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Abstract 

Metastasis is a major cause of cancer-related mortality, and it is essential to understand how 

metastasis occurs in order to overcome it. One relevant question is the origin of a metastatic tumor 

cell population. Although the hypothesis of a single-cell origin for metastasis from a primary tumor 

has long been prevalent, several recent studies using mouse models have supported a multi-cellular 

origin of metastasis. Human bulk whole-exome sequencing (WES) studies also have demonstrated a 

multiple ‘clonal’ origin of metastasis, with different mutational compositions. Specifically, there has 

not yet been strong research to determine how many founder cells colonize a metastatic tumor. To 

address this question, we developed a method to quantify the ‘founder cell population size’ in a 

metastasis using paired WES data from primary and metachronous metastatic tumors. Simulation 

studies demonstrated the proposed method gives unbiased results with sufficient accuracy in the 

range of realistic settings. Applying the proposed method to real WES data from four colorectal 

cancer patients, all samples supported a multi-cellular origin of metastasis and the founder size was 

quantified, ranging from 3 to 15 cells. Such a wide-ranging founder sizes estimated by the proposed 

method suggests that there are large variations in genetic similarity between primary and 

metastatic tumors in the same subjects, which might be involved in (dis)similarity of drug responses 

between tumors. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 7, 2019. ; https://doi.org/10.1101/542324doi: bioRxiv preprint 

https://doi.org/10.1101/542324
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3

Introduction 

Metastasis is the main cause of cancer-related death. Although it is essential to understand its 

mechanisms and dynamics of distant site colonization in order to properly treat it, until recently 

little has been known. The founder cell population size of a metastatic tumor is one of the most 

important parameters for metastasis dynamics, which involves the change of mutational 

compositions from the primary to metastatic tumors (Figure 1). The drastic genetic changes in the 

metastatic tumor from the primary one, brought by the limited cell migration, i.e., ‘bottleneck 

effect’, might result in a difference in drug response between both tumors in the same patients.  

Although the hypothesis that a metastatic tumor originates from a single tumor cell has 

been long prevalent
1-3

, several recent studies using mouse models of cancer demonstrated 

multicellular seeding
4-6

. In humans, bulk whole-exome sequencing (WES) studies of metastatic 

tumors, often including primary tumors from the same individuals, demonstrated metastases to 

have originated from multiple clones, where a ‘clone’ was a cluster of tumor cells belonging to the 

same phylogenetic clade estimated by the variant allele frequency information
7, 8

. While founder 

‘cells’, but not ‘clones’, in the metastatic tumor have another clear meaning in understanding 

metastatic dynamics, the quantification of multicellular colonization has not been attempted so far 

in human metastatic tumors. 

Here, we propose a method to quantify the founder cell population size of a metastatic 

tumor using a paired WES data from the primary and metachronous metastatic tumors. The 

method uses the outputs from commonly used mutation callers, i.e., variant allele frequencies 

(mutant allele counts and sequence depths), and quickly estimates the founder size unbiasedly in a 

realistic range. We applied our proposed method to the high-depth WES data from a study for four 

colorectal cancer (CRC) patients. 

 

Methods 

Overview for quantifying founder cell population size in metastasis 

We use paired WES data of a primary and metachronous metastatic tumors together with the data 

from the normal tissue (Figure 1A). The input file is composed of sequence depths, �� and ��, 

and the mutation read counts, �� and �� for each called mutation sites in the primary and 

metastatic tumors, respectively (Table 1 and Figure 1B; See supplementary Appendix and 

supplementary Figure S1 for more details of the input file). When the founder population size is 

large, the variant allele frequencies (VAFs) at given sites in the metastatic show high similarity to 

those in the primary tumor (Figure 1C). Conversely, when the size of founder cells is small, the VAFs 

in the primary and metastatic tumors are not so correlated (Figure 1C). In this case, due to the 

severe ‘bottleneck effect’, many variants can become extinct in the metastatic tumor or have a 

significantly higher VAF in the metastatic tumor. 
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Model and estimation methods 

Consider a diploid tumor cell population in a primary tumor. One somatic variant in the 

population has the VAF, ��, or the cancer cell fraction (CCF), 2��(see Table 1 for notations). There is 

no recurrence mutation at the same sites then the VAF is at most 0.5, �� � 0.5. The VAF follows 

some distribution, �� ~ ����
, as is properly assumed by taking into account the nature of tumor 

cell evolution (see Implementation section in supplementary Appendix). In bulk-WES of the primary 

tumor, the sampled mutation read count, ��, at the variant site with sequence depth, ��, follows 

a binomial distribution with parameters, �� and ��,  

�� ~ ������|��, ��
. 

In bulk-WES of the metastatic tumor, the sampled mutation read count, ��, at the 

variant site with sequence depth, �� , is generated by a composite process of metastatic 

colonization and exome sequencing as follows: 

�� ~ � �������|��, 2��
������|��, ��
�,��

����
 

where the ��, �� and �� are the number of founder cells (founder population size) in metastatic 

colonization, the number of mutant cells in the �� founder cells, and the VAF in the metastatic 

tumor, respectively. In the above distribution for ��, the �� founder cells are randomly selected 

from the primary tumor and colonize a metastatic site. The �� mutant cells in the metastatic site 

follows a binomial distribution with parameters ��  and 2�� (mutant cell fraction). The sampled 

mutation read count, ��, follows a binomial distribution with parameter �� and ��, where �� is 

given by �� � ��

���
. 

Taken together, the probability of observing �� and �� mutations in the primary and 

metastatic exome with depths �� and ��, respectively, is given by 

� ����
������|��, ��
 � �������|�� ,  2��
������|��, ��

2��


���

����

�

����

���. 
For quality control, we use only the sites with or more than ��	
��
 (>0) mutant reads in the 

primary tumor. Note that, in the metastatic tumor, all mutations called in the primary tumor are 

tracked in order to use greater information on VAF change from the primary to the metastatic 

tumor. Finally, the probability of observing ���� ��	
��

 and ���� 0
 mutation reads in the 

primary and metastatic tumors, respectively, is expressed as 

� ����
������|��,  ��
 ∑  ������|�� , 2��
������|��, ��2��

!��

����

�

����
���

∑ � ����
������
�|��, ��
�

����
������


�
��
������

, 

where ��
� is possible read counts in the primary tumor. Explicitly, let ���,  ���, ���, ��� and ��� 
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denote ��, ��, ��, �� and ��  for the specific i-th variant site, respectively. Assuming 

independencies among all %  variants, each with ����� ��	
��

  mutation reads in the 

metastatic tumor, the likelihood of the founder size, ��, is given by 

����������	
��

� 

� �	�������	���|���, ���� ∑ ����	��|
�,  2������� ��������, ��2
�

����
����

�

	����
����

∑ � �	�������	�

��|��� , �����

	����
�������

��
�����������
�

  	1�. 

By maximizing the likelihood (1), we obtain the maximum likelihood estimate of ��  (for 

implementation details, see supplementary Appendix). In reality, the independence assumption 

among variants does not hold since the unit of the tumor evolution is the cell, and mutations in the 

same cell evolve and colonize a metastatic site together. The effect of the independence 

assumption on the estimation of ��  is investigated below using simulations. 

The tumor purities, the fraction of cancer cells, in the primary (&�) and metastatic tumor 

tissue samples (&�), are incorporated into the model simply by replacing ��� with &���� and 
��

���
 

with &� ��

���

, respectively. 

 

Results 

Validation of our proposed method by simulations 

We assessed our proposed method using simulated data (see Methods and supplementary 

Appendix for details; see also Table 1 for notations). Briefly, a single tumor cell with ' mutations 

generates a daughter cell with an average ( new mutations and cell divisions repeat until the 

population has grown to the final primary tumor size, ��. ��  cells from the �� cells make up a 

metastatic tumor. Exome samples in the primary and metastatic tumor have depth �) and purity &. 

Our proposed method was applied to the sites with � ��	
��
 mutant reads in the primary tumor. 

We ran 100 simulation for each parameter sets. 

 In Figure 2A-D, all simulations were performed under the conditions of �� � 100,000, 

(=5. Firstly, the effect of varying mean depth, �), on the estimation of ��, was investigated under 

'=50, &=1, and ��	
��
=2 (Figure 2A). The number of variants generated in the exome samples in 

the simulations were realistic, ranging from around one to five hundred (Supplementary Figure 

S2A). In cases of ��=2, 5, 10 and 20, when �) �50, the medians of estimates were very close to 

the true values, i.e., the estimator is median-unbiased, and the estimation accuracy is good. For 

example, when the depth was 50, the medians of the estimates (and interquartile ranges; IQRs) 

were 5.0 (4.0, 6.0), 10.0 (8.0, 13.0), and 20.0 (15.0, 28.25) for the true ��=5, 10 and 20, 

respectively. The unbiasedness with �) �50 held for larger ��  (for ��=1-100, see supplementary 
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Figure S2B). The estimation accuracy got better as sequence depth increased. Even when the depth 

was �) � 30, the precision and accuracy were acceptable, the medians of estimates (IQRs) were 

5.0 (5.0, 6.0), 12.0 (8.0, 18.25), and 21.0 (14.0, 35.0) for the true ��=5, 10 and 20, respectively. 

Under �) � 30, particularly for larger �� � 30 , ��  was biasedly estimated and a reliable 

estimation was difficult to obtain (for ��=1-100, see supplementary Figure S2B). Note that, for all 

depth settings, the relative estimation errors were better for smaller ��, as you can see from the 

smaller log-scaled boxplots of the estimated �� in Figure 1A (see also supplementary Figure S2A). 

Next, the effects of the tumor purity, &, on the estimation were investigated under '=50, 

�)=100, and ��	
��
=2 (Figure 2B). When & � 50%, the estimation was median-unbiased and the 

accuracy was acceptable. The medians of the estimates (IQRs) were 5.0 (5.0, 6.0), 10.0 (8.0, 12.0), 

and 20.0 (15.0, 28.0) for the true ��=5, 10 and 20, respectively. In conjunction with the result of 

Figure 1A, defining the ‘effective sequence depth’ as the depth multiplied by tumor purity, the 

proposed method gave unbiased results with acceptable accuracy when the effective sequence 

depth was 50. In the case of less purity, and large founder size e.g., & � 40% and �� � 30, a 

reliable estimation was difficult obtain (for ��=1-100, see supplementary Figure S3). 

In the algorithm for ��  estimation, the proportion of clonal mutations in the primary 

tumors are fixed at 10%. However, the true clonal mutations vary among tumors. Thus, the impacts 

of the number of clonal mutations were investigated under �) � 100, &=1 and ��	
��
=2 (Figure 

2C). The number of clonal mutations in the population, ', had no effect on both the unbiasedness 

and the accuracy of estimation of ��. The same is true for larger �� with various number of 

variants in WES samples (for ��=1-100, see supplementary Figure S4). 

As input of the proposed method, we use variants with ��	
��
 or more mutation reads 

in the primary tumor. Then, the effects of various values of ��	
��
 on the estimation of �� were 

investigated under '=50, �)=100, and &=1 (Figure 2D). The estimation results for up to ��=100 

were also assessed (supplementary Figure S5). In the case of ��	
��
 � 5, the estimation accuracy 

was worse than those for ��	
��
 . 5. The worse accuracy was not due to lower numbers of 

variants used for input (for the case of larger number of variants, see supplementary Figure S6 

replacing (=5 with (=25). For the case of including singletons in the input (��	
��
 � 1), a small 

upward bias can occur (for more clear bias in the large ��, see supplementary Figure S5). Thus, we 

recommend the criteria of ‘at least 2 or 3 mutation read counts’, ��	
��
=2 or 3, for the input of 

the proposed method. 

Simulations were performed mainly under the conditions of the primary tumor size, 

�� � 100,000 and mutation rate, (=5. When values of �� ranging from 1,000 to 300,000 were 

used under �)=100, (=5, '=50, &=1, and ��	
��
=2, the behavior of estimates were generally 

the same as that under �� � 100,000 (supplementary Figure S7). When values of ( ranging 

from 1 to 20 were used under �)=100, �� � 100,000 , '=50, &=1, and ��	
��
=2, the behavior 
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of estimates were generally the same as that under ( � 5 although the estimation accuracy was a 

little lower as the mutation rate is small (supplementary Figure S8). 

 

Real data analysis 

We used the high-depth WES data from a study for four colorectal cancer (CRC) patients, 

which included at least one primary and metachronous metastatic tumor sample per patient 
8
. For 

each patient, the metastatic tumor(s) were sampled 1-3 years after the removal of the primary 

tumor(s). Called mutation summary information for each tumor were derived from the article 
8
. 

Our method was applied to the four paired primary and metastatic tumors’ data in the four patients, 

the data from Pri-1 and Met-1 for each patient (the primary and metastatic tumors were arbitrarily 

labeled Pri-x and Met-x, respectively, per patient). We conducted quality-controls and used the 

called mutations satisfying the following criteria: within 1,000 sequencing depths in the primary 

and metastatic tumors, having at least two mutation reads in the primary tumor, i.e., ��	
��
=2, 

having no mutation read in the normal sample in the primary and metastatic tumors, and without 

no copy number aberrations. The last criterion ensured diploid tumor populations, which is 

assumed in the current model, and copy number aberrations were retrieved from the article
8
. 

The proposed method was applied to the mutations that passed the quality-controls 

using the estimated tumor purities by PurBayes
9
. Mutations considered to be possible errors, many 

of which had higher VAFs (supplementary Figure S9) were removed. We then performed the 

definitive analyses to estimate the founder population size of metastatic tumors. The average 

number of variants used ranged from 79-195 for the four samples, with average sequence depths 

of 83.4-146.7 and 83.4-146.7 in the primary and metastatic tumor exomes, respectively (Table 2). 

The tumor purities were 0.23–0.72 and 0.29-0.85 in the primary and metastatic tumor samples, 

respectively (Table 2). The observed VAFs looked to be somewhat correlated in the primary and 

metastatic tumor in each patient (supplementary Figure S10). Estimated founder population sizes 

(80% confidence intervals) were estimated to be 15 (13.0, 17.0), 3 (2.0, 4.0), 8 (6.0, 9.0), and 14 (9.0, 

21.1) for subject A01, A02, A03, A04, respectively (Figure 3). Consistent results were obtained when 

the same analyses were carried out using all variations without limiting diploid regions (Table 2 for 

the mutation summary, supplementary Figure S9 for removed outliers, supplementary Figure S10 

for VAFs, and Figure 3 for the estimated founder sizes). 

 

Discussion 

We developed a method to quantify the founder population size in metastasis using a paired WES 

data from primary and metachronous metastatic tumors. This method, implicitly uses the fact that 

higher (lower) genetic similarity between the primary and metastatic tumors is come from larger 

(smaller) founder size (Figure 1C), enables us to unbiasedly estimate the founder population size 
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with sufficient accuracy in the range of realistic founder size and settings, e.g., sequencing depth, 

purity and number of variations (Figure 2 and supplementary Figure 1-7). Although relative 

estimation errors become worse as the founder size became larger, this weakness is overcome by 

deeper sequencing, i.e., WES data with / 150 depth give sufficient accuracy even for the founder 

size 100 (supplementary Figure S1). The proposed method also shows the advantage of using VAF 

information (mutation read counts and depths) rather than using only the presence or absence of 

mutations, to infer the tumor evolutionary process, as has been applied so far
10-12

. 

In real data analysis of four colorectal cancer patients, our method supported the 

multi-cellular origin of metastatic tumors, which is consistent with the observation of recent mouse 

model studies
4-6

 and the suggestion from WES studies
7, 8

. Our method further quantified the 

founder population sizes ranging 3 to 15 cells for CRC subjects
8
. The wide-ranging founder size in 

metastasis might result in large variations of genetic similarity between primary and metastatic 

tumors, which might cause variation in drug responses between primary and metastatic tumors. In 

particular, when the founder population size is small, variants with drastically increased VAFs in the 

metastatic tumors might lead to difficulty in treatment. 

In the context of population genetics, demographic history is a confounding factor for 

detecting or quantifying natural selection acting on the genome
13, 14

. The same should be true for 

the evolution of a tumor population. A potential advantage of the proposed method is to lead to 

identify selectively recruited mutations in the metastatic tumors under the inferred demographic 

model for tumor populations, i.e., the estimated founder size. 

 The limitations of our method are that it does not consider the time between the first 

exome sampling and metastatic occurrence and the time between metastatic occurrence and the 

second exome sampling. Particularly, in latter time periods, genetic drift in a small population of 

new metastatic tumor might not negligible. Our model does not distinguish between such genetic 

drifts and the bottleneck effect of metastatic colonization, and the estimated of ‘the founder size’ 

reflects both these effects. A method that distinguish both effects will be future work. In addition, 

there are possibly more complex cell migration patterns than our model, including reseeding or 

multisource seeding
15, 16

, which are beyond the present study but worth investigating. 
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Table 1. Notations in the Model and the simulation study.

Notation Description

!" Founder cell population size, to be estimated.

# Number of mutations with or more than$%('()) mutation reads 

in the primary tumor.

$%, $+ Mutation read counts for the primary ($%) and metastatic tumors 

($+).

$%('()) Minimum mutation read count in WES data from the primary 

tumor.  For estimating !", we use only the sites with or more 

than $%('()) mutant reads.

,%, ,+ Sequence depths for the primary (,%) and metastatic tumors (,+).

-%, -+ Population VAFs in the primary (-%) and metastatic tumor (-+).

.(-%) Probability density of -%.

/" Number of mutant cells among !" founders.

0%, 0+ Tumor purity in the WES samples from the primary (0%) and 

metastatic tumors (0+).

Additional notations in the simulation study.

2 Number of clonal mutations in the initial primary tumor.

3 Mutation rate per tumor-cell division in the primary tumor.

!% Cell population size in the final primary tumor. 

4, Mean sequence depth in the primary and metastatic tumor.

0 Tumor purity in the WES samples from the primary and 

metastatic tumors (0%=0+).
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Subject # of SNV (R) Tumor
Mean 
Depth

Purity (95%CI)

A01 
- Diploid

195
Pri-1 (colon) 137.6 0.46 (0.44, 0.48)

Met-1 (liver) 153.1 0.48 (0.47, 0.50)

- All 233
Pri-1 (colon) 138.4 0.46 (0.44, 0.48)

Met-1 (liver) 154.4 0.48 (0.46, 0.49)

A02 
- Diploid

165
Pri-1 (colon) 130.3 0.23 (0.22, 0.24) 

Met-1 (lung) 129.7 0.29 (0.28, 0.30)

- All 209
Pri-1 (colon) 139.5 0.45 (0.43, 0.48)

Met-1 (lung) 141.1 0.29 (0.28, 0.30)

A03 
- Diploid

72
Pri-1 (colon) 83.4 0.25 (0.23, 0.26)

Met-1 (liver) 102.6 0.59 (0.58, 0.61)

- All 110
Pri-1 (colon) 87.4 0.46 (0.43, 0.49)

Met-1 (liver) 105.2 0.80 (0.76, 0.85)

A04 
- Diploid

193
Pri-1 (colon) 146.7 0.72 (0.68, 0.76)

Met-1 (lung) 148.2 0.85 (0.81, 0.89) 

- All 224
Pri-1 (colon) 149.6 0.70 (0.65, 0.74)

Met-1 (lung) 150.0 0.84 (0.80, 0.88)

Table 2. Summary of WES data for CRC subjects from Wei et al. (2017).

Purities and 95% credible intervals (CIs) were estimated by PurBayes [9]. Diploid:
Results using only diploid regions (excluding copy number aberrations). All: Results
using all exome regions (including copy number aberrations).
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Figure 1. A schematic view of the proposed methodology. (A) Exome data from paired primary and
metastatic tumors, and normal tissue. (B) Input of the method. (C) Illustration of basic premise for
the estimation of founder sizes by computer simulations. Low correlation of observed VAFs
between the primary and the metastatic tumors in the small founder size, %&=2 (left). High
correlation of observed VAFs between the primary and metastatic tumors in the large founder size,
%&=50 (right).
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A B

C D

Figure 2. Valid quantification of founder size,!", confirmed by simulations. All simulations used the same
primary tumor population size, !# = 100,000, and mutation rate per cell division per exome, ( = 5. (A)
Varying mean sequencing depth, )* for +=50, ,=1, and-#(/01)=2. (B) Varying tumor purity, ,, for +=50,
)*=100, and-#(/01)=2. (C) Varying number of clonal mutations, +, for )* = 100, ,=1 and-#(/01)=2. (D)
Varying minimum number of mutation reads,-#(/01), for +=50, )*=100, and ,=1. (Variants with-#(/01)
or more mutation reads were used.)
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Figure 3. Estimated founder sizes (!") for the four colorectal cancer reported by

Wei et al. (2017). Results using only diploid regions (excluding copy number

aberrations) are shown in red. Results using all exome regions (including copy

number aberrations) are shown in blue. Circles with bars indicate maximum

likelihood estimates of !" and these 80% confidence intervals, based on 100 non-

parametric bootstrap samples.
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