initial selection of anomalies to adjust read assignment (Section 4.6), and use413

the significance of OAt and UAt for final selection of anomalies within the unadjustable anomaly category.414

The p-value of both anomaly metrics can be calculated empirically. Specifically, the hidden expected415

coverage can be sampled from the estimation using multi-variate Gaussian distribution, and the observed416

coverage can be sampled from the new hidden coverage using multinomial distribution. The null distribution417

for Ot(a, b), Ut(a, b), OAt and UAt can be generated using the sampled observed and hidden expected418

coverage. The empirical p-values is the portion of times that the anomaly scores exceed the observed valued419

in the null distribution.420

We also derive a numerical approximation for the p-value of regional anomaly metric. Empirical p-421

value calculation requires sampling distributions from a multinomial or multi-variate Gaussian distribution422

multiple times, which takes a long time computationally. A numerical approximation without sampling can423

greatly reduce the calculation time. Denote the region as [a, b] and the current under-expression anomaly424

score as v. The significance of the over-(under-) expression score under regional null distribution is given425
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by426

p-value of Ut(a, b) = P

(
b∑
i=a

(exp[i]− obs[i]) > v |
b∑
i=a

est[i]

)

= P

(
b∑
i=a

obs[i] <

b∑
i=a

exp[i]− v |
b∑
i=a

est[i]

)

=

∫
x
GaussianPDF

(
x |

b∑
i=a

est[i], µ,Σ

)
P

(
b∑
i=a

obs[i] < x− v

)
dx

=

∫
x
GaussianPDF (x | ν, σ)BinomCDF (N(x− v) | n, x) dx

(11)

where x =
∑b

i=a exp[i], ν =
∑b

i=a(est[i] − µ[i]), and σ =
∑b

i=a

∑b
j=a Σ[i, j]. In numerical approxi-427

mation, x takes value in a grid to sum the probabilities instead of computing the full integral. Since the428

regional anomaly metric focuses on a fixed region, the multinomial distribution can be collapsed into bi-429

nomial distribution to represent the probability of generating a read from that region. The multi-variate430

Gaussian distribution can also be collapsed to a single-variate Gaussian distribution to present the expected431

estimation bias and variance of the region. With all multi-variate distributions collapsed into single-variate432

distributions, it is feasible to numerically calculate the integral in equation 11. In SAD, the p-value of the433

regional over- (under-) expression score is always calculated using the numerical approximation, while the434

p-value of the transcript-level anomaly is calculated empirically by sampling.435

In practice, we do not calculate the p-value for transcripts with very low abundance. When the random-436

ness of read sampling is very large, we simply assume that the p-value will be dominated by the randomness437

instead of incomplete reference transcriptome or quantification algorithm mistake. We only calculate a p-438

value for transcripts with average base pair coverage > 0.01. Using a threshold of 0.01 is equivalent to439

requiring that on average at least one read is sequenced for every 100 base pair.440

Benjamini-Hochberg correction is used to control the rate of falsely discovered transcripts with regional441

or transcript-level expression anomaly. A threshold of 0.05 is used in regional anomaly score. For transcript-442

level anomalies, 0.01 is used as the threshold. The varied thresholds are set according to their separate443

purposes: regional anomalies are the initial candidates and do not need to be as precise; after read re-444

assignment, the transcript-level anomalies are the final predictions of unadjustable anomaly and require445

precision.446
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4.4 Estimation of the expected distribution447

The expected distribution is estimated for each transcript using the bias model from Patro et al. [7]. In the448

ideal case of sequencing, where the read is sampled randomly without any biases, the expected coverage is449

uniform along the positions of any transcript. However, in the real sequencing experiments, cDNA fragmen-450

tation and PCR amplification have preferences towards certain positional, sequence, and GC patterns, and451

the coverage is not expected to be uniform. The expected distribution is calculated to represent the prob-452

ability of sampling a read at given position of given transcript. Salmon estimates the positional, sequence453

and GC biases by adjusting the uniform distribution based on the read mapping. There could be other biases454

affecting the expected distribution. However, other biases are not considered in the model, and thus the bias455

correction model is only an approximation for the expected distribution.456

We processed the auxiliary output from Salmon to obtain the estimated expected distribution. The457

estimation for the expected distribution can also be calculated for other quantification software from bias458

correction model if corresponding output is available.459

4.5 Observed distribution460

The observed distribution is the actual read coverage for each transcript. It is calculated by counting the461

weighted number of reads at each position at given transcript after the weights are optimized by Salmon’s462

algorithm [7]. Specifically, when a read is multi-mapped to several transcripts, the weight represents the463

probability that the read is generated from the transcript.464

4.6 Categorizing anomalies by re-assigning reads with linear programming465

We categorize the causes of anomalies by re-assigning the reads and re-calculating the anomaly metric466

and its significance. Here, we only consider two causes: read assignment mistakes from the quantification467

algorithm and the incompleteness of the input reference.468

We use linear programming (LP) to re-assign the reads. The LP formulation tries to use a linear combi-469

nation of the expected distributions to explain the aligned reads. By explicitly using the expected coverage to470

re-distribute the observed number of reads, the deviation between the observed and the expected distribution471
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after the re-distribution is naturally reduced. Accordingly, the anomaly score will decrease and the p-value472

will increase. We apply LP re-distribution separately for each gene since most reads are only multi-aligned473

across isoforms from the same gene.474

To do this, we take the gene sequence to be the concatenation of all unique base pairs in its exons. The475

observed and the expected coverages are converted into gene-level coordinates. In this process, the observed476

coverage is not normalized and sums to the number of reads in the transcript assigned by Salmon [7]. Denote477

the set of transcripts of a gene by T , the expected distribution of transcript t ∈ T as expt, and the observed478

read count vector is obst. For transcript t1 and t2 within the same gene, expt1 , expt2 , obst1 and obst2 are of479

the same length. The LP for the re-assignment is480

min
{αt : t∈T}

∥∥∥∥∥∑
t

αtexpt −
∑
t

obst

∥∥∥∥∥
1

s.t. αt ≥ 0 (∀t ∈ T )

(12)

Variables αt stand for the expected number of expressed reads from transcript t. The actual number of reads481

re-assigned to transcript i at position j is nt[j] = (
∑

t′ obst′ [j])
αtexpt[j]∑
t′ αt′expt′ [j]

. The actual total number of482

reads re-assigned to transcript i is
∑

j nt[j].483

After adjusting read assignments by the LP, some of the regional anomalies become insignificant. Those484

are labeled “adjustable anomalies,” and the transcripts containing those regional anomalies are considered485

to have quantification algorithm error. To predict whether a transcript is affected by a novel isoform among486

the significant regional anomalies, we calculate the p-value of their transcript-level anomaly score and use487

Benjamini-Hochberg correction to control for the false positive labeling of anomalies for all transcripts. The488

transcripts with a significant transcript-level anomaly score are labeled as “unadjustable anomalies” and are489

predicted to be affected by novel isoform.490

4.7 Minimizing the number of transcripts involved in read re-assignment491

In practice, we try to keep the number of transcripts involved in the LP as small as possible. When the492

quantification of a transcript is good enough, re-assigning the reads may lead to a decrease of quantifica-493

tion accuracy. The correctness of the LP re-assignment largely depends on the accurate estimation of the494
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expected distribution. However, the accuracy assumption of the expected distribution may not hold for all495

transcripts. An inaccurate estimation at some positions for one transcript can perturb the re-assignment re-496

sult across all involved isoforms. The perturbation can be large when the coefficient matrix in the LP have a497

large condition number (called ill-conditioned), which tends to occur more often as the number of involved498

isoforms increases. The ill-condition will make the output very sensitive to a small change or error of the499

input distributions. To reduce the large perturbation problem in LP re-assignment, we only apply the LP re-500

assignment on a small number of isoforms, and reset the other isoforms to the quantifier’s read assignment.501

The choice of isoforms is determined by the following principle: reducing the largest number of significant502

transcripts while at the same time minimizing the number of isoforms involved in the LP. An isoform is503

considered to be unnecessary in the LP if (1) it has an insignificant p-value and (2) after excluding it from504

LP the same set of significant isoforms remains insignificant under the re-assignment. The principle can be505

viewed as the removal of all unnecessary isoforms from read re-assignment.506

To detect the unnecessary isoforms, we first identify the largest subset of significant transcripts that can507

become insignificant in re-assignment by initially running the LP using all transcripts. Then we exclude each508

insignificant transcript one by one from LP and test whether the exclusion retains the same subset of tran-509

scripts as insignificant. Labeling unnecessary isoforms requires iteratively running the LP optimization and510

the significance calculation. After all unnecessary isoforms are labeled, the iterative process is terminated.511
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