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Abstract. Estimation of the relationship between DNA sequences is one of the most
important problems in genomics. Understanding these relationships is central to de-
mographic inference, correction of population structure in GWAS, identifying signals of
selection etc. The data structure containing the full information about sample genealogy
is called the ancestral recombination graph (ARG). However, ARG inference is a very
difficult problem, not least due to a very complex state space. In this work we describe
a new approach for fast and scalable generation of local tree topologies relating large
numbers of haplotypes. Our method is closely related to the estimation of ARG, and
captures both local and global properties of an ARG. It is based on a data structure
which we call tree consistent PBWT , a modification of PBWT data structure intro-
duced by R. Durbin (2014). We also explore some methods to estimate the quality of the
generated tree topologies and to make inferences based on them. At the end we discuss
a probabilistic model which could potentially lead to the estimation of ARG node times.

1. Introduction

During recent years the size of sequencing DNA data increases extensively. This con-
tinual data growth in principal enables deeper understanding of population structure and
genetic nature of biological traits. We need new fast algorithms and tools to make pos-
sible data processing and inference. R. Durbin [2] suggested a new way to represent a
set of genome sequences or haplotypes called the “positional Burrows-Wheeler transform”
or shortly PBWT . This representation allows very fast and effective data compression
and haplotype matching, and underlies the rapid genotype imputation process used by the
Sanger Institute Haplotype Reference Consortium imputation server [8]. The important
feature of the PBWT -based algorithms is their scalability: they are linear or close to linear
in the amount of data.

The complete information about sample history is contained in the Ancestral Recom-
bination Graph, shortly ARG [4]. Such a graph represents a genealogical network which
shows in detail a genealogy for every locus, as well as recombinations that link these ge-
nealogies. Suppose that there is a set of prealligned genomic sequences. At every site all
these sequences are genealogically related by a local tree. The corresponding ARG can be
represented as a set of local trees. For completeness, the recombinations which transform
one tree to another also should be specified. In fact they appear as prune-and-regraft oper-
ations on local trees [9]: an edge of a local tree is pruned, resulting in a subtree which is cut
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from the rest of the tree, and then this subtree is regrafted somewhere on the remaining
tree. The regrafting point must be higher (earlier in time) than the pruning point.

In this paper we present an alternative form of the PBWT , which we call the “tree
consistent PBWT ” or shortly tcPBWT . It follows the initial philosophy of PBWT and
remains linear, though it uses additional information about which site at an allele is an-
cestral. The data compression rate of tcPBWT slightly improves compared to the original
PBWT which means that tcPBWT has more internal structure than PBWT . This im-
plies that tcPBWT captures genomic structure better than PBWT . We will establish
the relation between the tcPBWT structure of the haplotype set and the subtrees in the
local coalescent tree that relate the haplotypes at each position in the genome. Based on
this we will be able to identify recombination events and hence build a representation of
an ancestral recombination graph (ARG) which relates the full set of haplotypes to each
other. Alternative choices in selecting recombination events will lead to alternative down-
stream ARGs. Potentially this ambiguity allows us to sample genealogical histories for use
in statistical inference.

As was already mentioned, the ARG contains all the genealogical information of a set
of haplotypes, which makes the ARG a very valuable object. However the inference of the
ARG is a very challenging problem because it is underdetermined and the corresponding
state space is enormous. To simplify the problem we start with the topology construction
while ignoring edge lengths. We will show that the tcPBWT algorithm will find the correct
topology of the tree in case of the perfect phylogeny (without recombinations, and with at
most one mutation at each site).

We also establish a probabilistic model for the ARG topology. We will state the problem
of time estimation for ARG nodes for a given topology as a problem of mathematical
programming. Currently we did not succeed in applying this probabilistic model to the
tcPBWT data structure.

To our knowledge, the most scalable existing methods to reconstruct possible ARGs
are MARGarita by Minichiello and Durbin (2006) [10] and ARGweaver by Rasmussen et
al. (2014) [11]. MARGarita is an heuristic algorithm; whereas ARGweaver infers ARG
under the Sequential Markov Coalescent (SMC), which is an approximation introduced by
McVean and Cardin (2005) [9] of the coalescent with recombination process [5] [3]. SMC
models ARG as a process with Markovian structure with similar properties compared to
the coalescence with recombination. ARGweaver can be applied to dozens or even a few
hundred genomes, it is linear in the number of sites, quadratic in the number of haplotypes
and quadratic in the number of discretised time points. Its main idea is to infer the ARG
for the set of haplotypes {h0, h1, . . . , hi} by adding the haplotype hi to the preinfered and
then fixed ARG for {h0, h1, . . . , hi−1}.

Another possible approach used in [13] is to infer only topologies of local trees. Basically,
one might want to find for each region the longest fully compatible regions and to use this
information to build a tree. But trees in adjacent regions share a lot of structure, which is
used for further improvement of the inference of trees. Our approach uses a similar idea,
and our tcPBWT data structure insures that the inference is fast and scalable.
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In this paper we suggest an approach for fast generation of ARG topologies from genomic
data. We also suggest data structures which allow to achieve even faster performance of
the method. This data structures can be also used for efficient and as a compact data
storing of genomic variation and genealogical histories of a sample. We will demonstrate
the scalability of our method. We will also discuss the consistency of our approach with
the true underlying ARG by simulations. Finally, we present some exploratory analysis of
1000 Genomes project Phase 3 data using the ARG built from chromosome 20.

Further we discuss a probabilistic model for ARG topologies. We made two attempts to
apply this model to inferred topologies to estimate coalescent times and accuracy of local
trees, but we did not get reliable results. Though, if we were able to find a solution, it
would allow to generate samples of ARGs compatible with the data. Hence potentially
it would enable the possibility to integrate over a sample of ARGs in order to use it for
an inference of different features and statistics (both topological and related to coalescent
times)

2. Notations and basic concepts

2.1. Input data. Firstly, let us give definitions and formalisation of the main objects in
the paper. A haplotype is a DNA sequence ordered along the genome. This is a sequence
of values at genetic sites that vary within a sample of individuals due to a mutation since
their common ancestor. Formally, a haplotype of length N is a binary string h ∈ {0, 1}N .
We denote a set of prealigned haplotypes by H = {h0, h1, . . . , hM−1}. The binary symbols
obtain the following sense: 0 stands for ancestral allele (the value present in the common
ancestor of the samples), 1 is for derived allele created by a mutation. A value of h at a
particular site k is referred by h[k]. For this paper we will work in the infinite sites model
in which there is only mutation at each site. Some algorithms we give can be extended to
the case where there may be multiple mutations at a site but that is future work.

A set of haplotypes H can be considered as a matrix where any haplotype is a row, or
a string, and a site Hk = {h0[k], h1[k], . . . , hM−1[k]} is a column.

2.2. Ancestral Recombination Graph. The coalescent with recombination is a prob-
abilistic model describing the distribution of genealogies of a sample of haplotypes [5] [3].
As for the standard coalescent, the ancestral lineages start at the present and go back-
wards in time. There are two types of events that may happen with a lineage: either two
lineages coalesce (coalescent node) into one lineage or a lineage is split by recombination
(recombination node) into two lineages. The ARG is a graph representing this process.
As a data structure, ARG is a directed acyclic graph with a time function (consisting
with the orientation of edges) and with additional information at recombination nodes on
breakpoints. For every site an ARG embeds a genealogical local tree.

We remind that a tree is a graph without cycles. A rooted tree is an oriented tree where
one vertex (the root) has in-degree 0 and all other vertices have in-degree 1. The vertices
with out-degree 0 are called leaves. The vertices which are not leaves are internal nodes.
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A genealogical local tree is a rooted tree. A time is assigned to every vertex of this tree.
Usually we consider time in the backward direction so that the time assigned to the leaves
is 0 and the time of a parent vertex is always larger than the time of the child vertex.

Subtree prune-and-regraft operation, or SPR in short, is a transformation of a tree which
consists of following steps:

• cutting (pruning) an edge of the tree at a certain point;
• if the parental node of the edge was binary before pruning, it is removed;
• the pruned subtree is regrafted at any place on the tree above the cut point (equiv-

alently, earlier in the past).

Perfect phylogeny means that there is at most one mutation at every site of genome.
We call a site H compatible with a tree T if it is possible to add at most one mutation
on this tree to explain H. In other words, there is a subtree TH of the tree T such
that all haplotypes in TH carry the derived allele at the site and all haplotypes in the
complementary T \ TH have the ancestral allele.

2.3. PBWT data structure. We briefly present the PBWT representation [2] of a set
H of haplotypes. Basically, PBWT moves along the genome and reorders H site by site
following some particular rules. Suppose that H is already ordered by all sites before k
and the order is determined by the permutation ak−1. Now consider a permutation of
ak−1(Hk) (this is a permuted site k of H) which sends all 1s to the bottom of column k,
while keeping the relative order between haplotypes sharing the same value at the site.
More formally, if hak−1(i)[k] is 0, then we set ak(i) to be the number of haplotypes hj such
that hj [k] = 0 and ak−1(j) < ak−1(i). Similarly, if hak−1(i)[k] is 1, then we set ak(i) to
be the number of haplotypes hj such that hj [k] = 1 and ak−1(j) < ak−1(i) plus the total
number of haplotypes for which hj [k] = 0.
PBWT is a very fast operation. At a given site, this procedure corresponds to reordering

of H into reverse lexicographical prefix order. This means that one considers prefixes
of haplotypes relatively to a given site. The prefixes are read from right to left, which
explains why we refer to the reverse order, and are ordered as the words in a dictionary,
lexicographically. This property guarantees that the adjacent haplotypes share the local
set-maximal left-match: consider again prefixes at the site, select one of them and compare
to the rest. Then the prefix which shares the longest match at its end with the chosen one,
in PBWT appears just after it. We denote the length of the shared left-match at site k
between two haplotypes hi and hj by dk(hi, hj).

Generally, the longer is the local match between two haplotypes, the more locally related
are they. So the adjacent haplotypes in PBWT tend to have the same value at the next
position. Indeed, in practice a permuted site ak−1(Hk) demonstrates a lot of structure and
usually consists of long stretches with constant values within them. For this reason we call
dk ”a similarity function”: the larger is the value of dk, the more relation haplotypes tend
to show. An important property of this similarity function is that

(1) dk(hak−1(l), hak−1(m)) = min
l≤i<m

dk(hak−1(i), hak−1(i+1)).
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The similarity function allows PBWT for example to be used for imputation by choosing
similar haplotypes to impute from.

3. Compact tree and ARG representation

In this section we will describe a fast and compact data structure which allows to achieve
high efficiency of tcPBWT method. It also provides a compact representation of ARG, so
it can be used as a data format for storing genealogy and genomic variation of a sample.

3.1. Planar ordering and compact tree representation. Firstly we formalise the
intuitive approach of ordering leaves of a tree. Let us say that one wants to draw a
genealogical tree of several individuals from the same generation on a sheet of paper. Two
reasonable requirements for the drawing are to put all leaves of the tree on the same line
and to represent it without self-intersections of edges. The corresponding order of the
leaves on the line we call a planar order of a tree. This order is not unique and it is defined
up to swapping subtrees rooted at the same internal node.

Definition 1. Planar order σ of a tree T is an enumeration of its leaves which is defined
in the following iterative process.

• Initialization. S is the set of all leaves, Se = ∅ is an empty set. Choose the first
leaf h0 randomly from S. Set Se = {h0}.
• Recursion step. Let hi be the last chosen (enumerated) leaf. Let Sm be a subset

of S \ Se of those leaves which minimise the distance to hi in the tree. Choose
randomly hi+1 from Sm. Set Se = Se ∪ {hi+1}.
• Termination. The process stops as soon as we enumerated all leaves of T .

A tree T is completely encoded by the planar order σ(0), σ(1), . . . , σ(M−1) and distances
between adjacent (in this order) leaves d(hσ(0), hσ(1)), d(hσ(1), hσ(2)), . . . , d(hσ(M−2), hσ(M−1))
which we call the distance vector. For simplicity of notations denote d(hσ(i−1), hσ(i)) by
dσ(i).

The distance between any two leaves hσ(j) and hσ(k) is given by the maximal value of
the distance vector on the semi-open interval (σ(j), σ(k)] and can be computed by the
following formula

d(hσ(j), hσ(k)) = max
i:σ(i)∈(σ(j),σ(k)]

dσ(i).

Now notice that referring to an internal node of a tree is equivalent to referring to a
pair of leaves of a tree such that their most recent common ancestor (shortly, MRCA) is
this node. Planar order provides such a correspondence between pairs of adjacent leaves
and internal nodes. We encode an internal node ν by the value of the index i such that
the node ν is MRCA(hσ(i−1), hσ(i)). In case of a non-binary tree by convention we encode
the node ν by the minimal value of i satisfying the previous condition (see Figure 1 for an
example).
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0.4 1.0 0.2 1.0 0.6 2.0 1.4 0.8

ν

h5 h3 h6 h1 h7 h2 h0 h4

Figure 1. Planar order: the tree is encoded by vectors σ =
(5, 3, 6, 1, 7, 2, 0, 4) and d = (0.4, 1.0, 0.2, 1.0, 0.6, 2.0, 1.4, 0.8). The node ν is
referred by the leaf h6, or by its index in the permuation: σ[2] = 6. The
subtree rooted at the node ν is the interval σ[0 : 5] of the permutation σ.

3.2. Recombination and ARG encoding. A subtree rooted at a node ν in a tree T is
a subset of T which includes all descendant lineages of ν. In terms of planar order, it is a
semi-open interval [σ(k), σ(j)) of the distance vector where dσ(i) (i : σ(k) < σ(i) < σ(j))
is less or equal than some given value D and such that

• k = 0 or dσ(k) > D.
• j = M or dσ(j) > D.

A recombination corresponds to a prune-and-regraft operation: one allows to cut an
edge and then to glue the cut subtree anywhere on the remaining tree above the cut point.

To keep the planar order, we need to copy an entire block of values of permutation σ
and of distance vector dσ(i) corresponding to the subtree affected by the recombination (see
Figure 2 for the example). To encode this operation we need only three values:

• index of the internal node corresponding to the cut subtree;
• index of the insertion position;
• regraft height: the new value of dσ between the insertion position and the following

row.

4. tcPBWT data structure

The core idea of our approach is to use a data structure similar to PBWT which would
naturally carry a lot of structure in itself and would allow fast manipulations with the
data and its ARG. Tree consistent PBWT , or shortly tcPBWT , is a modification of the
PBWT rule. The key difference of tcPBWT from the original PBWT is that rather than
moving all the 1’s to the bottom of a column in PBWT (see section 2.3), in tcPBWT we
just require that all the 1’s are contiguous in the new column. A consequence is that in
the absence of recombinations it converges to the planar order of haplotypes relatively to
the true genealogical tree relating them.
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3.2 0.4 1.0 0.6 2.0 3.0 1.0 1.50.4 1.0 0.6

ν ν

ν1
ν2

Figure 2. Moving a subtree ν: the node ν1 is destroyed by deleting the
corresponding distance value 2.0 (highlighted with bold font), the whole
block of distances (0.4, 1.0, 0.6) is moved to the new place of the distance
vector and the new distance value 1.5 is added before this block to create
the node ν2.

Definition 2. Define a map σ from the set of binary columns BM = {0, 1}M to the set Π
of permutations π of length M to be tree consistent if it satisfies the requirements that for
any y = (y[0], y[1], . . . , y[M − 1]) ∈ BM

• if for indices i, j ∈ [0..M), y[i] = y[j] and i < j, then σ(y)(i) < σ(y)(j), that is the
order in a subset of zeroes and in a subset of ones is preserved;
• there exist indices 0 ≤ j, k < M such that yσ(y)(i) = 1 if σ(y)(i) ∈ [j, k] and
yσ(y)(i) = 0 otherwise (that is permuted y contains a single block of ones);
• there exists and index p ∈ [0..M) such that yp = 1 and σ(y)(p) = p.

In other words, every binary column induces a permutation with these particular prop-
erties. Evidently, σ can be defined as a probabilistic function: for every column it chooses
a permutation which satisfies tree consistent conditions, following some probabilistic dis-
tribution.

Example 1. Let p be a minimal index such that y[p] = 1. We put the block of ones starting
from the position of the first appearance of the 1 in the column y.

Example 2. Let p be the beginning of the (first) biggest block of ones in y. We keep the
position of the biggest block and we move all other ones to it.

Define by induction a sequence of permutations ak of length M , where the permutation
that relates ak to ak+1 is obtained by a map σ from the currently permuted column of
H, yk = (hak(0)[k], hak(1)[k], hak(2)[k] . . . , hak(M−1)[k]). We begin the induction by setting

a0(i) = i, then ak+1 = σ(yk)ak where always yki = hak(i)[k]. Note that the order ak at
a given site depends on the values of H at previous sites, and that we can define a final
order aN after applying maps for all columns. We call the sequence of permuted columns
yk a PBWT . The relation to the standard Burrows-Wheeler Transform [1] for a single
sequence is described in Durbin (2014) [2]. If the map σ is tree consistent, then we call
this transformation a tree consistent PBWT .
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We call this type of map and PBWT tree consistent because if the haplotypes are related
by a simple tree then the ordering converges. Assume that the haplotypes H derive from
a region without recombination, so that they are related by the same tree at all sites. The
values in a column at a site correspond to a mutation on some edge of the tree, and the set
of indices taking value 1 at that site will be all the leaves under this edge. If the haplotypes
are planar ordered, then each site will have a single block of ones. Tree consistent map will
not change the planar order.

We now consider what happens if the H derives from a tree, but the initial order of
haplotypes is not planar ordered.

Lemma 1. Let H be a set of haplotypes derived from mutations on some coalescent tree
without recombination. Consider a tcPBWT derived from H. Then for any 0 ≤ i < k, the
column i of H permuted by ak, that is (hak(0)[i], hak(2)[i], . . . , hak(M−1)[i]), contains only
one block of ones.

This follows because each permutation σ(yk+1) will not break the block of ones estab-
lished by σ(yk), although it can either move this block or permute some haplotypes within
it. This lemma remains true only for coalescence without recombination. We will discuss
what we can say about recombinations later. A direct consequence of Lemma 1 is

Proposition 1. If a mutation occurred on each edge of the tree, then the final order aN
of a tcPBWT will constitute a planar ordering of the tree.

Tree consistent PBWT therefore provides a linear time solution to the perfect phylogeny
problem [4], page 35. In the presence of recombinations, planar order is destroyed but local
trees are still highly correlated. Recombinations will act by splitting blocks of ones. From
information theory point of view, in our problem mutations are the source of information
and recombinations are the source of chaos. In our algorithm we use a greedy approach for
tree transformations. Suppose that we have a local phylogenetic tree Tk−1 at a site k − 1
and the values of alleles Hk at site k. We split Tk−1 into maximal subtrees such that values
of Hk are constant within every subtree. We call this tree reduction. For every non-binary
node ν we create a new child node µ. Then all the subtrees rooted at ν and carrying derived
allele are transferred to the node µ. This results in a new tree T ′k (tree refinement). If Hk

is still not consistent with T ′k, we create SPRs (subtree prune-and-regraft operations) to
transform T ′k into a tree Tk so that it is consistent with Hk. We consider different strategies
to create those SPRs.

There is one more difference of our inference compared to the common approach to
ARGs. ARG topology is a directed acyclic graph. Our method does not guarantee that the
resulting graph does not have cycles. There are two reasons for that. The first reason is that
it is faster, though we know a modification of our algorithm with conjectured complexity
(NM logM) which creates graph without cycles. The second reason for allowing cycles is
that such approach allows to “forget” errors faster while the algorithm moves along the
genome.
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5. Scalability

To demonstrate the scalability of the algorithm, we use the implementation by V. Shchur
based on the planar order data structure. We simulated 100, 1000 and 10000 and 100000
haplotypes with 100000 SNPs using the coalescent simulator scrm [12]. The results of the
runtime of the algorithm is shown in the table 1 and on the plot 3. The runtime indeed
grows linearly in the number of haplotypes.

Table 1. Running time in sec of tcPBWT with sets of 100, 1000, 10000
and 100000 and 105 segregating sites compiled with gcc -O3 option and
computed on Intel Xeon CPU E5-2620 v2 2.1 GHz

Number of haplotypes 102 103 104 105

User time 0.392 2.372 21.37 251.901
System time 0.003 0.026 0.238 2.735

6. Estimating accuracy of topologies

We simulated 100 haplotypes with 50000 SNPs using scrm. We estimated trees at each
SNP using implementation of our method by by N. Valimäki and V. Shchur. We used
different metrics to compare ground-truth and inferred local trees. The main problem with
the verification is the computation complexity of the problem of comparing a pair of trees.
We need to compare many pairs of trees to evaluate the quality of inference. We chose
quartet distance which is one of the classic measures for comparing phylogeny trees. We
also developed our own methods for estimating inference accuracy: cluster sizes induced
by pairs of leaves.

6.1. Quartet distance. We compared inferred trees with trees generated by scrm by
computing quartet distance between each pair of corresponding trees. Quartet distance is
a distance between two (phylogenetic) tree topologies with the same set of leaves. It is
defined as the fraction of quartets (sets of 4 leaves) which are related by different subtrees
in the two trees under consideration.

We used software qdist [7] to compute quartet distance between ground-truth and in-
ferred trees at 50000 sites and mutation to recombination rate ratio equal to 1. The mean
quartet distance between these trees is 0.23 with standard deviation 0.09. We present the
behaviour of the quartet distance along a fragment of simulated haplotypes at figure 4.

6.2. Cluster distance. Cluster distance C for two haplotypes hi, hj (i 6= j) is the number
of leaves under the most recent common ancestor of hi and hj . In the ARG cluster distance
between two haplotypes is a function of site k: CARG(hi, hj)(k). Notice that the set of
cluster distances between a given haplotype hk and all other haplotypes hi(i 6= k) define
the tree topology completely.
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Figure 3. User time in sec of tcPBWT for M = 100, 1000, 10000 and
100000 haplotypes (solid black squares, left Y-axis). User time normalised
to the number of haplotypes M (blue triangles, right Y-axis). Implemen-
tation can be found at repository https://github.com/vlshchur/argentum.
Computed on Intel Xeon CPU E5-2620 v2 2.1 GHz.

From simulations we know the true underlying ARGT (in the form of the set of local
trees). The behaviour of CARGT (hi, hj)(k) and CARGI (hi, hj)(k) on a fragment of chro-
mosome is plotted in figure 5. Notice that our method captures principal changes in the
cluster sizes. To compare these functions numerically, we chose two approached. Firstly,
we computed the correlation of functions CARGT (hi, hj)(k) and CARGI (hi, hj)(k) (see table
2). We made these computations with 100 haplotypes and recombination to mutation rates
ratios of 1 : 1, 10 : 1 and 100 : 1. Secondly, we compute the the distribution of points with
coordinates (CARGT (hi, hj)(k), CARGI (hi, hj)(k)) and compute the linear regression of this
function (table 2). We plot these distributions for mutation rates ratios of 1 : 1 (figure 6)
and 10 : 1 (figure 7). The first distribution shows strong correlation between inferred and
true cluster sizes.
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Figure 4. Behaviour of quartet distance between scrm and tcPBWT trees
along a fragment of haplotypes with 2500 SNPs.

Recombination to mutation rate 1 : 1 10 : 1 100 : 1
Correlation of CARGT and CARGI 0.7437(2) 0.4161(2) 0.2048(2)
Linear regression slope 0.7306 0.3877 0.1783

Table 2. Mean correlation of cluster size function for true and inferred
ARGs for over all pairs of haplotypes. Linear regression slope for the dis-
tribution of cluster sizes in ARGT against ARGI .

7. Exploratory analysis based on tcPBWT

In this section we discuss two approached for exploratory analysis of the data based on
the local tree topologies. We applied tcPBWT to the humans from 1000 Genome Project
(Phase 3). We also analysed simulated data.

7.1. Demographic inference from ARG: cluster density.
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Figure 5. Cluster distance as a function of site for ground-truth ARGT
(scrm) and inferred (main) ARGI . Mutation to recombination rate ratio is
1.

Definition 3. Cluster density Dclust of two haplotypes is a vector < v2, v3, . . . , vM > of
length M − 1 where vi is the number of sites where local cluster size equals to i.

Obviously, for more closely related samples the density is higher for smaller values of
cluster sizes.

We managed to find the expected distribution of cluster density for a neutral popu-
lation. Consider the average (over the whole population) cluster density D̄clust(H) =
1/
(
n
2

)∑
i<j Dclust(hi, hj).

Theorem 1. 1 If the haplotypes of the set H are fully exchangeable, then the expectation
E(D̄clust(H)) is

E(D̄clust(H)) =<
2

3(M − 1)
, . . . ,

2

3(M − 1)
,
M + 1

3(M − 1)
> .

We applied our algorithms to the 1000 Genome Project data (5008 haplotypes). We
computed cluster density for all pairs of individuals in the set. Here we present the com-
parison of British (GBR) to Finnish (FIN), Tuscany (TSI), Chinese (CHS) and Yoruba
(YRI) populations, where in each case we take average over all pairs (see figure 7.1). As
expected, Yoruba is the most distant population from British. European populations tend
to be much more similar than Asian and African. British population demonstrates more
similarity to Finnish population than to Italian population based on cluster sizes from 5 to

1See supplementary materials for the proof of this theorem.
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Figure 6. Simulated clus-
ter size against inferred clus-
ter size. Linear regression
has slope 0.73. Recombina-
tion to mutation rates ratio
1 : 1, 100 pairs

Figure 7. Simulated clus-
ter size against inferred clus-
ter size. Linear regression
has slope 0.39. Recombina-
tion to mutation rates ratio
10 : 1, 100 pairs

30. Some lack of similarity between British and Finnish populations compared to Italian
population might be explained by the recent bottleneck in Finns, hence they tend to cluster
within their own population more frequently. Notice that in the analysis we should take
into account the total number of representatives of each population, because it might affect
the final distribution.

7.2. Demographic inference from ARG: imbalance density. Cluster density allows
to compare two particular haplotypes. We also introduce another summary statistic which
is called imbalance density. Imbalance density is designed to compare two populations. Let
the set of haplotypes be divided in two populations P1 and P2: H = P1 t P2. For each
branch B of each local tree compute the quantity

I(B) =
|B ∩ P1|
|P1|

· |B ∩ P2|
|P2|

4(
|B∩P1|
|P1| + |B∩P2|

|P2|

)2 .
Definition 4. Imbalance density is the vector I(P1, P2) = {ι2, . . . , ιM} such that ιk is a
mean value of I(B) over all branches of all local trees possessing k leaves:

ιk =
1

#{B : B ∈ T ∈ ARG(H), |B| = k}
∑

T∈ARG(H)

∑
B∈T :|B|=k

I(B).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 6, 2019. ; https://doi.org/10.1101/542035doi: bioRxiv preprint 

https://doi.org/10.1101/542035
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 VLADIMIR SHCHUR1,2, LILIIA ZIGANUROVA3,4, AND RICHARD DURBIN1,5

GBR
FIN vs GBR
TSI vs GBR
CHS vs GBR
YRI vs GBR

Br
an

ch
 c

ou
nt

s

0.01

0.1

1

10

Branch size
1 10 100 1000

Figure 8. Cluster density for British (GBR) population compared to them-
selves, Finnish (FIN), Tuscany (TSI), Chinese (CHS) and Yoruba (YRI)
populations

We simulated three sets of haplotypes with different demographic histories. Each set
contains two populations with 50 haplotypes in each. The first two scenarios had a split
250 and 500 generations ago respectively (with the normalising effective population size
10000). In the third scenario there was a constant migration between the two populations,
but their never merged into a single population.

We plot imbalance density for those scenarios at figure 9. The solid lines are distribu-
tions based on simulated trees. The dashed lines are distributions inferred by tcPBWT .
Qualitative analysis of shapes of imbalance density shows that this statistics can distin-
guish the three demographic scenarios described above. tcPBWT ’s prediction is rather
close to the true answer.

Split time 500 generations
PBWT: Split time 500 generations
Split time 250 generations
PBWT: Split time 250 generations
Migration only
PBWT: Migration only
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Figure 9. Imbalance density for simulated data.
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8. Probabilistic model

In this section we will suggest a probabilistic model over possible ARG topologies and we
will discuss time estimation for ARG nodes. In our approach, we consider only coalescence
nodes of an ARG and we do not add recombination nodes in the resulting graph.

Given a set of local trees related by SPRs, one can convert them into a single graph.
The nodes and edges shared between adjacent trees (in other words those, which are not
destroyed by SPRs) are identified. tcPBWT generates such a set of trees and SPRs, so
it can be easily converted into such a graph. We will refer to such a graph as ARG′ (see
figure 10). The difference with the regular ARG is that we have only coalescence nodes,
but we exclude recombination nodes. This data structure is closely related to coalescence
records format [6].

Then we extend the standard model for mutation and recombination event on trees to
the whole graph. Let G = (V,E) be an ARG′. Let an edge e of G span a certain genomic
interval I(e) and a certain time T (e). The number of events Ne on the edge e is distributed
accordingly to Poisson distribution with the rate λe = µ ·I(e) ·T (e) where µ is the mutation
rate.

Hence the likelihood of the data given topology of the graph G with mutations and
recombinations assigned to edges is

L(G) =
∏
e∈E

1

Ne!
λNe
e e−λe .

Hence the maximum likelihood problem can be translated to the problem of mathemat-
ical programming in the following way. We pass to the log-likelihood

lnL(G) =
∑
e∈E

ln
(
λNe
e e−λe

)
→ max

or

lnL(G) =
∑
e∈E

(Ne ln(λe)− λe)→ max

Notice that the function f(λ) = N ln(λ)− λ is unimodal with the maximum at λ = N .
After some transformations we end up with the following problem of mathematical pro-

gramming

(2)

f(G) =
∑

e∈E
(
Ne ln(tv(e) − tu(e))− we(tv(e) − tu(e))

)
→ max

such that
tv(e) ≥ tu(e), e ∈ E,
ti ≥ 0, i ∈ 1, n,
ti = 0, i ∈ Z,
Ne ≥ 0,
we > 0.
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N
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P2

C1

C2
C3

Figure 10. Example of a node in the ARG′: the node N has two parents
P1 and P2 and three child C1, C2 and C3.

Unfortunately, we did not find solution of this problem. Maybe, tcPBWT heuristic
approach need some modifications or extension of this likelihood function, so further study
is needed.

It would be also desirable to introduce the concept of local likelihood function of a tree.
The idea comes from the following observation: while inferring tree topologies, at some
fragments we get reasonably good estimates, in others there are many errors. Hence, the
full likelihood of an ARG′ is not a good measure of the inference quality of a tree at a
particular site. Instead it would be interesting to consider local tree with “extended” edges:
the edges from the ARG′ and including all the mutations from all nearby sites belonging
to those extended edges. This would allow us to integrate over local trees at each site
independently.

9. Discussion

ARG is arguably the most interesting data structure in evolutionary biology. If we were
able to estimate it precisely enough, we would get access to the full information about
evolutionary forces shaping populations: e.g. changes of effective population size, split
times, migration rates, selection coefficients. However, inference of ARG is a very complex
problem because of the complex state space and many unobserved parameters, especially
recombinations.

We have suggested a partial solution of this problem, which allows us to relate chromo-
somes by highly correlated tree topologies. Our method scales linearly both in the number
and in the length of sequence. We show that these tree topologies can capture both global
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population structure and local tree structure. For the problem of global population struc-
ture inference we introduced two new statistics defined on sets of local trees - cluster density
and imbalance density.

We also discussed potential ways of extending our approach to enable probabilistic anal-
ysis and estimation of node times in the graph. Currently this has more theoretical and
conceptual than practical value, but we hope to develop these ideas in future.
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Supplementary materials

1. tcPBWT framework

Our proposed tcPBWT approach for ARG inference consists of the following steps.

• At the first stage it generates local tree topologies from the data.
– Forward run. The algorithm traverses the genome position by position. At

each position it updates the local tree by identifying the minimal number of
subtree prune-and-regraft (SPR) operations needed to explain the data. The
number of SPRs is minimised relative to a single site following certain rules and
restrictions. Different modifications of those rules are suggested. In particular,
the process can be randomised for sampling purposes and statistical inference.

– Backward run. The algorithm is not symmetric in terms of the direction of
traversing genomes. Backward run is used to reduce this effect. For a given
site, the local tree is built based only on the information from one side of the
genomes (based on prefixes) during the forward run. The backward run allows
to refine the local trees by using suffixes too. As a result, nodes inferred from
the opposite side of genomes are added to local trees.

– A modification of the algorithm exists which allows to run tcPBWT from left
to right and from right to left and then “merge” the inferred sets of the trees.

• The set of local tree topologies is converted into a single graph by identifying the
shared tree nodes.
• We present a tractable probabilistic model for the resulting graph, which allows to

estimate times of its nodes.
• We also suggest a concept of local likelihood of the data. One can generate a large

set of ARG topologies. At each genomic position one gets a sample of local trees
(induced by those ARGs) with their likelihoods. Then one could integrate over this
sample for their inference.

We succeeded to show the performance (both scalability and reasonable accuracy) of
the first step which generates local tree topologies. We establish a probabilisitic model
which is consistent with SMC [9] model, and state a corresponding optimisation problem.
Unfortunately we do not have a fast algorithm which could solve it yet.

2. Data compression results for tcPBWT

We performed a comparison of a compression performance of PBWT and tcPBWT on
a simulated set with 1000 haplotypes and 148120 segregating sites (table 2).

We note that the original PBWT introduced by R. Durbin is not tree consistent. Its
map σ, which takes the entire block of ones to the end of the column, satisfies the first
two requirements given above, but not the third. When we apply the original PBWT
to a tree ordered set of haplotypes then the permutation typically changes at each site
even for a simple single tree genealogy. That is why we can expect an improvement in the
compression rate by tcPBWT compared to PBWT .
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Method Blocks File size
PBWT 370302 1,207,976
tcPBWT 306126 1,074,540

Table S1. Comparison of PBWT and tcPBWT compression performance.
The columns “blocks” show the total number of blocks of ones which appear
in a column k+1 relatively to PBWT or tcPBWT built at position k. File
sizes are shown in bytes. The number of blocks in tcPBWT is less by 21%
for simulated data.

3. Combinatorial ARG inference

In this section we will discuss some core algorithms of our approach for ARG generation.
Those algorithms are based on tcPBWT data structure and planar ordering format. The
tcPBWT can be considered as a certain number of basic rules for data transformation
and tree refinement. Planar ordering is a format which allows fast operations and good
optimisation of software implementations as well as compact data representation.

We call a leaf with an allele v (v = 0, 1) shortly a v-leaf. A v-subtree (v = 0, 1) is a
subtree such that all its leaves are v-leaves. For a node ν we denote the set of all v-leaves
rooted into ν by Lv(ν).

We often refer to a node and a corresponding subtree interchangeably.

3.1. Tree reduction. The local trees Tk−1 and Tk are highly correlated, hence Tk−1 in-
duces a lot of structure at the site Hk. That means that the haplotypes carrying the
mutation at the site appear only in a few subtrees of the local tree at the preceding posi-
tion. We use this property to compress the tree Tk−1 relatively to the binary column Hk

and call this process a tree reduction (see Figure 3.1 TODO). This algorithm is linear in
M and allows us to perform further computations in a smaller space. In fact, this idea is
close to the one which enables an efficient PBWT compression (see [2]).

A maximal constant subtree ν of a tree Tk−1 relatively to the site Hk is a subtree such
that all haplotypes in it have the same allele at site Hk, and any subtree ν̃ such that ν
is its proper subset (ν  ν̃) includes haplotypes with different alleles. Maximal constant
subtrees induce a disjoint subdivision on the set of leaves of Tk−1 uniquely.

A reduced tree T rk−1 is obtained from the tree Tk−1 and the site Hk by substituting all
the maximal constant subtrees by one leaf with corresponding allele. The distances for
T rk−1 are naturally induced by distances in the full tree Tk−1.

The algorithm is written in details in Algorithm 1. The planar ordering of Tk−1 guar-
antees that every subtree appears as a single interval. Relying on this property, the tree
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a) b) c)

1 1 1 1 0 0 0 0 0 1 1 0 0

ν

1 1 0 0

ν

µ

Figure S1. Tree reduction and tree refinement. a) An example of a tree
Tk−1 with a site alleles Hk. b) A reduced tree T rk−1. c) A refined tree with
a new node µ under the node ν. Now µ is a parent node of 1-subtrees
previously rooted at ν.

reduction algorithm identifies stretches with constant allele values. Each such stretch is
then represented as a maximal set of subtrees through the function ParseInterval().

Data: Binary column - array y[] of length M , distance vector function - array d[] of
length M + 1.

Result: Reduced tree.
initialization;

L← 0, DL = 0, H ← 0;

for i← 0 to M do
if d[i] > H then

H ← d[i], h← i;
end
if i = M − 1 or y[i] 6= y[i+ 1] then

if i == M − 1 or d[i+ 1] > H then
h← i+ 1

end
ParseInterval(L, i+1, h);

H ← 0, L← i+ 1;
end

end
Function ParseInterval(L, R, h)

if L = R− 1 then
report subtree [L,R);

end
i← L;

while i < h do
j ← i+ 1, DL ← d[i];

while j < M and d[j] < DL do
j ← j + 1;

end
report subtree [i, j);

i← j;
end
i← R;

while i > h do
j ← i+ 1, DR ← d[i];

while d[j] < DR do
j ← j − 1;

end
report subtree [j, i);

i← j;
end

end
Algorithm 1: Tree reduction algorithm.
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1 0 0 1 0 1

I. (1, 1)

II. (2, 1)

III. (1, 1)

IV. (1, 2) → (0, 1)

V. (2, 2)

Figure S2. Reducing the number of recombinations. Corresponding stack
for node V.: Push V, go to node IV. Push IV, go to node III. Resolve III.
Pop from stack node IV. Resolve IV. Pop from stack node V.

3.2. Tree refinement. At this stage in our approach we try to increase the number of
internal nodes of the tree using tree refinement procedure: at every non-binary node we
merge together 1-subtrees. This algorithm works on a reduced tree instead of a complete
tree (see Figure 3.1 transition from b to c).

In a reduced tree the algorithm visits all non-binary nodes. If for a node ν, the set of
1-leaves L1(ν) contains at least two elements, then a new node ν̃ is created. The parental
node of ν̃ is set to be ν and the elements of L1(ν) are reassigned to ν̃ as child leaves.

After this procedure ν is still well defined. It has at least two child nodes one of which
is ν̃. The existence of another leaf follows from the definition of a reduced tree: if all child
nodes of ν were 1-leaves, ν would be reduced to a single leaf itself.

3.3. Reducing the number of recombinations - Part 1. If the tree Tk−1 is not consis-
tent with the site Hk, we need to apply SPRs (which represent recombinations) to rebuild
the tree. Our procedure uses simple operations on trees in order to reduce the number of
recombinations needed to explain the data. At each site it finds the minimal number of
SPRs needed to rebuild the local tree to make it consistent with the column. This process
does not necessary lead to a global minimum of recombinations needed to explain the data.

For the clarity of exposition we will present the procedure in few steps with introducing
more details and elements step by step. Our first goal is to introduce Algorithm 2 which
would minimise the number of prune-and-regraft operations on a tree Tk−1 to make it
consistent with a binary column Hk. Evidently the solution can be found on the reduced
tree: to minimise the number of SPR operations one would want to cut maximal subtrees
of the tree Tk−1. We call this algorithm MinCut.
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For this purpose the algorithm visits all internal nodes starting from the bottom of the
tree and going upwards to the root. It counts the numbers of 0- and 1-leaves below each
node. As soon as for a node ν the corresponding subtree is incompatible and the number
of, say, 1-leaves is larger than the number of 0-leaves, it cuts corresponding 0-leaves and
reduces ν to a single 1-leaf.

The planar order data structure supports the following linear time realisation of this
algorithm. Suppose that we are at position k associated with a node ν. Let ν1 and ν2
be its two child nodes, which are encoded by positions k1 and k2 of distance vector and
such that k1 < k < k2. We scan the tree representation from left to right, so by arriving
at k we already resolve the subtree corresponding to ν1, but did not enter in the subtree
corresponding to ν2, hence cannot conclude about ν too. Hence we push ν in a stack and
begging resolving ν2 in the same manner. As soon as ν2 is resolved, we push ν from the
stack.
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For simplicity we present the algorithm for binary trees. The extension for non-binary
trees is rather straightforward.

Data: Binary column - array y[] of length M , distance vector - array d[] of length
M + 1.

Result: A set of cuts which minimises the number of SPR operations to make the
tree consistent with the binary column y.

initialisation;

initialise empty stack;

P ← SetLeafPair(y[0]);

for i← 1 to M do
push i, P and d[i] into stack;

Q← SetLeafPair(y[i]);

while stack.last(d) < d[i+ 1] do
nodeID, P ← stack.pop();

Q← ResolveNode(nodeID, P+Q);

end

P ← Q;

end

Function ResolveNode(nodeID, P)

if P.first < P.second then
cut 0-leaves of nodeID, reduce nodeID to a single 1-leaf;

return make pair(0, 1);

else if P.first > P.second and P.second > 1 then
cut 1-leaves of nodeID, reduce nodeID to a single 0-leaf;

return make pair(1, 0);

else
return P ;

end

Function SetLeafPair(x)
if x = 0 then

return make pair(1, 0);

else
return make pair(0, 1);

end
Algorithm 2: MinCut algorithm for planar order realisation. TODO

3.4. Choosing new parental node for regraft. If we prune 0-subtrees, we regraft
them straight to the root of the tree. Though it might look as a considerable loss in
the information about the shape of a tree, we will explain in the next subsection how we
struggle against this problem.
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For 1-subtrees, we select one stable subtree. This selection can be done either determin-
istically (e.g. to choose a subtree with the maximal number of leaves) or randomly (e.g.
with weights proportional to the number of leaves). We will discuss the strategies later on.

All other 1-subtrees are rooted directly to the root of the stable subtree. Such a choice
follows from the following partially heuristic (?) idea. On the one hand SPR operation
can take a subtree anywhere inside the stable subtree. So regrafting the displaced subtree
directly into the root node of the stable subtree allows to relax relations imposed by this
node previously. On the other hand, when we apply the SPR operation to a subtree, we
keep it as a single object and we preserve its entire structure, that is why we do not destroy
root nodes of subtrees affected by recombinations.

3.5. Reducing the number of recombinations - Part 2. Until this moment, we dis-
cussed the algorithms which made all the decisions on rebuilding local trees from a single
site. Moreover, a local tree Tk used information only about the mutations to the left of the
site k, though it would be highly desirable to make use of the right side as well. Now we are
going introduce the development of the presented data structure to make the decision on
the prune-and-regraft operation selection from several columns and to introduce a sort of
“looking forward” algorithm without loss in algorithm complexity which remains O(MN).

We add the following information to our data structure:

• for every SPR operation, a record is created: it specifies the identifier of the dis-
placed subtree, its initial location, its target location in the tree and the locus at
which it was applied;
• if a subtree was displaced by a recombination, it gets a tag and a pointer to the

corresponding SPR record. A tag is destroyed whenever the parental node of the
corresponding subtree becomes binary;
• for every node, one keeps an identifier of the site at which this node appeared in a

reduced tree as a 1-subtree.

The basic idea of introducing the tags is the following. When we visit a node ν and
we see a tagged subtree νt rooted at ν, we know that there was an evidence from one of
preceding columns that the subtree is under ν though we do not have enough evidence
about the exact placement of νt in this particular part of the tree. So as soon as we
have more evidences (given, that the new place is still in the subtree under the node ν)
instead of creating a new SPR operation, we move νt to its new position and edit the
corresponding SPR record. This process allows to refine the structure of tree without
introducing additional recombinations.

For a tagged 1-leaf λ (and a corresponding SPR record rλ) rooted at ν and a node ν0,
which is a descendant of ν, we define an operation of reassignment TODO. The parental
node of λ is changed from ν to ν0 and in the record rλ we edit the target from ν to ν0
as well. The reassignment is allowed only if on the path from ν to ν0 all the nodes were
created before rλ(T ). If a node was created after rλ(T ), we need to create a new SPR
operation to insert a subtree under this node.
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We extend the algorithm from Subsection 3.3. We visit all the nodes of the reduced tree
starting from the bottom. Suppose that we already processed all nodes under a non-binary
node ν. Child nodes of ν can be of the following types:

• non-tagged 0-leaf, denote this set by Lnt0 ;
• non-tagged 1-leaf, denote this set by Lnt1 ;
• tagged 0-leaf, denote this set by Lt0;
• tagged 1-leaf, denote this set by Lt1;
• there is a draw produced by the algorithm in a non-tagged subtree, Lnt01;
• there is a draw produced by the algorithm in a tagged subtree, Lt01;

Both non-tagged and tagged 0-leaves remain on their positions and are not alternated
in any way.

Non-tagged 1-leaves are merged in a new node following the procedure described in
Subsection 3.2.

A draw in a tagged subtree is resolved by cutting 0-leaves. Then it is considered as a
tagged 1-leaf.

Now there are two options.
I. If the set Lnt1 ∪ Lnt01 is not empty, we apply the algorithm from Subsection 3.3 to the

node ν excluding tagged 1-leaves. If the algorithms reports 1-leaves to be cut, then tagged
1-leaves are reassigned to them randomly.

II. If there set Lnt1 ∪Lnt01 is empty but in the set Lt1 there are at most 2 leaves, we choose
one of them randomly to be an analogue of a stable subtree, and then we reassign the rest
of the leaves to the selected one.

4. Choosing recombination stable branch based on supplementary tree

During the first phase, our method scans the haplotypes in one direction (forward run).
We want to make use of the information to the other side of the given site for our inference.
Let us firstly generate an ARGr with our algorithm while scanning our data from right
to left. Now we modify the left-to-right scan for the inference of ARGl. We will use the
upper indices r (right) and l (left) in the notations of this section to highlight by which
ARG (ARGr or ARGl) it is induced.

Suppose that a tree T lk−1 is incompatible with the site Hk, so we need to apply a
recombination.

Then we apply a MinCut algorithm (Algorithm 2) to identify which branches to cut.
Let Bv (v = 0, 1) be the set of v−branches to be cut and B = B0 ∪ B1.

A B-skeleton of T lk−1 is the tree Slk−1 = T lk−1 \ B, which is the remainder of the tree

after removing all branches from B. By definition Slk−1 also includes the nodes (which
could be of out-degree 1!) which correspond to the nodes of joining with branches from B.

Now we define a metric on a B-skeleton. The topological length of the path between two
nodes in a graph is the number of edges in this path. For each node ν, its depth ρ(ν) is
the topological length of the longest path to its descendant (the depth of leaf is 0 hence).
Set the length of an edge e between two nodes ν1 and ν2: |ρ(ν1)− ρ(ν2)|.
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For each hi such that hi[k] = 0 we compute for the right tree

εSr
k
(hi) =

∑
j:hj [k]=1

e−ρ
r(hi,hj).

Now choosing each 1-branch from B1 as a stable branch subsequently, we compute the
same quantities for Slk−1 skeleton. The final choice of the stable branch is those which
minimises the mean square error∑

i:hi[k]=0

(
εSr

k
(hi)− εSl

k−1
(hi)

)2
.

As soon as this choice is done, we add the resulting branch to the skeleton, recompute
metric and use this procedure to find the best place for each 0-branch separately.

5. Proof of the theorem on the distribution of cluster sizes

Consider a population H with M individuals h1, h2, . . . , hM . We suppose that at each
time point every pair of lineages has equal probability to coalesce. Each given pair of
individuals, e.g. h1 and h2, defines and induces a cluster as the set of individuals from H
which are descendants of the most recent common ancestor of h1 and h2. We are interested
in the probability distribution of the induced cluster sizes.

This distribution does not depend on the coalescent times or the effective population
size history.

Theorem 2. Under the coalescent with full exchangeability, the probabilities for induced
cluster size

πM (k) =
2

3(M − 1)
,

for 2 ≤ k < M and

πM (M) =
M + 1

3(M − 1)
.

Definition 5. Hierarchical topology of a binary tree is the topology (branching structure)
together with the order of coalescences.

It is well-known (see for example J.Wakeley “Coalescent theory” page 82 or Hein “Gene
genealogies...”) that the number of different hierarchical topologies of size M is

Θ(M) =

(
M

2

)
·
(
M − 1

2

)
· . . . ·

(
2

2

)
=
M !(M − 1)!

2M−1
.

All hierarchical topologies are equiprobable.
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6. Number of hierarchical topologies with a given subtree

Suppose that k leaves appear together in a subtree with known hierarchical topology.
How many hierarchical topologies of size M contain this subtree “as it is”? We do not
allow to change the inner structure of the subtree, in particular we do not allow to add
more leaves to it.

Lemma 2. For a fixed hierarchical topology of size k there are exactly

Γ(k,M) = Θ(M − k)

(
M

k + 1

)
hierarchical topologies of size M containing it as a subtree.

Proof. Let nj be the number of coalescences in the reminder of the tree in the time interval

when there are exactly j lineages in the fixed subtree. Denote N =
∑k

j=2 nj . Then the
number of trees is

Γ(k,M) =
M−k−1∑
N=0

W (N, k − 1)

(
M − k

2

)
· . . . ·

(
M − k −N + 1

2

)
·
(
M − k −N + 1

2

)
· . . . ·

(
2

2

)
= Θ(M − k)

∑(
N + k − 2

k − 2

)(
M − k −N + 1

2

)
= Θ(M − k)

(
M

k + 1

)
.

where W (N, k − 1) is the weak composition, in other words the number of ordered tuples
(nk, . . . , n2) such that

∑
nj = N and nj ≥ 0.

�

7. Proof of Theorem 2

7.1. Case of k = M . In this case at each coalescent event we allow any coalescence
except between lineages containing our two selected leaves, which means all except one
coalescences. The number of trees where h1 and h2 merge only at the root is

nM (M) =

((
M

2

)
− 1

)
·
((

M − 1

2

)
− 1

)
· . . . ·

((
3

2

)
− 1

)
=

(M + 1)(M − 2)

2
· M(M − 3)

2
· . . . · 4 · 1

2

=
(M + 1)!(M − 2)!

2M−2 · 6
.

And

πM (M) =
(M + 1)!(M − 2)!

2M−1 · 3
2M−1

M !(M − 1)!
=

1

3

M + 1

M − 1
.
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7.2. Case of k < M . Now we are ready to write and compute the probability that the
local cluster density of two given leaves is k < M . It is given by the following formula

πM (k) =

(
M − 2

k − 2

)
πk(k)Θ(k)Γ(k,M)/Θ(M).

The first binomial coefficient stands for the choice of k − 2 leaves which appear in the
subtree together with h1 and h2. The next two terms count the number of subtrees of
size k where the lineages of h1 and h2 meet at the root. Then we use Lemma 2 to find
the number of hierarchical topologies containing a given subtree of size k. And finally we
normalise by the total number of hierarchical topologies of size M .

πM (k) =
1

3

k + 1

k − 1
Θ(k)

(
M − 2

k − 2

)
Θ(M − k)

(
M

k + 1

)
(Θ(M))−1

=
1

3

k + 1

k − 1

k!(k − 1)!

2k−1
(M − 2)!

(k − 2)!(M − k)!

(M − k)!(M − k − 1)!

2M−k−1
M !

(k + 1)!(M − k − 1)!

2M−1

M !(M − 1)!

=
2

3

1

M − 1
,

which finishes the proof.

8. Probability for two given leaves induce a cluster of size k, case of
non-hierarchical topology

Now let us suppose that we do not care about the order of coalescences and assume that
all topologies (only branching structure, no order on nodes!) are equiprobable.

Theorem 3. If all leaves are interchangeable, then the probability that the induced cluster
size of two given leaves is k equals to

π̂(k) =
τ(k − 1)τ(n− k + 1)Ck−2n−1

τ(n)
,

where τ(n) = (2n− 3)!! is the number of topologies of size n.

8.1. Number τ(n) of binary trees with n labeled leaves (see also Hein). The
number of trees with n = 2 leaves is τ(2) = 1.

Suppose that we have already enumerated all trees with n − 1 leaves h1, h2, . . . , hn−1.
To obtain all trees of size n we add one more leaf hn to the set of leaves. Now for every
tree with n − 1 leaves we connect successively hn to every edge of that tree (including a
“free” edge at the root). Connection of hn to different edges leads to different trees. Hence,
τ(n) = τ(n−1)∗ (2n−3), because a binary tree with n−1 leaves has 2n−3 edges. Hence,

τ(n) = (2n− 3)!!.
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8.2. Number of trees where given leaves are in a subtree with k leaves. Let
us find the number σ(k) of trees where two given leaves h1, h2 appear in a subtree (not
necessarily minimal!) with k leaves. We have k − 2 free places in such a subtree and we

choose them from a pool of n− 2, hence there are Ck−2n−2 possibilities. Given k leaves there
are τ(k) different ways to construct a subtree. Now it remains n− k leaves and a subtree
which we consider as a new leaf. Hence there are τ(n− k + 1) trees which possess a given
subtree.

σ(k) = τ(k)τ(n− k + 1)Ck−2n−2.

8.3. Probability π(k) where given leaves are in a minimal subtree with k leaves.
This is equivalent that two leaves induce a cluster of size k. So we obtain

π(k) =
σ(k)− σ(k − 1)

τ(n)
.

Let us simplify the expression

σ(k)− σ(k − 1) = τ(k)τ(n− k + 1)Ck−2n−2 − τ(k − 1)τ(n− k + 2)Ck−3n−2 =

= τ(k − 1)τ(n− k + 1)Ck−2n−2

(
2k − 3− k − 2

n− k + 1
(2n− 2k + 1)

)
=

= τ(k − 1)τ(n− k + 1)Ck−2n−2
n− 1

n− k + 1
= τ(k − 1)τ(n− k + 1)Ck−2n−1.

Finally

(3) π(k) =
τ(k − 1)τ(n− k + 1)Ck−2n−1

τ(n)
.
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