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Abstract 21 

Bacterial endosymbionts evolve under strong host-driven selection. Factors influencing host 22 

evolution might affect symbionts in similar ways, potentially leading to correlations between 23 

the molecular evolutionary rates of hosts and symbionts. Although there is evidence of rate 24 

correlations between mitochondrial and nuclear genes, similar investigations of hosts and 25 

symbionts are lacking. Here we demonstrate a correlation in molecular rates between the 26 

genomes of an endosymbiont (Blattabacterium cuenoti) and the mitochondrial genomes of 27 

their hosts (cockroaches). We used partial genome data for multiple strains of B. cuenoti to 28 

compare phylogenetic relationships and evolutionary rates for 55 cockroach/symbiont 29 

pairs. The phylogenies inferred for B. cuenoti and the mitochondrial genomes of their hosts 30 

were largely congruent, as expected from their identical maternal and cytoplasmic mode of 31 

inheritance. We found a strong correlation between evolutionary rates of the two genomes, 32 

based on comparisons of root-to-tip distances and on estimates of individual branch rates. Our 33 

results underscore the profound effects that long-term symbiosis can have on the biology of 34 

each symbiotic partner.  35 
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1. Introduction 36 

Rates of molecular evolution are governed by a multitude of factors and vary significantly 37 

among species [1,2]. In the case of symbiotic organisms, such rates could be influenced not 38 

only by factors associated with their own biology, but also those of their symbiotic partner. 39 

This is particularly the case for strictly vertically transmitted, obligate intracellular symbionts 40 

(hereafter ‘symbionts’), which have a highly intimate relationship with their host [3]. For 41 

example, a small host effective population size will potentially lead to increased fixation of 42 

slightly deleterious mutations within both host and symbiont genomes, owing to the reduced 43 

efficacy of selection.  44 

When the phylogenies of host and symbiont taxa are compared, simultaneous changes 45 

in evolutionary rate between host-symbiont pairs might be evident in their branch lengths. 46 

Some studies have found a correlation in evolutionary rates between nuclear and 47 

mitochondrial genes in sharks [4], herons [5], and turtles [6], suggesting that host biology 48 

affects substitution rates in nuclear and cytoplasmic genomes in similar ways. In insects, 49 

nuclear genes that interact directly with mitochondrial proteins and mitochondrial data have 50 

shown rate correlation [7]. 51 

There has not yet been any study of rate correlations between hosts and bacterial 52 

symbionts. Evidence for correlated levels of synonymous substitutions was found in a study 53 

of one nuclear gene and two mitochondrial genes from Camponotus ants and three genes from 54 

their Blochmannia symbionts [8]. However, the study did not determine whether this 55 

correlation was driven by rates of evolution, time since divergence, or both. Numbers of 56 

substitutions tend to be low for closely related pairs of hosts and their corresponding 57 

symbionts, and high for more divergent pairs, leading to a correlation with time that does not 58 

necessarily reflect correlation in evolutionary rates.  59 

Blattabacterium cuenoti (hereafter Blattabacterium) is an intracellular bacterial 60 

symbiont that has been in an obligatory intracellular and mutualistic relationship with 61 

cockroaches for over 200 million years [9,10]. These bacteria are transovarially transmitted 62 

from the mother to the progeny. The genomes of 21 Blattabacterium strains sequenced to date 63 

are highly reduced compared with those of their free-living ancestors, ranging in size from 64 

590 to 645 kb [11,12]. They contain genes encoding enzymes for DNA replication and repair, 65 

with some exceptions (holA, holB, and mutH) [12–14]. The extent to which host nuclear 66 

proteins are involved in the cell biology of Blattabacterium, and particularly DNA 67 

replication, is not well understood.  68 
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We recently performed a study of cockroach evolution and biogeography using 69 

mitochondrial genomes [9]. During this process, we obtained partial genomic information for 70 

several Blattabacterium strains. These data provide the opportunity to test for correlation of 71 

molecular evolutionary rates between Blattabacterium and host-cockroach mitochondrial 72 

DNA.  73 

Here we infer phylogenetic trees for 55 Blattabacterium strains on the basis of 104 74 

genes, and compare branch lengths and rates of evolution for host-symbiont pairs across the 75 

phylogeny. We find evidence of markedly increased rates of evolution in some 76 

Blattabacterium lineages, which are matched by increased rates of evolution in mitochondrial 77 

DNA of host lineages.  78 

 79 

2. Materials and methods 80 

A list of samples and collection data for each cockroach examined is provided in table S1 81 

(electronic supplementary material (ESM)). We used assembled data obtained from a 82 

previous study, in which we used cockroach mitochondrial genomes to build phylogenetic 83 

trees [9]. We searched each assembly against previously published Blattabacterium genomes 84 

using blastn [15] to identify Blattabacterium contigs. Each contig was annotated using Prokka 85 

v1.12 [16]. We determined orthology among 104 genes of 55 Blattabacterium strains and 86 

seven Flavobacteriales outgroups with OMA v1.0.6 [17]. Further details are available in the 87 

ESM.  88 

 The 104 orthologous Blattabacterium genes were aligned individually using MAFFT 89 

v7.300b [18] and concatenated. The mitochondrial genome dataset included all protein coding 90 

genes from each taxon plus 12S rRNA, 16S rRNA, and the 22 tRNA genes. Third codon sites 91 

were removed from each dataset on the basis of saturation tests using Xia’s method 92 

implemented in DAMBE 6 [19, 20] (see ESM). Trees were inferred using maximum 93 

likelihood in RAxML v8.2 [21]. We examined congruence between host and symbiont 94 

topologies using the distance-based ParaFit [22]. Further details of phylogenetic analyses and 95 

congruence testing are provided in the ESM. 96 

The evolutionary timescale of hosts and symbionts, as well as their evolutionary rates, 97 

were inferred using BEAST v 1.8.4 [23], using a fixed topology from the RAxML analysis 98 

(figure 1). We calibrated the molecular clock using minimum age constraints based on four 99 

fossils (table S2, ESM). A soft maximum bound of 311 Ma was set for the root node, 100 
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representing the oldest known cockroach-like fossil [24]. To allow evolutionary rates to be 101 

estimated in a single framework, a random subset of 12 Blattabacterium protein-coding genes 102 

(from the larger set of 104) plus the full mitochondrial data set were concatenated and 103 

partitioned into host and symbiont subsets. These analyses were carried out a total of three 104 

times, with a novel subset of 12 randomly selected Blattabacterium genes for each replicate. 105 

The inferred branch rates were then compared using Pearson correlation analysis using 106 

ggpubr [25] in R [26].  107 

Root-to-tip distances from the RAxML analysis for each host and symbiont pair were 108 

calculated using the R packages ape [27], phylobase [28], and adephylo [29]. The use of root-109 

to-tip distances removes the confounding effects of time, because all lineages leading to 110 

terminal taxa have experienced the same amount of time since evolving from their common 111 

ancestor. We used Seq-Gen v1.3.4 [30] to simulate the evolution of sequences from both host 112 

and symbiont along the Blattabacterium tree topology inferred using RAxML, with 113 

evolutionary parameters obtained from our separate RAxML analyses of the original data. 114 

Tree lengths for host and symbiont were rescaled according to their relative rates, but the 115 

relative branch rates were maintained between the two trees (see ESM).  116 

 117 

3. Results 118 

In all analyses, there was strong support for the monophyly of each cockroach family with the 119 

exception of Ectobiidae (figure 1). The topologies inferred from the host and symbiont data 120 

sets were significantly congruent (p=0.001). Although there were some apparent 121 

disagreements between the two trees (for example, the position of Corydiidae), support at 122 

these nodes was generally low for both trees.  123 

A molecular-clock analysis of the Blattabacterium data set indicated that the basal 124 

divergence occurred 314 Ma (95% credibility interval 219–420 Ma; figure S1, electronic 125 

supplementary material), giving rise to a one clade containing strains infecting Corydiidae, 126 

termites, Cryptocercidae, Blattidae, Anaplectidae, Tryonicidae, and Lamproblattidae, and a 127 

second clade containing strains infecting Ectobiidae and Blaberidae. We repeated the analysis 128 

using the mitochondrial data set and found that divergence times were markedly younger (184 129 

Ma, 95% CI 160–212 Ma; figure S2, electronic supplementary material). In an analysis of the 130 

combined data set, divergence times were approximately midway between those from the 131 
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separate analyses (216 Ma, 95% CI 159–278 Ma; figure S3, electronic supplementary 132 

material).  133 

The inferred substitution rates along each pair of equivalent host and symbiont branches 134 

were found to be highly correlated (R=0.88, p<2.210-16; figure 2a). Almost identical results 135 

were found in replicate analyses involving different sets of Blattabacterium genes (data not 136 

shown). The highest rates of evolution in the host and symbiont data sets (on the basis of 137 

branch lengths; figure 1) were in members of an ectobiid clade containing Allacta, 138 

Amazonina, Balta, Chorisoserrata, and Euphyllodromia, and a separate clade containing the 139 

two anaplectids Anaplecta omei and Anaplecta calosoma. After excluding these taxa, R was 140 

reduced to 0.47 but remained highly significant (p=1.510-6). As expected, analyses of 141 

simulated host and symbiont data yielded highly correlated estimates of branch rates (figure 142 

2b). 143 

Regression analysis of root-to-tip distances for host-symbiont pairs also indicated that 144 

these two variables were correlated (R=0.7; figure 2c). However, the sharing of branches 145 

between taxa in the estimation of root-to-tip distances renders the data in this plot 146 

phylogenetically non-independent and precludes statistical analysis.  147 

 148 

4. Discussion 149 

Our study provides evidence for a correlation in molecular evolutionary rates between 150 

Blattabacterium and host mitochondrial genomes, based on two different approaches (branch-151 

rate comparisons and analysis of root-to-tip distances). To our knowledge, this is the first 152 

demonstration of such a correlation in a host-symbiont relationship. Previous studies found a 153 

correlation in evolutionary rates between mitochondrial and nuclear genes [5–7], and this 154 

relationship appears especially pronounced for nuclear genes encoding proteins that are 155 

associated with mitochondria [7]. The pattern that we found was consistent across multiple 156 

subsets of Blattabacterium genes, indicating that it represents a genome-wide phenomenon 157 

for this symbiont.  158 

Similar forces acting on the underlying mutation rates of both host and symbiont 159 

genomes could translate into a relationship between their rates of substitution. This could 160 

potentially occur if symbiont DNA replication depends on the host’s DNA replication and 161 

repair machinery [31]. Because the genome of Blattabacterium is known to possess an almost 162 

complete suite of replication and repair enzymes [31], the scope for host enzymes to 163 
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significantly influence symbiont mutation rate appears to be limited. A better understanding 164 

of the level of integration of host-encoded proteins in the metabolism of Blattabacterium is 165 

required to explore this issue further.  166 

Short host generation times could potentially lead to elevated evolutionary rates in host 167 

[32] and symbiont, assuming that increased rates of symbiont replication are associated with 168 

host reproduction, as is found in Blochmannia symbionts of ants [33]. Variations in metabolic 169 

rate and effective population size between host taxa could also explain the rate correlations 170 

that we observed here. Unfortunately, with the exception of a few pest and other species, 171 

generation time, metabolic rates, and effective population sizes are poorly understood in 172 

cockroaches. This precludes an examination of their influence on evolutionary rates in host 173 

and symbiont.  174 

Blattabacterium is a vertically transmitted, obligate intracellular mutualistic symbiont, 175 

whose phylogeny is expected to mirror that of its hosts. This is especially the case for 176 

phylogenies inferred from mitochondrial DNA, since mitochondria are linked with 177 

Blattabacterium through vertical transfer to offspring through the egg cytoplasm. As has been 178 

found in previous studies [34–36], we observed a high level of agreement between the 179 

topologies inferred from cockroach mitochondrial genomes and from the 104-gene 180 

Blattabacterium data set. Owing to long periods of co-evolution and co-cladogenesis between 181 

cockroaches and Blattabacterium [9,34], potential movement of strains between hosts (for 182 

example, via parasitoids) is not expected to result in the establishment of new symbioses, 183 

especially between hosts that diverged millions of years ago. 184 

In conclusion, our results highlight the profound effects that long-term symbiosis can 185 

have on the biology of each symbiotic partner. The rate of evolution is a fundamental 186 

characteristic of any species, and our study shows that it can become closely linked between 187 

organisms as a result of symbiosis. Further studies are required to determine whether the 188 

correlation that we have found here also applies to the nuclear genome of the host. Future 189 

investigations of generation time, metabolic rate, and effective population sizes in 190 

cockroaches and Blattabacterium will allow testing of their potential influence on 191 

evolutionary rates.  192 
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Figure captions 305 

Figure 1. Congruence between (a) phylogenetic tree of host cockroaches inferred using 306 

maximum likelihood from whole mitochondrial genomes, and (b) phylogenetic tree of 307 

Blattabacterium inferred using maximum likelihood from 104 protein-coding genes (3rd 308 

codon sites excluded for both datasets). Circles at nodes indicate bootstrap values (black = 309 

100%, grey = 85–99%). Nodes without circles have bootstrap values <85%. Red outlines on 310 

circles indicate disagreement between the phylogenies, whereas red outlines on white circles 311 

indicate disagreement between the phylogenies and bootstrap values <85%. Colours represent 312 

taxa belonging to different cockroach families: light green = Ectobiidae, teal = Blaberidae, 313 

blue = Corydiidae, olive green = Blattidae, maroon = Tryonicidae, pink = Cryptocercidae, red 314 

= termites, dark green = Anaplectidae, and orange = Lamproblattidae. 315 

 316 

Figure 2. Comparison of evolutionary rates of Blattabacterium symbionts and their host 317 

cockroaches. (a,b) Correlation between branch rates in the phylogenies of Blattabacterium 318 

and cockroaches, obtained from a Bayesian time-calibrated tree inferred from (a) 12 319 

Blattabacterium protein-coding genes and whole mitochondrial genomes from cockroaches, 320 

with 3rd codon sites excluded; (b) synthetic sequence data (see ESM). (c,d) Correlation of 321 

root-to-tip distances in phylogenies of Blattabacterium and cockroaches, inferred using 322 

maximum-likelihood analysis of (c)104 Blattabacterium protein-coding genes and whole 323 

mitochondrial genomes from cockroaches, with 3rd codon sites excluded; (d) synthetic 324 

sequence data (see ESM). Colours represent data from representatives of different cockroach 325 

families, as described in figure 1. Grey circles represent internal branches.  326 
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Figure 2 334 
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