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Understanding information processing in the brain requires us to monitor neural activity
in vivo at high spatiotemporal resolution. Using an ultrafast two-photon fluorescence
microscope (2PFM) empowered by all-optical laser scanning, we imaged neural activity in
vivo at up to 3,000 frames per second and submicron spatial resolution. This ultrafast
imaging method enabled monitoring of both supra- and sub-threshold electrical activity

down to 345 um below the brain surface in head fixed awake mice.

The ability to monitor neural signaling at synaptic and cellular resolution in vivo holds the key to
dissecting the complex mechanisms of neural activity in intact brains of behaving animals. The
past decade has witnessed a proliferation of genetically encoded fluorescence indicators that
monitor diverse neural signaling events in vivo, including those sensing calcium transients,
neurotransmitter and neuromodulator release, and membrane voltage [1]. Most popular are the
calcium indicators (e.g., GCaMP6 [2]) and glutamate sensors (e.g., iGIuSnFR [3]), with their
success partly attributable to their slow temporal dynamics (e.g., rise and decay times of 100 —
1000’s milliseconds for GCaMP6 and tens of milliseconds for iGIluSnFR), which can be adequately
sampled with conventional 2PFM systems. Indeed, using point scanning and near-infrared
wavelength for fluorescence excitation, 2PFM can routinely image calcium activity hundreds of

microns deep in opaque brains with submicron spatial resolution [4-6].
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Imaging faster events, however, is more challenging. Indicators reporting membrane
voltage, arguably the most direct and important measure of neural activity, have rise and decay
times measured in milliseconds. Too fast for the frame rate of conventional 2PFM to match, their
in vivo imaging demonstrations were mostly carried out by widefield fluorescence microscopy with
comparatively poor spatial resolution and limited to superficial depths of the brain [7-9]. In other
words, the capability of state-of-the-art indicators has outstripped our ability to image them at
sufficiently high speed, especially at high spatial resolution and through highly scattering brain

tissue.

To observe millisecond dynamics such as membrane potential variations, we need to
increase 2PFM frame rates to the kHz range. The sampling rate of conventional raster-scanning
2PFM is limited by the speed of laser scanners, such as galvanometric mirrors, to tens of frames
per second (fps) [5, 6]. Random-access 2PFM using acoustic-optical deflectors allows kHz frame
rates and has been used to monitor the membrane potential of neurons expressing genetically
encoded voltage indicators (GEVISs) in brain slices and in vivo [10, 11], but can only track a pre-
selected set of locations (currently up to ~20). A line-projection tomographical 2PFM system was
used to detect glutamate release in the brain at kHz frame rates [12], but is limited in the
complexity of fluorophore distributions that can be reconstructed for a given number of excitation
angles. Notably, in these 2PFM implementations, the pixel dwell times (0.1 — 40 microseconds)
are much longer than the theoretical minimum dwell time required for assigning signals to
scanned locations. This minimum dwell time is on the order of several nanoseconds, limited only
by the fact that dwell times shorter than fluorophore excited state lifetimes would allow emission
photons to return from multiple excited locations at the same time [13]. Here, by leveraging an all-
optical passive laser scanner based on a concept termed free-space angular-chirp-enhanced
delay (FACED) [14], we demonstrated raster-scanning 2PFM at 1,000 fps and 3,000 fps, with the
pixel dwell time flexibly configured to reach the fluorescence lifetime limit. We applied it to ultrafast
monitoring of calcium activity, glutamate release, and membrane potential with a variety of
genetically encoded activity indicators, and demonstrated ultrafast 2PFM imaging of spontaneous

and sensory-evoked supra- and sub-threshold electrical activity in awake mouse brains in vivo.

The principle of FACED was detailed previously (Fig. 1a) [14]. Briefly, a pulsed laser
beam was focused in 1D by a cylindrical lens and obtained a converging angle A6. It was then
launched into a pair of almost parallel high-reflectivity mirrors with separation S and misalignment
angle «. After multiple reflections by the mirrors, the laser beam/pulse was split into multiple

beamlets/subpulses (N= 46/«) of distinct propagation directions and eventually retroreflected with
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Figure 1: Principles and resolution of a 2PFM with a FACED module. (a) Schematic of a FACED microscope. A
1-MHz collimated femtosecond laser was focused into a nearly parallel mirror pair with a converging angle 46by
a cylindrical lens. After multiple reflections, the misalignment angle « caused the beamlets to retroreflect (e.g., the red
rays). Beamlets at different incidence angles (e.g., red versus gray rays) emerged with distinct propagation directions
and temporal delays. Equivalently, the sequence of multiple beamlets (N = 40/¢) at the output of the FACED module
can be treated as light emanating from an array of virtual sources. These beamlets were then coupled into a 2PFM
and formed (b) an array of spatially separated and temporally delayed foci at the focal plane of a microscope objective.
(c) The focal spot sizes along the X/FACED, Y, and Z axes, measured from 200-nm-diameter fluorescent beads. Error

bars show s.d. from 10 beads; dashed lines indicate the expected axial and lateral resolutions at 1.05 NA.

an inter-pulse temporal delay of 2S/c, with ¢ being the speed of light. After being relayed to enter
a microscope objective, this pulse train formed an array of spatially separated and temporally
delayed foci (Fig. 1b). In a fluorescent sample, they excited two-photon fluorescence in
succession, which could be detected by a photomultiplier tube, sampled at high speed, and
assigned to individual foci and image pixels. Effectively, this passive FACED module allows line

scanning at the repetition rate of the pulsed laser, typically MHz.

In this work, we designed a FACED module and incorporated it into a standard 2PFM
upgraded with a high-speed data acquisition system (625 MS/s) (Supplementary Methods,
Supplementary Fig. 1). Using a 920-nm laser with a 1-MHz repetition rate, our FACED module
produced a line of 80 pulsed foci spanning 50 um each microsecond. The inter-pulse interval was
set at 2 ns to reduce pixel crosstalk due to fluorescence lifetime and detector response time. We
measured the full width at half maxima (FWHMSs) of these foci by imaging 200-nm-diameter

fluorescent beads. From the first to last, the foci were images of virtual sources formed after
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distinct numbers of mirror reflections and located at increasing distances away (Fig. 1a), with the
more distant virtual sources leading to larger beam sizes at the back focal plane of the objective.
As a result, the more temporally delayed pulses had smaller foci along both the lateral and axial
directions (Fig. 1¢). The beams filled the back focal plane more along the Y than X/FACED axis,
resulting in ~0.82 uym (X) and ~0.35 pm (Y) lateral resolution, sufficient to resolve subcellular
structures. With the FACED module providing an 80-pixel line each microsecond, we scanned an
entire frame of 80 x 900 pixels at 1,000 Hz by scanning the Y galvanometer at 500 Hz and
collecting data bidirectionally. An additional X galvanometer allowed us to tile the images to cover

a larger field of view, if desired.

We first used the FACED 2PFM to image calcium dynamics using genetically encoded
calcium indicators GCaMP6s and 6f [2]. At 1 kHz, morphological features were clearly resolved
in individual images (see Supplementary Fig. 2 for representative raw images taken at 1 kHz).
We reliably detected calcium ftransients in GCaMP6s-expressing cultured neurons
(Supplementary Fig. 3 and Video 1) and GCaMP6f-expressing acute mouse brain slices
(Supplementary Fig. 4 and Video 2) that were evoked by extracellular electric stimulation. Due

to its high spatiotemporal resolution, we could clearly resolve neurites in cultured neurons, and in
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one case, we recorded spontaneous calcium releases in neurites which then propagated at 25

um/s across the dendrites (Supplementary Fig. 5 and video 3).

Calcium and Glutamate indicators:

GCaMP6s  GCaMP6f A184V A184V S72A S72A A184V A184V GCaMP6s
Culture Brain slice Culture Culture Culture Culture In vivo In vivo Culture

Fig. S5

S72A
In vivo

Fig. 83 Fig. S4 Fig. 2a Fig. 2b Fig. S6 Fig. 2b

Voltage indicator (ASAP3 in vivo):

Fig. 3a

Fig.3d (1) Fig.3d(2) Fig. 3d (4) Fig. 3h

Fig.S12a  Fig.812b  Fig. S12¢

Fig. 3g Fig. 10 Fig. 3d (3)
Supplementary Figure 2: Representative raw images taken at 1,000 fps for different indicators. Calcium
indicators: GCaMP6s/6f; Glutamate indicators: A184V and S72A variants of SF-iGluSnFR; voltage indicator:
ASAP3-Kv. Scale bar: 20 um.

b Supplementary Figure 3: 1 kHz imaging of
GCaMP6s-expressing cultured neurons.
(@) Morphological image. (b) Calcium
transients of 3 cells in (a) evoked by field
electrode stimulation and recorded at 1,000
fps. Darker lines were 100-point boxcar

averages of the raw traces to guide the eye.

Scale bar: 20 pm.

]
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Supplementary Figure 4: 1 KkHz
imaging of a GCaMP6f-expressing
neuron in an acute brain slice. (a)
AFJF Morphological image. (b) Calcium
50% | 1s transient of the cell in (a) evoked by field
electrode stimulation and recorded at

1,000 fps. Darker line was 50-point

m boxcar average of the raw trace to guide
Stimulus

the eye. Scale bar: 20 pm.
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Supplementary Figure 5: 1 kHz imaging of spontaneous calcium increases in neurites of GCaMP6s-
expressing cultured neurons. (a) Mean intensity projection of 2,000 frames. (b) Temporal color coding of the 2,000
frames highlights the sites where calcium increases were initially observed (white arrowheads). (c) Calcium
transients at the color masked positions in (a), indicating a calcium propagating speed of ~25 um/s. Darker lines

were 50-point boxcar averages of the raw traces to guide the eye. Scale bar: 10 um.
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Figure 2: 1 kHz imaging of genetically encoded glutamate indicator iGluSnFR variants in cultured neurons
and in V1 of awake mice in vivo. (a) (Left) mean intensity projections of cultured neurons expressing either the
A184V or the S72A variants of SF-iGIuSnFR; (Right) transients associated with glutamate release triggered by
extracellular electric stimulation (green dashed line) for structures labeled on the left. (b) (Left) Representative images
of layer 2/3 neurons (depth: 150 — 250 um) expressing either A184V or S72A in V1 of awake mice; (Right) Transients
associated with spontaneous glutamate releases at sites indicated by arrowheads on the left. Here, darker lines were
20-point boxcar averages of the raw traces to guide the eye. Green arrowheads on the traces highlight the fast rising
edge of the glutamate transients. Scale bars: 20 um. “Green hot” lookup table in Imaged was applied to all images.

Post-objective power: 25 — 30 mW for cultured neurons, 40 mW in vivo.
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Clearly, the true power of FACED lies in imaging faster physiological events. Next, we
imaged neurons labeled with the A184V (medium-affinity) and S72A (low-affinity) variants of the
genetically encoded glutamate sensor SF-iGIUSnFR, which are expressed on cell membranes
and report spikes with faster activation and inactivation kinetics than the calcium indicators [15].
FACED 2PFM reliably reported glutamate release events evoked by field stimulation in cultured
neurons (Fig. 2a and Supplementary videos 4-7), as well as spontaneous glutamate release in
L2/3 neurons in the primary visual cortex (V1) of head-fixed awake mice (Fig. 2b and
Supplementary videos 8-9). Both in culture and in vivo, we observed faster dynamics from the
lower-affinity variant S72A than A184V, consistent with their previous characterization by
conventional 2PFM [15]. Imaging the brain in vivo at 1,000 fps, we also observed rapid
movements of fluorescent particles, which transited the field of view at ~1 mm/s (Supplementary
Fig. 6 and Supplementary video 10). We speculated that they were macrophages containing
fluorescent remnants of dead cells, moving rapidly with blood flow in the vasculature. The ability
of FACED 2PFM to capture such rapid events indicates that this method can also be used to

study rapid biological events associated with blood flow.

Supplementary Figure 6: Tracking rapid
movement of a fluorescent particle in the awake
mouse brain in vivo. (a) Morphological image of
layer-2/3 neurons expressing the A184V variant of the
glutamate sensor iGIuSnFR in V1 of an awake mouse.
(b) Time traces at the three pixels indicated by the
three asterisks in (a). (c) Top panel shows the
maximum intensity projection of the 10 image frames
collected at 1 kHz of the boxed region in (a); bottom
panel shows the ten individual frames imaged at 1-ms

intervals. Scale bars: 20 um.

500 ms

WWWMWM«MM mwwln

B L L W b



https://doi.org/10.1101/543058

bioRxiv preprint doi: https://doi.org/10.1101/543058; this version posted December 28, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

h i Z=140 um"
"
\\\\ T

A4y Lk AT

o
Non-preferred E Preferred

Z=125 pm F Orientations %200 ms Orientations [ j

m
/777777777777 20 cells

AF/F(-10%) |

1 z
@ 100 ms

g | | \
) T \
‘N\'N."‘M*rw ‘r.'\,‘*\ W'ﬂ‘ﬂ iu Jv«\“ “M"p ﬂ”»,,,\,\ (\JT,NMM m.r

» 10 spikes |
MJWWWNWMMWWM ;_—.?_sl._u.LL__lL N

# of cells
E

1s 52 57 62
6 45 Cells Delay (ms)
AF/F %3 . n . 4
101 spikes || 3% E 4 S : T :
10ms o 3 10T =
£ m
= | <
1
0

0
Rise Fall AF/F

Number i
of spikes = 200 ;
[

- 1s > - 1s -

Figure 3: 1 kHz imaging of supra- and sub-threshold voltage responses with genetically encoded voltage sensor ASAP3
in V1 of awake mice. (a,b) Representative images of neurons in V1 (a) sparsely or (b) densely labeled with soma-targeted
ASAP3-Kv. (c) Spontaneous voltage traces (SNR, AF/F) from neurons 1 and 2 in (a) and (b), respectively; Green ticks: spikes.
(d) Neurons at different depths of a cortical column and their spontaneous voltage traces. (e) Average of 101 spikes from neuron
2 (orange trace) in (d); (f) Rise time, fall time, and AF/F of spikes (mean % s.d., n=45 cells from 3 mice). (g) 1kHz imaging over
a 50 x 250 um? field of view with four neurons exhibiting distinct spontaneous activity patterns. (h) Voltage traces from a V1
neurons showing orientation selectivity, with more sub- and supra-threshold activity for preferred orientations (black traces) than
for non-preferred orientations (gray traces). (i) Raster plot of spikes for all trials (10 trials for each of 8 grating stimuli) and (j)
polar plot showing the orientation tuning of mean subthreshold AF/F response (red) and spiking rate (black) of the neuron in (h).
(k) Image of two neurons at 345 um depth and (I) their subthreshold AF/F (upper traces, average of 52 trials) and spiking (lower
histograms, 50-ms bins) responses relative to the onset of grating stimuli (red dashed line). (m) Histogram of the time to reach
peak subthreshold voltage responses post stimulus onset from 20 cells in 3 mice. (n) Spiking response relative to stimulus onset.
From top to bottom: raster plot, histogram (50-ms bins), and averaged firing rate (50-ms sliding rectangular windows) of 2747

detected spikes from 617 trials of 20 neurons in 3 mice. Shaded areas: s.d.; Scale bars: (a,b) 50 um; (d,g) 10 um; (h, k) 20 pm.
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Finally and most importantly, we imaged neurons expressing the GEVI ASAP3 [10] in V1
of head-fixed awake mice. Among GEVIs, ASAP-family indicators are currently the only ones to
have reported single spikes in vivo with 2PFM, albeit in a limited number of neurons in the context
of random-access scanning [10, 11, 16]. ASAP3 reports membrane depolarizations and action
potentials as downward deflections in fluorescence. Using the soma-targeted ASAP3-Kv in both
sparsely labeled (Fig. 3a) and densely labeled preparations (Fig. 3b), we observed that
fluorescence was largely concentrated to somata. Imaging these neurons at 1,000 fps
continuously for six seconds, we observed substantial photobleaching (Supplementary Fig. 7).
However, if 1-kHz imaging was carried out in 1-s bouts interleaved with 2.5-s dark periods, ASAP3
fluorescence from individual neurons recovered almost completely between bouts
(Supplementary Fig. 8), allowing us to interrogate voltage responses from the same neurons
repeatedly. Here, we employed both 6-s continuous recordings and intermittent 1-s recordings for
in vivo experiments.
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Supplementary Figure 7: Representative ASAP3-Kv fluorescence photobleaching during 6-s continuous 1KHz
FACED 2PFM imaging. The mean fluoresce intensity for the field of view (FOV) in Fig. 3g during a 6-sec recording.
Imaging depth: 75 um; FOV: 50x250 um?; post-objective power: 35 m\W.
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Supplementary Figure 8: Representative bleaching and recovery dynamics of ASAP3-Kv fluorescence during
intermittent 1-s duration 1KHz FACED 2PFM imaging. Data obtained from ROI 2 in Fig. 3b. (a) Fluorescence
signal change for eight 1-s recordings that were collected with a 2.5-s gap in between. (b) Histogram of the bleaching
and recovery level from 80 1-s 1,000-fps recordings. Bleaching is quantified by the ratio between the mean
fluorescence signal of the last 50 frames and first 50 frames within a sequence of 1,000 frames (0.84 + 0.04). Recovery
is quantified by the ratio of mean fluorescence signal between the n+1" 1,000 frames and nt" 1,000 frames (0.98 +

0.05). Imaging depth: 125 um; FOV: 50x50 um?; post-objective power: 35 mW.
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We extracted fluorescence from pixels representing cell membranes to obtain time-
dependent traces for each neuron. Despite photobleaching, downward signals corresponding to
putative individual action potentials (“optical spikes”) could be easily detected from raw traces in
single trials (Supplementary Fig. 9). After correcting for photobleaching, we calculated the
relative fluorescence change both in terms of signal-to-noise ratio (SNR, AF/\F) and AF/F

(Methods, Supplementary Fig. 9, Fig. 3).
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Supplementary Figure 9: Data processing for in vivo voltage traces. (a) Baseline fluorescence F (red) was
obtained by low-pass filtering (500-ms rolling percentile (50%) filter) of the raw signal trace (black). (b) Raw SNR trace
(AFAF, fluorescence change-to-noise ratio). (c) Smoothened SNR trace obtained by applying a 250-Hz low-pass
Butterworth filter to (b). Optical spikes (green ticks) were identified as local SNR maxima above a spiking threshold
(e.g., 7.5) at least 3 ms apart. (d) Raw AF/F. (e) Smoothened trace representing the subthreshold response obtained
by applying a 50-Hz low-pass Butterworth filter to (d). All traces in Fig. 3 are raw traces as in (b) and (d).
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Supplementary Figure 10: 1 kHz imaging of voltage responses in V1 of awake mice at a 50 x 250 um? FOV. (a)
Dashed red box indicates the FOV for 1kHz FACED imaging; within this FOV, 15 ASAP3-expressing cells were
imaged simultaneously. (b) Voltage traces for the 7 cells labeled in (a). During a 6-s recording, a burst of two spikes
were detected for ROI 1. Note the absence of these spikes in ROIls 2-5, which were in close proximity with ROI 1.

Image depth: 155 um; post-objective power: 75 mW. Scale bar: 50 um.

a b c
£ R - n=192
3
Mﬂw Wyl 3 u
= 8
= 30
= WMMM Vgl W,1 M e /\/\v\A—f\_,\,\,\ o [ _
& W - =
I e | S
w = 20
< T a E
5 2
S ~—/\_/\/\/w\_/— 2
bty 2
=8
oL .
0 0.5 1 0 10 20 30 2 4 6 8 10 12 14 16
Time (s) Frequence (Hz) Frequence (Hz)

Supplementary Figure 11: Imaging the subthreshold oscillations in V1 of awake mice. (a) Representative raw
AF/F traces and (b) their corresponding power spectra from individual neurons. (c) Histogram of the peak oscillation
frequencies (192 traces from 120 cells in three mice).

FACED 2PFM enabled us to detect both suprathreshold and subthreshold membrane
potential variations from neurons in both sparsely and densely labeled brains (Fig. 3c). The ability
of 2PFM to provide high-resolution images in optically opaque brains enabled us to measure
spontaneous voltage activity from neurons located at four different depths down to 305 um below
the dura in the same awake mouse brain (Fig. 3d). In one of these neurons (orange trace, ROI2

of Fig. 3d), we detected a total of 101 isolated spikes in 48 s of recording and obtained an
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averaged spiking profile (Fig. 3e). From the averaged spike waveforms of this and other neurons,
we determined the rise time, the decay time, and the AF/F for single action potentials to be 1.93
+0.51ms, 3.73+1.88ms,and 0.10 £ 0.02 (mean = s.d., n = 45 cells from three mice), respectively
(Fig. 3f). These voltage response characteristics are consistent with those measured from ASAP3

by random-access two-photon microscopy [10].

FACED 2PFM can image a large field of view (FOV) along the Y-axis without
compromising imaging speed. In one example (Fig. 3g), we measured both spontaneous spiking
and subthreshold activity from four neurons within a 50 x 250 ym? FOV, and observed spike
bursts lasting over 1 s in one neuron (purple trace, ROI1 of Fig. 3g). Because two-photon
excitation is restricted to a femtoliter volume at the focal point and fluorescence photons
generated at different locations are detected at different times, there was no cross-pixel
contamination of voltage signals even in immediately neighboring neurons (for an example of
densely labeled brains, see Supplementary Fig. 10). In many recording sessions, we observed
rhythmic subthreshold oscillations in the voltage traces of individual neurons (Supplementary
Fig. 11), with the dominant oscillation frequencies falling within 4-12 Hz, suggesting that they

originated from cortical theta oscillations [17, 18].

FACED 2PFM also detected sensory evoked spiking and subthreshold responses of
primary visual cortical (V1) neurons in awake mice presented with drifting grating visual stimuli of
different orientations. For an orientation-selective neuron that was preferentially activated by
gratings along specific orientations, we observed minimal voltage signal in response to non-
preferred orientations but strong subthreshold as well as spiking activity in response to preferred
orientations (Fig. 3h). From the spiking activity of all trials (ten 1-s trials for each of the eight
gratings, Fig. 3i), we calculated the tuning curve of this neuron (black curve, Fig. 3j). Compared
with the tuning curve calculated from subthreshold responses (red curve, Fig. 3j), the orientation
tuning of spiking activity was sharper. Consistent with previous whole-cell recordings, these
results suggest that spike thresholding sharpens selectivity for action potential output over
subthreshold membrane potential [19, 20]. This same trend was observed in other orientation- as

well as direction-selective neurons (Supplementary Fig. 12).

We also investigated how long it took for visual information to reach V1. In an example
FOV, we found two visually responsive neurons at 345 uym below dura (Fig. 3k). The subthreshold
responses reached their peaks 60 ms and 57 ms after the stimulus onset (i.e., the switch from

dark screen to grating stimuli) (Fig. 3l), respectively. On the population level, the peak
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Supplementary Figure 12: Orientation and direction tuning of neurons in V1 of awake mice. Left panels: FACED
2PFM images of the neurons. Middle panels: Raster plots showing optical spikes detected from each neuron (blue
arrowheads) during the presentation of grating stimuli (10 trials for each of the 8 stimuli). Right panels: Polar plots
showing mean spike rate (black) and average subthreshold AF/F (red) for (a) an orientation-selective and (b,c) two
direction-selective neurons. Shaded areas: standard deviation. Image depth and post-objective power for a, b, c: 140,
170, 130 um; 35, 30, 30 mW. Scale bar: 20 um.

subthreshold response had a latency of 57.3 £ 2.3 ms (mean % s.d., n = 20 cells from 3 mice, Fig.
3m), whereas the spike rate reached its peak 60 ms after stimulus onset (Fig. 3n). These

latencies are consistent with the results measured with electrophysiological methods [21, 22].

In summary, using an all-optical passive laser scanner based on FACED, we achieved
kilohertz-rate full-frame 2PFM imaging of neural activity with subcellular resolution in the mouse
brain in vivo. FACED enabled electrical activity recordings of V1 neurons in awake mice, enabling
characterization of orientation tuning properties and onset times of both subthreshold and spiking
activity evoked by grating stimuli. The average laser power used in these experiments

(Supplementary Table 1), 10-85 mW post objective, remained within the safe range and
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substantially below the threshold for heating-induced damages [23]. We did not observe signs of
photodamages (e.g., blabbing of dendrites) in any of the samples tested, suggesting higher-order
nonlinear photodamage processes to be also minimal. This is expected, because the power of
individual beamlet post objective was ~ 0.1—1 mW and overlaying tissue further reduced the actual
focal energy as a result of scattering loss. Furthermore, subsequent excitation pulses arrived at
the same sample positions after 1-ms delays, providing ample time for the fluorophores to return
from their photodamage-prone dark states back to their ground electronic state, a process that

was previously shown to reduce photobleaching and increase fluorophore brightness [24].

The frame rate of FACED 2PFM can be further increased by simply scanning the Y
galvanometer at higher speeds. Using the 4-MHz 1,035-nm output of our laser system and
scanning the Y galvanometer at 1,500 Hz, we imaged calcium activity in vivo at 3,000 fps with 80
x 1200 pixels per frame (Supplementary Fig. 13, Supplementary Video 11). New developments
in laser systems (e.g., 4-MHz output at 920 nm, now commercially available) or voltage sensors
(e.g., yellow or red variants that can be excited at 1,035 nm) should allow us to image voltage in
vivo at 3,000 Hz as well, if desired. With the current pixel dwell time of 2 ns, FACED 2PFM reaches
the limit on pixel rate imposed by the excited-state lifetime of high-quantum-yield fluorophores.
Further reduction of the pixel dwell time would cause substantial cross-talk between neighboring
pixels, resulting in a decrease in spatial resolution along the FACED axis. However, for activity
imaging of spatially extended ROIs where signals from multiple pixels are averaged, minor cross-

talk should not have a significant impact on activity measurement.

Raw data at 3000 fps Supplementary figure 13: 3 kHz neural activity imaging in

100-point averaging V1 of awake mouse in vivo. (Left) Mean intensity projection

25%

of 9,000 frames recorded in 3 s; (Right) Top panel: a

spontaneous calcium transient from the soma of a cell (red

AFIF

dashed ROI); bottom panel: fluorescence traces within two

ROIs (orange and green ROIs) show calcium propagation

— A along a dendrite. Gray lines: raw data traces; colored lines:
2 N J"V U\jl“ \

fl / "”\A’M 100-point boxcar averaging of the raw traces. Indicator:

Ts f \ GCaMP6s; imaging depth: 125 um; FOV: 50x100 um?; post-

\ [
m;ﬁ Wl M objective power: 90 mW; excitation wavelength: 1035 nm.

As we demonstrated here, by adding a passive FACED module to an existing 2PFM
system, we transformed the microscope into an ultrafast imaging system with kHz frame rate. The
FACED approach is thus readily compatible with conventional galvanometer-based 2PFMs,

which favors its wide dissemination in optical brain imaging research. Following the conventional
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raster scanning strategy (albeit at much higher speeds), FACED 2PFM requires minimal
computational processing, works in both sparsely and densely labeled samples, and is immune
to crosstalk effects or source localization ambiguities observed in computation-based high-speed
imaging techniques [12, 25]. Sampling an entire image plane allows post hoc motion correction,
therefore making FACED 2PFM more resistant to sample motion than random-access 2PFMs.
With existing sensors, FACED 2PFM offers sufficient speed and sensitivity to detect calcium and
glutamate transients from neuronal processes, as well as both spiking and subthreshold voltage
events from cell bodies. Future improvement in brightness and sensitivity of voltage indicators
should further enhance detection of voltage signals in subcellular compartments, which should
allow FACED imaging to fulfill its full potential in interrogating electrical activity in the brain at

synaptic resolution.
METHODS
Animals

All animal experiments were conducted according to the National Institutes of Health guidelines
for animal research. Procedures and protocols on mice were approved by the Institutional Animal

Care and Use Committee at Janelia Research Campus, Howard Hughes Medical Institute.
FACED two-photon fluorescence microscope (2PFM)

The simplified schematic of the FACED 2PFM is shown in Supplementary Fig. 1a. The two-
photon excitation laser source at 920 nm (1 MHz repetition rate, 2 W maximal average output
power, < 100 fs pulse width) was generated by an optical parametric amplifier (Opera-F, Coherent
Inc.) that was pumped by a fiber laser at 1035 nm (Monaco 1035-40-40, 1 MHz or 4 MHz repetition
rate, < 315 fs pulse width, 35 W, Coherent Inc.). After dispersion compensation [26], the laser
beam was expanded with a 2x beam expander (BE0O2M-B, Thorlabs) to 8 mm in diameter. The
beam then passed through a 4 to 5-mm wide slit and was one-dimensionally focused (A6 = 1°) by
a cylindrical lens (LJ1267RM-B, Thorlabs, effective input NA 0.01) into a nearly parallel mirror
pair (a = 0.0125°, reflectivity > 99.9% and GDD<10 fs? per reflection at 920 nm, fused silica
substrate, 250 mm long and 20 mm wide, Layertec GmbH) with a separation of 300 mm. Because
of the misalignment angle «, all the light rays eventually reflected back, following a set of zig-zig
paths determined by their angles of incidence. After the FACED module, the rays (e.g. red rays
in Fig. 1a) subjected to the same number of reflections by the mirror pair formed a single beamlet,

and can be considered as emanating from a virtual light source located far away from the mirror
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pair. In this work, the retroreflected light rays formed 80 beamlets, and had their propagation
distances within the FACED module (or their distance from their respective virtual sources)
monotonically increase from ~10 m to ~60 m. The power throughput of the FACED module was
~40%.

A polarization beam splitter (CCM1-PBS253, Thorlabs) in combination with a half-wave
plate (AHWP05M-980, Thorlabs) and quarter-wave plate (AQWP05M-980, Thorlabs) were used
to direct the spatially and temporally separated pulse trains into a 2PFM. A pair of achromatic
doublets (AC508-500-B and AC508-250-B, Thorlabs) was used to conjugate the focal plan of the
cylindrical lens and the midpoint of a pair of closely and orthogonally arranged X and Y galvo
mirrors (6215H, Cambridge Technology).A scan lens / tube lens pair (SL50-2P2 and TTL200MP,
Thorlabs) were used to conjugate the galvos to the back focal plane of a 25x/1.05 NA water-
dipping objective lens (XLPLN25XWMP2, Olympus) that was mounted on a piezo stage (P-
725K094, Physik Instrumente). The two-photon excited fluorescence signal was collected by the
same microscope objective, reflected by a dichroic mirror (FF665-Di02-25%x36, Semrock), focused
by two lenses (AC508-080-A and LA1951-A Thorlabs), and after passing through an emission
filter (FF01-680/SP, Semrock), detected by a photomultiplier tube without a current protection
circuit (PMT, H7422P-40 MOD, Hamamatsu). The PMT signal was sampled at 625 MS/s with a
high-speed digitizer (2G onboard memory, PXle-5160, National Instruments) embedded in a
chassis (PXle-1071, National Instruments). From the chassis, the data was transferred to and

saved by a desktop computer through a PCle 16x% interface.

By tuning the misalignment angle between the two mirrors (« = 0.0125°, see above), we
generated a sequence of 80 focal spots extending 50 um along the X axis. With the separation
between the two mirrors set at 300 mm, the time delay between adjacent pulses was 2 ns. With
1 MHz repetition rate of the 920 nm output, the FACED module gave rise to a line scan rate of 1
MHz. Using the Y galvo to scan the foci along the direction orthogonal to the X/FACED axis at
500 Hz, and collecting the data bidirectionally, we achieved a frame rate of 1,000 fps with an
effective image size of 80 x 900 pixels. 80 was given by the number of foci in the FACED axis
and 900 was the product of the effective frame time (1 ms frame time minus a 100 us dead time
during mirror turns) and line scan rate. To increase the number of pixels in the FACED/X axis, X
galvo was stepped to tile FACED images and increase the field of view. With 4 MHz 1035 nm
excitation, we scanned the Y galvo at 1,500 Hz and achieved a frame rate of 3,000 Hz with an

effective image size of 80 x 1200 pixels. For morphological imaging, we scanned the Y galvo at
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50 Hz, resulting in a FACED imaging frame rate of 100 fps. (Supplementary Table 1 listed all

the major imaging parameters used in this work).

Supplementary table 1: Major parameters used for FACED imaging at 1 kHz

Figure INRCAtOF FOV Laser Power Imaging
number Y-axis (um) (mW) Depth (um)
Fig.S4 GCaMPs6f 150 40 Brain slice
Fig.2a A184V 150 25
Fig.2a S72A 150 30 N/A
. Culture
Fig.S3 150 20
- GCaMP6s
Fig.S5 50 20
Fig.2b
A184V 150 40 150-250
Fig.S6
Fig.2b S72A 50 40 150-250
Fig.3a 50 35 125
Fig.3b 50 25 125
Fig.3d 50 10 50
Fig.3d 50 85 125
Fig.3d 250 85 200 .
In vivo
Fig.3d 50 55 305
Fig.3g ASAP3 250 35 75
Fig.3h 50 35 140
Fig.3k 50 40 345
Fig.S10 250 75 155
Fig.512a 50 35 140
Fig.S12b 50 30 170
Fig.S12c 50 30 130

The raw data from the digitizer was saved as 1D waveforms. The Gen-1 PCle 16x slot
on the data acquisition computer had a maximal streaming rate of 250 Mb/s, which caused the
data to overflow the on-chip memory of the digitizer after 6 s of data acquisition and thus limited
the data collection to up to 6-s bouts. Upgrading the computer with Gen-3 PCle 16x interface
should allow us to stream data continuously. At 1 kHz frame rate, each image frame had 625 x
900 sampling points, with 100 x 900 data points sampling actual fluorescence excitation by the
FACED foci and used to reconstruct a single image. If desired, multi-line scans were averaged
to generate a single X line in the final image: for a Y-axis range of 150 um, 3 line scans were
averaged to form a single row; for a Y-axis range of 50 um, 9 line scans are averaged. The final
images were motion-registered with an iterative cross-correlation-based registration algorithm
[27]. For morphological imaging, each FACED image frame had 625 x 9000 sampling points (10x

exposure time), and a 10x% increase in line averaging to form the final image.

Analysis of activity data
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We manually selected regions of interests (ROIs) from the averaged images of the registered
image sequence. The mean fluorescent intensity within the ROIs was used to calculate the AF/F
time traces, with F being the baseline fluorescence and AF being the fluorescence change due to
neural activity. In the calcium and glutamate indicator datasets, to calculate the AF/F, we
calculated the baseline fluorescence F by fitting the data points away from the transients (e.g. the

first and last 1000 data points in Fig. 2a) with a single exponential function.

In the voltage indicator datasets, the ROl was selected to cover the cell membrane.
Adjoining membrane segments between neighboring neurons were excluded from the ROI. A
rolling percentile filter (50%, 500 ms window) was applied to the mean-intensity trace of the ROI
to get the fluorescence baseline F (Supplementary Fig. 9) and rare periods with uncorrectable
motion artifacts were discarded. In addition to AF/F traces, we calculated SNR traces as the ratio
between AF (functional change) and \F (Poisson noise) [28]. For spike detection, the SNR traces
were further subjected to a 250-Hz 12t order low-pass Butterworth filter. The threshold for spikes
was initially set at SNR = 7.5 and was manually adjusted if needed. Spikes were identified as
local maxima that were at least 3 ms apart. To calculate the subthreshold activity, raw AF/F traces
were low-pass filtered with a 50-Hz 12" order low-pass Butterworth filter and the mean AF/F value
during the entire duration of sensory stimulation (1-s of drifting grating) was used as the strength
of subthreshold activity. To quantify the temporal dynamics of the optical voltage response, we
aligned the optical spikes from the same neuron at peak response, and measured the rise (10%
to 90%), decay (90% to 10%) and FWHM time from their averaged traces.

Preparation and electric stimulation of primary neuronal culture

Primary neuronal cultures from neonatal rat pups were prepared as described previously [29].
AAV2/1.syn.GCaMP6s (1.8 x 10" GC/ml), AAV.DJ.syn.iGluSnFR.A184V (3 x 102 GC/ml), and
AAV.DJ.syn.iGIluSnFR.S72A (8.0 x 10> GC/ml) were used to label cultured neurons by adding 1
ul of viral solution to each well in 24 well plates with 300 ul medium inside, respectively. After
incubation overnight, 1 ml culture medium was added to each well. Neurons were imaged
between 10 — 21 days post-transfection at room temperature in imaging buffer (145 mM NaCl,
2.5 mM KCI, 10 mM glucose, 10 mM HEPES, 2 mM CaClz, 1 mM MgCl,, pH7.4).

For electric stimulation, cultured neurons in imaging buffer were positioned between two
parallel electrodes separated at ~10 mm. A stimulus isolator (NPIISO-01D100, ALA Scientific

Instruments Inc.) and functional generator (AFG1022, Tektronix Inc.) was used to generate the
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electric field. For each stimulation, a train of 10 pulses (pulse duration: 1 ms; period: 12 ms;

voltage: 50 V) was used to drive the neurons.
Preparation and electric stimulation of acute brain slices

25-week-old male transgenic mice expressing GCaMP6f (scnn1a-TG3-cre x Ai93 x ACTB-tTA)
[30, 31] were decapitated under deep isoflurane anesthesia, and the brain was transferred to an
ice-cold dissection solution containing (in mM): 204.5 sucrose, 2.5 KCI, 1.25 NaH»PO4, 28
NaHCOs, 7 dextrose, 3 Na-pyruvate, 1 Na-ascorbate, 0.5 CaCly, 7 MgCl, (pH 7.4, oxygenated
with 95% CO2 and 5% O-). 350-um-thick coronal slices of the primary visual cortex (V1) were
sectioned using a vibrating tissue slicer (Leica VT 1200S, Leica Microsystems, Wetzlar, Germany).
The slices were then transferred to a suspended mesh within an incubation chamber filled with
artificial cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl, 2.5 KCI, 1.25 NaH2;PO4, 25
NaHCOs3, 25 dextrose, 1.3 CaCl,, 1 MgCl» (pH 7.4, oxygenated with 95% CO, and 5% O-). After

30 — 60 minutes of recovery at 35°C, the chamber was maintained at room temperature.

During imaging, slices were submerged in a recording chamber constantly perfused with
oxygenated ACSF. A micropipette filled with ACSF were used for monopolar stimulation via a
stimulus isolator (NPIISO-01D100, ALA Scientific Instruments Inc.) and a function generator
(AFG1022, Tektronix Inc.). To provide extracellular stimulation, the stimulating electrode was
placed in the proximity of the recorded cell, and a train of 10 pulses (pulse duration: 1 ms; period:

12 ms; current: 300 puA) was applied.
Mouse preparation for in vivo imaging

Mice (females or males, >2-months-old) were housed in cages (in groups of 1 — 5 before surgeries
and in pairs or single housed after) under reverse light cycle. Wild-type (Jackson Laboratories,
Black 6, stock #:000664) as well as Gad2-IRES-cre (Jackson Laboratories, Gad2tm2 (cre) Zjh/J,

stock #: 010802) mice were used.

Virus injection and cranial window implantation procedures have been described
previously [22]. Briefly, mice were anaesthetized with isoflurane (1 — 2% by volume in O,) and
given the analgesic buprenorphine (SC, 0.3 mg per kg of body weight). Animals were head fixed
in a stereotaxic apparatus (Model 1900, David Kopf Instruments). A 3.5-mm diameter craniotomy
was made over the left V1 with dura left intact. A glass pipette (Drummond Scientific Company)
beveled at 45° with a 15 — 20 ym opening was back-filled with mineral oil. A fitted plunger

controlled by a hydraulic manipulator (Narishige, MO10) was inserted into the pipette and used
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to load and slowly inject 30 nl viral solution into the brain (~200 — 400 um below pia). 3 — 6 injection
sites were chosen in the left V1 with 0.3 to 0.5 mm space between injection sites. The following
viral vectors were used to label neurons with different sensors. Labeling with calcium sensor:
AAV2/1.syn.GCaMP6s (1.8 x 10" GC/ml); Dense labeling with glutamate sensors:
AAV.DJ.syn.iGIuSnFR.A184V (3 x 10'2 GC/ml); AAV.DJ.syn.iGIuSnFR.S72A (8.0 x 10'2 GC/ml);
Sparse labeling with glutamate sensors: AAV.DJ.syn.FLEX.iGIuSnFR.A184V (2.8 x 10'® GC/ml)
1:1 mixed with AAV2/1.syn.Cre (500 times diluted from 1.5 x 10" GC/ml);
AAV.DJ.syn.FLEX.iGIuSNnFR.S72A (5.2 x 10> GC/ml) 1:1 mixed with AAV2/1.syn.Cre (500 times
diluted from 1.5 x 10'3 GC/ml); labeling with the voltage sensor: AAV2/9.syn. ASAP3-Kv (1.55 x
102 GC/ml). At the completion of viral injections, a glass window made of a single coverslip
(Fisher Scientific No. 1.5) was embedded in the craniotomy and sealed in place with dental acrylic.
A titanium head-post was then attached to the skull with cyanoacrylate glue and dental acrylic. In
vivo imaging was carried out after at least two weeks of recovery with single or paired housing
and habituation for head fixation. All imaging experiments were carried out on head-fixed awake

mice.
Visual stimulation in head-fixed awake mice

Visual stimuli were presented by a liquid crystal display (22-inch diagonal and 1920 x 1080 pixels).
The screen was positioned at 15 cm from the eye of the mice and orientated at ~40° to the long
axis of the mice. Drifting sinusoidal gratings were presented for 1.5 s at 8 orientations (0° to 315°
at 45° steps) in pseudorandom sequences. Between the grating stimulus, 6s dark screen were
presented. Gratings had 100% contrast and 0.06 cycle per degree and drifted at 2 Hz. During
each 1.5 s stimulation period, a sequence of 1,000 images were recorded from 0 s to 1 s; during
each 6 s dark adaptation period, a sequence of 1,000 images were recorded from 2.5 s to 3.5 s.

A total of 5 or 10 trials were repeated for each stimulus.
Data processing

Unless stated otherwise, all images and data presented here were unprocessed raw images/data,
without smoothing, denoising, or deconvolution. Supplementary Videos 1-10 were collected at
1,000 fps but were binned every 20 or 50 frames (no binning in Supplementary Video 10) and
saved at 20 binned fps for video output by Fiji [32], which was not capable of saving videos at
1,000 fps. Supplementary Video 11 were collected at 3,000 fps but were binned every 60 frames
and saved at 20 binned fps for video output. “Green hot” lookup table in ImagedJ was used for all

images.
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SUPPLEMENTARY VIDEO INFORAMTION

Supplementary video 1: Imaging calcium transients at 1,000 fps in GCaMP6s-expressing
cultured neurons evoked by extracellular electric stimulation. Same data as in Supp. Fig. 3.
The raw image sequence was binned every 50 frames, saved at 20 binned fps, and compressed

for video output.

Supplementary video 2: Imaging calcium transients at 1,000 fps in GCaMP6f-expressing
neurons in acute mouse brain slices evoked by extracellular electric stimulation. Same
data as in Supp. Fig. 4. The raw image sequence was binned every 50 frames, saved at 20 binned

fps, and compressed for video output.
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Supplementary video 3: Imaging spontaneous calcium release events at 1,000 fps in
neurites of GCaMP6s-expressing cultured neurons. Same data as in Supp. Fig. 5. The raw
image sequence was binned every 20 frames, saved at 20 binned fps, and compressed for video

output.

Supplementary videos 4-5: Imaging glutamate transients at 1,000 fps in cultured neurons
expressing A184V variant of iGluSnFR evoked by extracellular electric stimulation. Same
A184V data as in Fig. 2a. The raw image sequence was binned every 50 frames, saved at 20

binned fps, and compressed for video output.

Supplementary videos 6-7: Imaging glutamate transients at 1,000 fps in cultured neurons
expressing S72A variant of iGIluSnFR evoked by extracellular electric stimulation. Same
S72A data as in Fig. 2a. The raw image sequence was binned every 50 frames, saved at 20

binned fps, and compressed for video output.

Supplementary video 8: Imaging glutamate transients of layer 2/3 neurons expressing
A184V variant of iGIuSnFR in V1 of awake mice at 1,000 fps. The white arrow points to the
glutamate releasing site. Same A184V data as in Fig. 2b. The raw image sequence was binned

every 20 frames, saved at 20 binned fps, and compressed for video output.

Supplementary video 9: Imaging glutamate transients of layer 2/3 neurons expressing
S72A variant of iGluSnFR in V1 of awake mice at 1,000 fps. The white arrow points to the
glutamate releasing site. Same S72A data as in Fig. 2b. The raw image sequence was binned

every 20 frames, saved at 20 binned fps, and compressed for video output.

Supplementary video 10: Imaging rapid movement of a fluorescent particle at 1,000 fps in
the layer 2/3 of awake mouse brain in vivo. Same data as in Supp. Fig. 6. A sequence of 50

raw images recorded at 1,000 fps was saved at 20 fps and compressed for video output.

Supplementary video 11: Imaging spontaneous calcium transients of layer 2/3 neurons
expressing GCaMP6s in V1 of awake mice at 3,000 fps. Same data as in Supp. Fig. 14. The
raw image sequence was binned every 60 frames, saved at 20 binned fps, and compressed for

video output.
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