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One Sentence Summary 33 

Single-cell RNA sequencing reveals novel and highly diverse transcriptomic patterns 34 

characteristic of CD4+ T cell responses to tumors. 35 

Abstract 36 

Most current tumor immunotherapy strategies leverage cytotoxic CD8+ T cells. Despite 37 

evidence for clinical potential of CD4+ tumor-infiltrating lymphocytes (TILs), their functional 38 

diversity has limited our ability to harness their activity. To address this issue, we have used 39 

single-cell mRNA sequencing to analyze the response of CD4+ T cells specific for a defined 40 

recombinant tumor antigen, both in the tumor microenvironment and draining lymph nodes 41 

(dLN). Designing new computational approaches to characterize subpopulations, we identify TIL 42 

transcriptomic patterns strikingly distinct from those elicited by responses to infection, and 43 

dominated by diversity among T-bet-expressing T helper type 1 (Th1)-like cells. In contrast, the 44 

dLN response includes follicular helper (Tfh)-like cells but lacks Th1 cells. We identify a type I 45 

interferon-driven signature in Th1-like TILs, and show that it is found in human liver cancer and 46 

melanoma, in which it is negatively associated with response to checkpoint therapy. Our study 47 

unveils unsuspected differences between tumor and virus CD4+ T cell responses, and provides a 48 

proof-of-concept methodology to characterize tumor specific CD4+ T cell effector programs. 49 

Targeting these programs should help improve immunotherapy strategies.  50 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543199doi: bioRxiv preprint 

https://doi.org/10.1101/543199
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Introduction 51 

Immune responses have the potential to restrain cancer development, and most 52 

immunotherapy strategies aim to reinvigorate T cell function to unleash effective anti-tumor 53 

immune responses (1-5). Cytotoxic CD8+ T lymphocytes are being exploited in clinical settings 54 

due to their ability to recognize tumor neo-antigens and kill cancer cells (3, 6). However, 55 

effective anti-tumor immunity relies on a complex interplay between diverse lymphocyte subsets 56 

that remain poorly characterized. CD4+ T helper cells, which are essential for effective immune 57 

responses and control the balance between inflammation and immunosuppression (4, 7-9), have 58 

recently emerged as potential therapeutic targets (4-6, 10-14). CD4+ helper cells contribute to the 59 

priming of CD8+ T cells and to B cell functions in lymphoid organs (4, 15, 16).  CD4+ T helper 60 

type-1 (Th1) cells secrete the cytokine IFN-g and affect tumor growth by targeting the tumor 61 

microenvironment (TME), antigen presentation through MHC class I and II, and other immune 62 

cells (17-22). Conversely, Th2 cells can promote tumor progression and regulatory T cells (Treg) 63 

mediate immune tolerance, suppressing the function of other immune cells and thus preventing 64 

ongoing anti-tumor immunity (23-25). 65 

Despite the anti-tumor potential of CD4+ T cells, disentangling their functional diversity 66 

has been the limiting factor for pre-clinical and clinical progress. While several studies have 67 

assessed the transcriptome of Treg cells or their tumor reactivity (25 , 26-31), the functional 68 

diversity of conventional (non-Treg) tumor-infiltrating lymphocytes (TILs) has remained poorly 69 

understood. Population studies have limited power at identifying new, and especially rare 70 

functional cell states. Conventional single-cell approaches (e.g. flow or mass cytometry) 71 

overcome this obstacle but are necessarily restricted to hypothesis-based targets because of the 72 

number of parameters they can analyze. Furthermore, most previous studies, whether of human 73 

or in experimental tumors, did not distinguish tumor antigen-specific from bystander CD4+ T 74 
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cells, even though bystanders may form the vast majority of conventional (non-Treg) T cells in 75 

the TME (28, 30-35), in particular in draining lymphoid organs, where immune responses are 76 

typically initiated. 77 

To address these challenges, we applied the resolution of single-cell RNA-sequencing 78 

(scRNAseq) to a tractable experimental system assessing tumor-specific responses both in the 79 

tumor and in lymphoid organs, and we designed new computational analyses to identify 80 

transcriptomic similarities. Our analyses dissect the complexity of the CD4+ T cell response to 81 

tumor antigens and identify broad transcriptomic divergences between anti-tumor and anti-viral 82 

responses. Emphasizing the power of this approach, new transcriptomic patterns identified in the 83 

present study are also found in CD4+ T cells infiltrating human tumors and correlate with 84 

response to checkpoint therapy in human melanoma.  85 
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Results and Discussion 86 

Tracking tumor-specific CD4+ T cells 87 

We set up a tractable experimental system to study tumor antigen-specific CD4+ T cells. 88 

We retrovirally expressed the lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP) in 89 

colon adenocarcinoma MC38 cells, using a vector expressing mouse Thy1.1 as a reporter 90 

(Figure S1A). Subcutaneous injection of the resulting MC38-GP cells produced tumors allowing 91 

analysis of immune responses by day 15 after injection. We tracked GP-specific CD4+ T cells 92 

through their binding of tetramerized I-Ab MHC-II molecules associated with the GP-derived 93 

GP66 peptide (36). Such CD4+ cells were found in the tumor and draining lymph node (dLN) of 94 

MC38-GP tumor bearing mice, but neither in non-draining LN (nLN) from MC38-GP mice, nor 95 

in mice carrying control MC38 tumors (Figure S1B). 96 

To study the CD4+ T cell response to tumor antigens, we aimed to produce genome-wide 97 

single cell mRNA expression profiles (scRNAseq) in CD4+ TILs and CD4+ dLN cells. We sorted 98 

GP66-specific T cells from dLNs, as these were the only dLN CD4+ T cells for which tumor 99 

specificity could be ascertained. Among TILs, we noted that ~87% of GP66-specific CD4+ T 100 

cells expressed Programmed Cell Death 1 (PD-1, encoded by Pdcd1, Figure S1C), a marker of 101 

persistent antigenic stimulation (37). Thus, to obtain a broad representation of antigen-specific 102 

TILs, not limited to GP-specific cells, we used PD-1 expression as a surrogate for tumor antigen 103 

specificity and purified tumor CD4+ CD44hi PD-1+ T cells (PD-1hi TIL) for scRNAseq. We 104 

verified critical conclusions of the scRNAseq analyses by flow cytometry, comparing GP66-105 

specific and PD-1hi TILs. 106 

Tumor-responsive CD4+ T cells are highly diverse 107 

We captured GP66-specific dLN and PD-1hi TIL (dLN and TILs hereafter, respectively) 108 

CD4+ cells using the 10x Chromium scRNAseq technology (38); additionally, we captured 109 
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GP66-specific spleen CD4+ T cells from LCMV (Armstrong strain)-infected mice (36) as a 110 

technical and biological reference (Figure S1D, called ‘LCMV cells’ here). We excluded cells of 111 

low sequencing quality (low number of detected genes), potential doublets, and B cell 112 

contaminants, leaving 566 dLN, 730 TIL, and 2163 LCMV CD4+ T cells for further analyses 113 

(Table S1). 114 

We defined groups of cells sharing similar transcriptomic profiles using Phenograph 115 

clustering (39). Consistent with previous studies (40), LCMV cells segregated into follicular 116 

helper (Tfh, providing help to B cells) and type-1 helper (Th1, secreting the cytokine IFN-g) T 117 

cells, among other subsets (Figure S2A). Tfh cells expressed Tcf7 (encoding the transcription 118 

factor Tcf1), Cxcr5, and Bcl6, whereas Th1 cells expressed Tbx21 (encoding the transcription 119 

factor T-bet), Ifng (IFN-g), and Cxcr6. Low resolution clustering identified 5 groups of TILs and 120 

dLN cells (Figure S2B). Groups I and II had features of Th1 cells, although group II differed by 121 

higher expression of the chemokine receptor Cxcr3 and lower expression of Ifng. Group III 122 

expressed genes typical of Treg cells, including Foxp3 and Il2ra, encoding CD25 (IL-2Ra). 123 

Groups IV and V expressed Tfh cell genes, including Bcl6 and Cxcr5, and group IV Ccr7, which 124 

preferentially marks memory cell precursors at the early phase of the immune response (40, 41). 125 

To further dissect these populations, we developed a user-independent, data-driven 126 

approach to increase clustering resolution while controlling for false discovery. Applying such 127 

high-resolution clustering separately to TILs and dLN cells, we identified 15 clusters (TIL 128 

clusters t1-t7 and dLN clusters n1-n8), refining the original five main groups (Figure 1A). 129 

Revealing unexpected diversity among Th1-like TILs, group I and II resolved into 5 130 

subpopulations, including a distinct cluster (t5) expressing higher levels of Il7r (encoding IL-131 

7Ra) and lower levels of Tbx21 and Ifng. Only cluster group III (Tregs) included both TIL and 132 

dLN cells, which expressed variable levels of Tbx21. Groups IV and V, the bulk of dLN cells, 133 
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resolved into 5 and 2 clusters, respectively. Consistent with flow cytometric analysis, dLN cells 134 

neither expressed high levels of T-bet, the product of Tbx21, nor exhibited Th1 attributes; in 135 

contrast, most TILs expressed T-bet, even if at various levels (Figure 1A and S2C, D). 136 

To support these observations, we analyzed pooled TILs and dLN cells by t-Distributed 137 

Stochastic Neighbor Embedding (t-SNE), a dimensionality reduction approach that positions 138 

cells on a two-dimensional grid based on transcriptomic similarity (42). Although performed on 139 

the pooled populations, t-SNE recapitulated the minimal overlap between TIL and dLN 140 

transcriptomic patterns (Figure 1B, left), irrespective of parameter selection (Figure S2E) and 141 

even after controlling for potential confounders (Figure S2F and Supplementary Note and 142 

Figure). Remarkably, cluster groups I-V almost completely segregated from each other when 143 

projected on the t-SNE plot (Figure 1B, right). Overlay of gene expression confirmed co-144 

localization of cells expressing cluster-characteristic genes (Figure 1C).  145 

To verify the robustness of these observations, we analyzed a biological replicate 146 

consisting of 1123 TILs and 675 dLN GP66-specific cells captured from a separate set of tumors 147 

(Figure S2G and Table S1). Because batch-specific effects can confound co-clustering from 148 

distinct experiments, we separately clustered cells from each replicate. To compare these 149 

clusters, we evaluated the correlation between cluster-specific fold-change (FC) vectors, defined 150 

internally to each replicate, that recorded expression of each gene in a cluster relative to all other 151 

clusters in that replicate. We found significant inter-replicate matches for most clusters (Figure 152 

1D), supporting the reproducibility of the underlying transcriptomic patterns. Thus, scRNAseq 153 

analysis of tumor-specific CD4+ T cells identifies an unsuspected diversity of transcriptomic 154 

programs in the TME and dLN. 155 

Correlation analyses mitigate tissue-context-specific factors  156 
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Comparison of TILs, dLN, and LCMV cells showed little overlap, including between 157 

TILs and dLN cells (Figure S2H, left). Thus, we considered that the impact of tissue of origin 158 

could be the primary driver of clustering and mask commonalities in effector programs. Indeed, 159 

most TIL subpopulations had attributes of tissue residency, including low S1pr1 and Klf2 160 

expression, and high expression of Cd69, contrasting with LCMV and most tumor dLN clusters 161 

(Figure 1E) (43). Only group III Tregs, and separately cells undergoing cell cycle, clustered 162 

together regardless of origin (Figure S2H, right). This prompted us to search for potential 163 

underlying similarities among these disparate transcriptomic patterns. We found that data 164 

integration approaches designed to uncover similarities across experimental conditions could not 165 

overcome the separation resulting from biological context (Figure S3A), and could miss 166 

functionally relevant differences (e.g. between Foxp3+ and Foxp3– TILs, Figure S3B) (44). 167 

Thus, we considered the correlation analysis used above for cluster matching. This analysis 168 

distributed the 40 reproducible clusters (out of a total of 47 from all experiments) into 6 ‘meta-169 

clusters’ (with manual curation attaching meta-cluster 1b to 1a), of which four (meta-clusters 1, 170 

3, 5 and 6) comprised cells of more than one tissue context (Figure 2A and Table S2). Thus, the 171 

correlation analysis establishes relatedness among transcriptomic patterns identified by 172 

conventional clustering. 173 

Characterizing transcriptomic similarities 174 

We further characterized the meta-clusters by identifying their defining overexpressed 175 

genes. In addition to Foxp3 and Il2ra, genes driving meta-cluster 3 (Treg, group III) included 176 

Ikzf2, Tnfrsf4, encoding Ox40, and Icos, which we verified by flow cytometry (Figures 1E, 2B 177 

left, and 2D). In contrast, Gzmb (encoding the cytotoxic molecule Granzyme B) and Lag3 were 178 

overexpressed in TIL Tregs relative to dLN Tregs (and to other TIL subsets) (Figure 2B right, 179 
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C, E). Thus, the similarity analysis both confirmed the shared Treg circuitry across TILs and 180 

dLN and identified TIL-specific Gzmb cytotoxic gene expression in TIL Tregs. 181 

Contrasting with Treg clusters, the correlation analysis failed to detect similarities between 182 

the three groups of T-bet-expressing cells. These cells, which showed heterogeneous Tbx21 183 

levels, were distributed into meta-clusters 2 (TILs group II, t3-4), 4 (LCMV cells) and 6 (TILs 184 

group I, t1-2) (Figure 2A). The two TIL meta-clusters showed multiple differences from 185 

LCMV-responsive Th1 cells, including higher expression of Il12rb, Il7r and Il10ra, and distinct 186 

patterns of transcription factor, chemokine and chemokine receptor expression. Relative to the 187 

other T-bet-expressing cells, TILs group II (t3-4) differed by high expression of multiple type I 188 

IFN-induced genes, including transcription factors Irf7 and Irf9 (Figure 2F top, 2G, S3C). Co-189 

expression of these genes with T-bet was unexpected, as T-bet normally repress genes induced 190 

by type I IFN (68). We designated group II t3-4 as interferon stimulated clusters (Isc). Group I 191 

t1-2 TIL clusters (Th1 hereafter) specifically expressed Lag3 and Killer Cell Lectin (Klr) genes 192 

(Figure 2F bottom, 2G, S3C), characteristic of terminally differentiated effector cells (45). 193 

Flow cytometry verified that Th1 TILs did not express the Natural Killer (NK) T cell-specific 194 

transcription factor PLZF, indicating they were not NK T cells (Figure S3D). Compared to Isc, 195 

Th1 clusters had higher expression of Bhlhe40, a transcription factor controlling inflammatory 196 

Th1 fate determination (46, 47). A recent study of human colon cancer identified a CD4+ TIL 197 

Th1 subset with elevated Bhlhe40 expression (31). This subset is clonally expanded and enriched 198 

in tumors with micro-satellite instability, suggesting specificity for tumor antigens. The mouse 199 

Th1 TILs identified in our study had higher expression of 40 genes from the human colon TIL 200 

Th1 signature, including Bhlhe40 and Lag3 (Table S3), with a significant (p=0.001) skewing 201 

towards this signature detected by GSEA (48). However, mouse Th1 TILs lacked expression of 202 
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other components of the human signature, including Gzmb and Irf7, suggesting that the impact of 203 

Bhlhe40 expression on TIL transcriptomes is in part context-specific. 204 

Meta-cluster 6 unexpectedly associated Th1 TILs and a dLN Ccr7+ cluster (Group IV 205 

cluster n5) (Figure 2A), suggesting a potential link between TILs and dLN. The association was 206 

driven by transcriptional regulators Bhlhe40 and Id2, and TNF superfamily members Tnfsf8 207 

(encoding CD30L) and Tnfsf11 (RANKL) (Figures 3A and 1E). The potential connection 208 

between Ccr7+ dLN cells and Th1 TILs was specific to Ccr7+ cluster n5, which segregated from 209 

n6 and other dLN subsets (Tfh and Treg) based on higher expression of Ifng (but not Tbx21) and 210 

Cd200 (Figure 3B). Flow cytometry identified a corresponding CD200hi subset among Cxcr5lo 211 

Ccr7+ but not Cxcr5+ Ccr7– (Tfh) GP66-specific cells (Figure 3C, S3E and S3F). dLN Ccr7+ 212 

clusters t5-6 shared features with central memory precursor CD4+ T cells (Tcmp) identified in 213 

LCMV infection (40) (Table S3 and Figure 1E). This includes expression of Tcf7, a 214 

transcription factor important to prevent T cell terminal differentiation and for CD8+ T cells 215 

responsiveness to PD-1 blockade (49-56). However, the correspondence between MC38-GP dLN 216 

Ccr7+ clusters and the LCMV Tcmp signature was only partial (Table S3). 217 

Meta-cluster 1 comprised LCMV Tfh clusters and dLN group V Tfh clusters (Figure 2A). 218 

We verified that the abundance of dLN Tfh cells was similar in mice carrying MC38-GP and 219 

MC38 tumors (Figure S3G), indicating that this response is not a consequence of GP expression. 220 

Flow cytometric analysis confirmed key Tfh attributes in dLN and LCMV cells (Figure 3D), 221 

although dLN Tfh cells differed from LCMV-responsive Tfh cells by lower expression of Icos 222 

and the upregulation of the transcription factor Maf (Figure 3E, 1E and S3H). Unexpectedly, 223 

meta-cluster 1 associated the dLN and LCMV Tfh clusters with TIL group II cluster t5, 224 

characterized by Il7r expression (Figures 2A and 1A), based in part on intermediate expression 225 

of Tcf7 (1.6 fold relative to other TIL subpopulations) (Figure 3F and 1E). Flow cytometric 226 
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analysis confirmed the abundance of GP66-specific IL-7R+ TILs (Figure 3G). In addition, the 227 

Tcf7int t5 cluster showed expression of the transcription factor Klf2 and its downstream target 228 

Sphingosine-1-phosphate receptor 1 (S1pr1). This indicated retention of a cell trafficking 229 

transcriptional program (57) (Figure 3F and 1E) and contrasted with the interferon-driven Isc 230 

TILs. Thus, we designated cluster t5 of group II TILs as putative non-resident cells (nRes 231 

hereafter). 232 

To further delineate the relationships between cell clusters, we used Reversed Graph 233 

Embedding (58), which has been used to estimate progression through transcriptomic states. This 234 

placed the dLN Tfh and TIL Th1 and Isc at the end of an inferred path (Figure 3H), nRes TILs 235 

in the middle of the continuum and Ccr7+ dLN cells between Tfh and nRes. These analyses, 236 

combined with the similarities described by meta-clustering, support the notion that the tumor-237 

responsive CD4+ T cell response may be characterized as a transcriptomic continuum; they 238 

confirm the transcriptomic distance between Th1 and Isc TILs, even though both subsets express 239 

T-bet, the Th1-defining factor. 240 

TILs subpopulation-specific dysfunction gene programs  241 

We reasoned that expression of a dysfunction-exhaustion program (59, 60) may account 242 

for the limited relatedness between LCMV and TIL Th1 cells, as TILs expressed multiple 243 

exhaustion marks (Figure 4A), and were sorted for PD-1 expression for scRNAseq. To assess 244 

the impact of exhaustion on TIL subpopulation, we defined TIL Th1, Isc, nRes and Treg gene 245 

signatures as the genes preferentially expressed in each subpopulation relative to all other TILs 246 

(Table S4). We found a significant overlap between multiple viral-response exhaustion gene 247 

signatures (MSigDB) (61) and the Th1 and Treg signatures (Table S5). Separate analysis of a 248 

previously reported gene signature characterizing CD4+ T cell dysfunction during chronic 249 
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infection (62) indicated a significant overlap with the Isc signature, but not with Th1 and Treg 250 

signatures (Figure S4A, Table S6).  251 

The latter result suggested heterogeneous expression of exhaustion genes among TIL 252 

subsets. We tested this possibility using a broader set of exhaustion genes shared across cancer 253 

and chronic infection (63). 55 genes from this set were also part of TIL Th1, Isc, or Treg 254 

signatures. However, their overlap was heterogeneous, identifying dysfunction programs specific 255 

of TIL subpopulations (Figure 4B, Table S6). Of note, we did not detect overlap between any 256 

dysfunction-exhaustion signature and nRes TILs (Figure 4B, Table S6). This is in line with 257 

these cells’ residual expression of Tcf7, which in CD8+ T cells marks cells with conserved 258 

responsiveness (52-54, 64). 259 

The Isc IFN signature correlates with poor clinical prognosis in human tumors 260 

Last, we examined if MC38-GP TIL transcriptomic patterns were observed in human 261 

tumors. We analyzed published CD4+ Human liver cancer TILs (TILHLC) scRNAseq data pooled 262 

across six treatment-naive patients (28). High resolution clustering separated the TILHLC cells 263 

into 11 clusters, which could be combined into groups displaying features of Th1, Isc, Treg TILs 264 

and cells undergoing cell cycle (Figure 4C). While pooled analysis of CD4+ PD-1+ TILs from 265 

MC38-GP tumors (TIL) with TILHLC only identified similarities between cells undergoing cell 266 

cycle (Figure S4B and S4C), cluster correlation analysis indicated significant similarities 267 

between Tregs, cell cycle, and Isc clusters from TIL vs. TILHLC (Figure 4D, top). We focused on 268 

the Isc pattern, which differed the most from previously reported Th1 and Treg transcriptomic 269 

profiles.  We found a significant overlap of overexpression patterns between TIL Isc and their 270 

human counterpart, including type I IFN-induced genes and Irf7 (65) (Figure 4D, bottom and 271 

Table S7). Thus, the Isc signature newly identified among mouse CD4+ TILs is found in human 272 

tumors. 273 
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These finding were not unique to liver tumors, as analysis of CD4+CD3+ human melanoma 274 

TILs  across 48 lesions (TILMel) (33) identified a cluster enriched in Isc characteristic genes, 275 

among other populations (Figure S4D). To investigate the relationships between Isc 276 

transcriptomic program and clinical prognosis, we evaluated the association between the 277 

expression in TILMel of Isc signature genes (defined in MC38-GP TILs) and patient response to 278 

checkpoint therapy. Relative to responders, non-responsive tumors had significantly higher 279 

fractions of cells expressing Isc signature genes (49 out of 108 genes, adjusted p-value < 0.05), 280 

including Stat1, Irf7 and Irf9 (Figure 4E and Table S8). This indicated negative association 281 

between the Isc transcriptomic program and patient response to checkpoint therapy. Thus, the 282 

methods used in the present study identify transcriptomic programs shared by multiple tumor 283 

types and of potential prognostic significance. 284 

In summary, using scRNAseq and data-driven computational approaches, the present study 285 

identifies an unsuspected diversity among tumor-responding CD4+ T cells. While recent 286 

scRNAseq studies had shed light on the Treg component of CD4+ TILs (28, 30-32), our study 287 

assessed the transcriptomic patterns of both regulatory and conventional components, in the 288 

tumor itself and in draining lymphoid organs. We identify new transcriptomic patterns and find a 289 

heterogeneous distribution of exhaustion gene signatures among TILs subtypes, highlighting the 290 

need for extensive analyses of cell-specific effects of treatments targeting exhaustion genes. 291 

Even though most conventional (Foxp3–) tumor-responsive TILs express T-bet, the Th1-292 

defining transcriptional regulator, our study identifies novel and diverse transcriptomic patterns 293 

with unexpectedly little similarity to prototypical virus-responsive Th1 cells. Thus, conventional 294 

helper effector definitions, derived from studies of responses to infection, are inaccurate 295 

descriptors of responses to tumors. The newly identified Th1-like transcriptome with marks of 296 

type I IFN stimulation, a driver of inflammation and immunosuppression in cancer (66), 297 
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highlights this conclusion: it was observed among TILs but not LCMV-responding cells, even 298 

though LCMV drives a strong type I IFN innate immune response (67). Our cluster similarity 299 

analysis projects this interferon-responsive transcriptomic pattern onto human tumors, 300 

overcoming potential sample disparity, and demonstrates its association with response to 301 

checkpoint therapy.  302 

Investigating tumor-specific T cell responses in draining lymphoid organs revealed 303 

striking differences with TILs. The absence of Th1 cells from tumor dLN was unexpected and 304 

contrasted with infections, including with LCMV or with Leishmania major, a typical Th1-305 

driving parasite with kinetics of clinical progression similar to that of experimental tumors, and 306 

in which Th1 dLN cells are important contributors to the response (69). In contrast, the tumor 307 

elicited strong, tumor-specific Foxp3-negative Tfh-like responses in dLN. While Tfh 308 

differentiation may divert T cells from more efficient (e.g. IFNg-producing) anti-tumor 309 

differentiation, it provides support for the tantalizing possibility that tumor-elicited B cell 310 

responses could be exploited against cancer (70). It is also possible that this subset includes a 311 

stem cell-like component similar to the Cxcr5+ CD8+ dLN T cells that serve as targets for 312 

immunotherapy targeting PD-1 signaling (52), or cells with similar properties in the tumor 313 

micro-environment (54). 314 

In conclusion, this study provides a high-resolution characterization of tumor-reactive 315 

CD4+ T cell responses in lymphoid organs and the tumor microenvironment. We identify 316 

previously unrecognized transcriptomic patterns among tumor-specific T cells and provide an 317 

extensive mapping of the CD4+ T cell immune response against cancer. We describe new 318 

analytical approaches of broad applicability, including to clinical data, that combine high 319 

resolution dissection of transcriptomic patterns and synthetic data integration to identify 320 

correspondences between apparently unrelated cell differentiation states.  321 
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Materials and Methods 322 
 323 

Mice. C57BL/6 mice were purchased from the National Cancer Institute Animal 324 

Production Facility and were housed in specific pathogen-free facilities. Animal procedures were 325 

approved by the NCI Animal Care and Use Committee. 326 

Cell lines and constructs. MC38 murine colon cancer cell lines (71) were obtained from 327 

Jack Greiner’s lab and cultured in DMEM that contained 10% heat-inactivated FCS, 0.1 mM 328 

nonessential amino acids, 1 mM sodium pyruvate, 0.292mg/ml L-glutamine, 100 pg/ml 329 

streptomycin, 100 U/mL penicillin, 10mM Hepes. MC38-GP cells were generated as follows: 330 

LCMV-gp gene was amplified from pHCMV-LCMV-Arm53b (addgene#15796) and inserted 331 

into pMRX-IRES-Thy1.1 by BamH1 and Not1. Then pMRX-Thy1.1 contained LCMV-gp gene 332 

was transfected into Plat E cell to package retrovirus. MC38 cell line was transduced by above 333 

retrovirus collection and followed by single cell sorting in 96-well plate after 48hs. The 334 

monoclonal cell lines were identified by flow cytometry and western blot. 335 

LCMV infection model and Tumor model. 2 x 105 pfu of LCMV Armstrong (36) were 336 

injected intra-peritoneal in 6-12 weeks old C57BL/6 mice. Mice were analyzed 7 days post 337 

infection. MC38 and MC38-GP tumor cells (0.5 × 106) were subcutaneously injected into the 338 

flank of C57BL/6 mice. 339 

Antibodies. Antibodies for the following specificities were purchased either from 340 

Affymetrix Becton-Dickinson Pharmingen or ThermoFisher Ebiosciences: CD4 (RM4.4 or 341 

GK1.5), CD8β (H35-17.2), CD45.2 (104), CD45 (30-F11), TCRβ (H57-597), CD5 (53-7.3), 342 

B220 (RA3-6B2), Siglec F (E50-2440), NK1.1 (PK136), CD11b (M1/70), CD11c (N418),  343 

CD44 (356 IM7), IL7R (A7R34), CCR7 (4B12), CXCR5 (SPRCL5), Bcl6 (K112-91), Lag3 344 

(C9B7W), Cxcr6(SA051D1), CD25(PC61.5), CD278(7E,17G9), PD-1 (J43), Foxp3(FJK-16s), 345 
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Granzyme B(FGB12), Tbet (4B10), CD200(OX-90). Streptavidin, MHC tetramers loaded with 346 

the Toxoplasma gondii AS15 (72) and LCMV GP66 peptides (AVEIHRPVPGTAPPS and 347 

DIYKGVYQFKSV, respectively) were obtained from the NIH Tetramer Core Facility. 348 

Cell preparation and flow cytometry. Lymph node and spleen were prepared and stained 349 

as previously described (73). For TIL preparation, tumors were dissected 14 to 18 days post-350 

injection, washed in HBSS, cut into small pieces, and subjected to enzymatic digestion with 351 

0.25mg/ml liberase (Roche) and 0.5mg/ml DNAase I (SIGMA) for 30 minutes at 37 degrees. 352 

The resulting material were passed through 70um filters and pelleted by centrifugation at 353 

1500rpm. Cell pellets were resuspended in 44% Percoll (GE Healthcare) on an underlay of 67% 354 

Percoll, and centrifuged for 20min at 1600 rpm without brake. TILs were isolated from the 355 

44%/67% Percoll interface. Following isolation, cells were blocked with anti-FcγRIII/FcγRII 356 

(unconjugated, 2.4G2) and subsequently stained for flow cytometry. Staining for AS15:I-Ab 357 

tetramer, GP66:I-Ab tetramer and CXCR5 was performed at 37 degrees for 1 hour prior to 358 

staining for other cell surface markers. For intracellular staining, cell surface staining were 359 

preformed first, following fixation using the Foxp3-staining kit (eBioscience). Flow cytometry 360 

data was acquired on LSR Fortessa cytometers (BD Biosciences) and analyzed with FlowJo 361 

(TreeStar) software. Dead cells and doublets were excluded by LiveDead staining (Invitrogen) 362 

and forward scatter height by width gating. Purification of lymphocytes by cell sorting was 363 

performed on a FACS Aria or FACS Fusion (BD Biosciences).  364 

Single cell RNAseq. 3000-13000 T cells sorted from LCMV infected or tumor-bearing 365 

mice were loaded on the Chromium platform (10X Genomics) and libraries were constructed 366 

with a Single Cell 3′ Reagent Kit V2 according to the manufacturer instructions. Libraries were 367 

sequenced on multiple runs of Illumina NextSeq using paired-end 26x98bp or 26x57bp to reach 368 

a sequencing saturation greater than 70% resulting in at least 49000 reads/cell.   369 
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scRNA-seq data pre-processing. De-multiplexing, alignment to the mm10 transcriptome 370 

and unique molecular identifier (UMI) calculation were performed using the 10X Genomics 371 

Cellranger toolkit (v2.0.1, http://software.10xgenomics.com/single-cell/overview/welcome). Pre-372 

processing, dimensionality reduction and clustering analyses procedures were applied to each 373 

dataset (that is, specific tissue origin in each experiment) independently to account for dataset-374 

specific technical variation such as sequencing depth and biological variation in population 375 

composition, as follows. We filtered out low quality cells with fewer than 500 detected genes 376 

(those with at least one mapped read in the cell). Potential doublets were defined as cells with 377 

number of detected genes or number of UMIs above the 98th quantile (top 2% owing to up to 2% 378 

estimated doublets rate in the 10X Chromium system). Potentially senescent cells (more than 379 

10% of the reads in the cell mapped to 13 mitochondrial genes) were also excluded. Library size 380 

(𝐿𝑆#, number of UMIs in cell j) normalization and natural log transformation were applied to 381 

each cell library, i.e., 𝑛𝑜𝑟𝑚#
( = 	 ln -

./01
2

341
+ 17, to quantify the expression of gene i in cell j, 382 

where 𝑟𝑎𝑤#( is the number of reads for gene i in cell j. 383 

Dimensionality reduction. Highly variable genes were defined as genes with greater than 384 

one standard deviation of the dispersion from the average expression of each gene. However, to 385 

account for heteroscedasticity, variable genes were identified separately in bins defined based on 386 

average expression. PCA analysis was performed on the normalized expression of the set of 387 

dataset-specific highly variable genes. We selected the top PCs based on gene permutation test 388 

(74). ‘Barnes-hut’ approximate version of t-SNE (75) (perplexity set to 30, 10k iterations) was 389 

applied on the top PCs to obtain a 2D projection of the data for visualization.  390 

Gene signature activation quantification. Gene signature activation was quantified 391 

relative to a technically similar background gene set as described in (76). Briefly, we identify the 392 
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top 10 most similar (nearest neighbours) genes in terms of average expression and variance, then 393 

define the signature activation as the average expression of the signature genes minus the 394 

average expression of the background genes. GP66 tetramer staining signature definition is 395 

described in Supplementary Note. Additionally, we defined lists of ribosomal, mitochondrial, 396 

and cell cycle genes (77) for confounder controls (Table S10). 397 

High resolution clustering. Phenograph clustering (39) using the top PCs (see 398 

dimensionality reduction) was performed independently on each dataset to allow full control of 399 

the clustering resolution based on dataset-specific coverage and heterogeneity features. The 400 

clustering resolution (number of clusters) is controlled by the K nearest neighbour (KNN) 401 

parameter. We designed a simulation analysis to estimate the optimal clustering resolution, i.e., 402 

at what resolution the clustering is superior in quality to clustering driven by technical biases 403 

inherent to scRNAseq, as follows. Here we define the clustering quality as the clustering 404 

modularity reported by Phenograph, which indicates intra-cluster compactness and inter-cluster 405 

separation. The simulations consist of repeating the clustering analysis on 100 shuffled 406 

expression matrices to estimate the ‘null’ distribution of the clustering quality, where the gene 407 

expression measurements are permuted within each cell to retain the cell-specific coverage 408 

biases. We repeated this process for varying value of the KNN parameter k to compare the 409 

clustering modularity of the original 𝑂;	to the shuffled 𝑆; data. The final resolution was defined 410 

as the maximal resolution where <=
4=
≥ 2. Pooled clustering analysis (joint rather than separated 411 

by dataset) and visualization was performed using PCA on the aggregate list of highly variable 412 

genes defined on each dataset. Clustering was done with and without controlling for confounding 413 

factors (number of UMIs, number of detected genes and gene signatures activation of ribosomal, 414 

mitochondrial, cell cycle and GP66 staining signature). Clustering analysis of TILs, dLN, and 415 

LCMV cells showed little overlap even after correcting for potential confounders. 416 
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After obtaining the initial clusters and identifying the overexpressed genes in each cluster, 417 

we apply two filters: (1) we exclude small clusters of B cells (CD79+ populations) from each 418 

dataset. (2) We identify PCs driven by B cell marker genes and remove the individual cells 419 

whose expression profile has high scores for those PCs (outliers). We then repeat the entire 420 

processing and clustering to prevent detecting highly variable genes and PCs driven by 421 

contaminations, which may in turn reduce the signal of other small populations of interest. 422 

Differential expression analysis and population matching. Differential expression was 423 

performed using Limma (version 3.32.10). We initially performed differential expression 424 

analysis between each cluster against the pool of all other clusters within a given dataset. 425 

Identified clusters were labelled as a known T cell subtype if the majority of the known subtype-426 

defining genes were differentially over-expressed in that cluster. We then matched populations 427 

across experiments to assess the reproducibility of the populations and to uncover similarities 428 

across datasets that are masked due to overall tissue-context-specific differences. To reduce the 429 

effects of tissue-context-specific effects on the similarity calculation, we used the fold change 430 

(FC) measure of each gene 𝐹𝐶BC =
〈EF.GB.FHIJK〉
〈M/C;B.FHIJK〉

 (average of gene g in cluster c (foreground) 431 

relative to all other clusters (background) of the same dataset). Then we measured the Pearson 432 

correlation between the FC vectors of all pairs of clusters across datasets. We compare this 433 

approach with an alternative approach that uses Euclidean distances between the average 434 

expression vectors, defined as average expression of all genes in a cluster and a recent data 435 

integration approach (44) following tutorial specifications 436 

[https://satijalab.org/seurat/immune_alignment.html; version 2.0.1]. 437 

Robust cluster calling and robust population comparisons. For each dataset, we defined 438 

‘robust clusters’ as those that had highly similar match in the biological replicate. High similarity 439 
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is defined as Pearson correlation coefficient greater than ~1.28 standard deviations from the 440 

mean for each dataset, corresponding to nominal p-value of 0.1. Hierarchical clustering was 441 

performed on the identified robust clusters using the inter-cluster similarity matrix, where the 442 

similarity was defined as above using the Pearson correlation between the FC vectors. Using the 443 

vector of average expression vectors did not achieve similar result; specifically, using 444 

hierarchical clustering of the Euclidean distances between the clusters average expression vector 445 

retained the grouping of clusters based on origin tissue (Figure S3A). We then analyzed 446 

differential expression patterns for clusters belonging to each meta-cluster, excluding cell cycle 447 

clusters. For a given pair of clusters of interest, A and B in datasets X and Y respectively, we 448 

performed three differential expression analyses: (1) differential expression in A relative to other 449 

clusters in X, (2) differential expression in B relative to other clusters in Y, and (3) differential 450 

expression in A relative to B. In addition to average expression differences, we quantified the 451 

detection rate of gene X as proportion of cells where 1 or more reads was mapped to X and 452 

prioritized differentially expressed genes exhibiting also differential detection across conditions. 453 

This analysis was performed for the two replicates separately and the results interpreted jointly; a 454 

gene was deemed as over-expressed in cluster A in tissue X if it is over-expressed relative to 455 

other clusters in X as well as relative to B, in both replicates. 456 

scRNAseq contour plots. Normalized scRNAseq expression measurements were 457 

visualized as contours, where zero (0) values were assigned random value drawn from a normal 458 

distribution centered around 0. 459 

Reversed Graph Embedding. Trajectory analysis of TIL populations (group I and II, 460 

excluding group III Tregs) was performed using Monocle (version 2.9.0, parameters 461 

max_components = 2, method = DDRTree). 462 
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Gene signature definition. For each TIL subpopulation (group I Th1, group II Isc, group 463 

II nRes and group III Treg) we selected overexpressed genes exhibiting differential detection (as 464 

defined above) relative to all other TILs across both experiments (Table S4). 465 

Correspondence to human data. Human liver cancer TIL scRNAseq counts were 466 

downloaded from GEO [GSE98638]. Non-CD4+ T cells were filtered based on the classification 467 

in the original publication (28). Human gene symbols were translated to Mouse gene symbols 468 

using package biomaRt (version 2.37.8). Pre-processing, clustering and population matching 469 

analysis were applied as described above. Human melanoma TILs data scRNAseq counts were 470 

downloaded from GEO [GSE120575]. We selected CD4+ T cells as cells with at least one 471 

mapped read to CD4 and [CD3D or CD3E or CD3G], following the authors definition (33). 108 472 

out of 136 Isc signature genes were mapped to human gene symbols. The detection rate of each 473 

Isc signature gene (as defined above) in each lesion were used to assess differential detection 474 

across responders and non-responders. We used two-sided Wilcoxon test to quantify the 475 

significance of differential activation. 476 

Correspondence with external gene signatures. Gene set enrichment analysis of 477 

immunologic gene signatures was performed using mSigDB (61) [C7: immunologic signatures 478 

database with clusterProfiler package (version 3.4.3). All other gene signatures were downloaded 479 

from the original publication’s supplementary materials. Correspondence to Tcmp signature was 480 

performed by differential expression of dLN Ccr7+ clusters n5-6 relative to other dLN and TIL 481 

(n1, n7-8, t1-7) rather than dLN subpopulations alone to satisfy the background conditions used 482 

in the original publication. The heterogeneity of the IL-27 co-inhibitory gene signature (63) was 483 

evaluated by analyzing differential gene expression across Th1, Isc, and Treg TIL, indicating 484 

which genes are preferentially expressed in one subpopulation versus the others.  485 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543199doi: bioRxiv preprint 

https://doi.org/10.1101/543199
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

Acknowledgments  486 

We thank Melanie S. Vacchio for cell sorting; Mariah Balmaceno-Criss and Qi Xiao for 487 

animal genotyping; Jack Greiner for the MC38 cell line; the NIH tetramer facility for reagents; 488 

the CCR Flow Cytometry Core for expert assistance; Yasmine Belkaid and Avinash Bhandoola 489 

for thoughtful discussions; Jonathan Ashwell, John O’Shea, Nicholas Restifo, Eytan Ruppin and 490 

Xin Wang for critical reading of the manuscript; and David Goldstein, Mariam Malik and the 491 

NCI Office of Science and Technology Resources for their support. This work used the NIH 492 

High performance computing cluster and was supported by the Intramural Research Program of 493 

the National Cancer Institute, Center for Cancer Research, National Institutes of Health. 494 

Author contributions 495 

A.M., J.N., T.C., S.H. and R.B. designed research; A.M. designed and developed 496 

computational (bioinformatic) pipelines; A.M. and J.N. and T.C. performed research and 497 

analyzed data. S.T. guided TIL isolation procedures. D.M. provided advice on LCMV biology 498 

and LCMV viral stocks. M.M., Y. Z., and B.T. contributed to scRNA-seq capture. A.M. and 499 

R.B. wrote the manuscript with contributions from J.N. and S.H. S.H. and R.B. supervised the 500 

research. 501 

Competing interests 502 

The authors declare no competing interests. 503 

Data and code availability 504 

Data was deposited in [GEO GSE124691]. The computational pipeline is available on 505 

[https://github.com/asmagen/MagenSingleCell]. The pipeline requires access to Slurm high-506 

performance computing core for efficient simulation analyses.  507 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543199doi: bioRxiv preprint 

https://doi.org/10.1101/543199
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

References 508 
 509 
1. A. Ribas, J. D. Wolchok, Cancer immunotherapy using checkpoint blockade. Science 359, 510 

1350-1355 (2018). 511 
2. T. F. Gajewski, H. Schreiber, Y. X. Fu, Innate and adaptive immune cells in the tumor 512 

microenvironment. Nat Immunol 14, 1014-1022 (2013). 513 
3. S. A. Rosenberg, N. P. Restifo, Adoptive cell transfer as personalized immunotherapy for 514 

human cancer. Science 348, 62-68 (2015). 515 
4. J. Borst, T. Ahrends, N. Babala, C. J. M. Melief, W. Kastenmuller, CD4(+) T cell help in 516 

cancer immunology and immunotherapy. Nat Rev Immunol 18, 635-647 (2018). 517 
5. S. C. Wei et al., Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 518 

Checkpoint Blockade. Cell 170, 1120-1133 (2017). 519 
6. P. A. Ott et al., An immunogenic personal neoantigen vaccine for patients with melanoma. 520 

Nature 547, 217-221 (2017). 521 
7. J. A. Bluestone, C. R. Mackay, J. J. O'Shea, B. Stockinger, The functional plasticity of T 522 

cell subsets. Nat Rev Immunol 9, 811-816 (2009). 523 
8. J. Zhu, H. Yamane, W. E. Paul, Differentiation of effector CD4 T cell populations (*). 524 

Annu Rev Immunol 28, 445-489 (2010). 525 
9. S. Sakaguchi, T. Yamaguchi, T. Nomura, M. Ono, Regulatory T cells and immune 526 

tolerance. Cell 133, 775-787 (2008). 527 
10. E. Tran et al., Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient 528 

with epithelial cancer. Science 344, 641-645 (2014). 529 
11. N. N. Hunder et al., Treatment of metastatic melanoma with autologous CD4+ T cells 530 

against NY-ESO-1. N Engl J Med 358, 2698-2703 (2008). 531 
12. E. H. Aarntzen et al., Targeting CD4(+) T-helper cells improves the induction of antitumor 532 

responses in dendritic cell-based vaccination. Cancer Res 73, 19-29 (2013). 533 
13. N. Malandro et al., Clonal Abundance of Tumor-Specific CD4(+) T Cells Potentiates 534 

Efficacy and Alters Susceptibility to Exhaustion. Immunity 44, 179-193 (2016). 535 
14. D. Mumberg et al., CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo 536 

by indirect effects of IFN-gamma. Proc Natl Acad Sci U S A 96, 8633-8638 (1999). 537 
15. T. Ahrends et al., CD4(+) T Cell Help Confers a Cytotoxic T Cell Effector Program 538 

Including Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness. 539 
Immunity 47, 848-861 e845 (2017). 540 

16. S. Crotty, A brief history of T cell help to B cells. Nat Rev Immunol 15, 185-189 (2015). 541 
17. Z. Qin, T. Blankenstein, CD4+ T cell--mediated tumor rejection involves inhibition of 542 

angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic 543 
cells. Immunity 12, 677-686 (2000). 544 

18. G. Beatty, Y. Paterson, IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-545 
infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J Immunol 166, 546 
2276-2282 (2001). 547 

19. L. Tian et al., Mutual regulation of tumour vessel normalization and immunostimulatory 548 
reprogramming. Nature 544, 250-+ (2017). 549 

20. T. Kammertoens et al., Tumour ischaemia by interferon-gamma resembles physiological 550 
blood vessel regression. Nature 545, 98-+ (2017). 551 

21. E. Alspach, D. M. Lussier, R. D. Schreiber, Interferon gamma and Its Important Roles in 552 
Promoting and Inhibiting Spontaneous and Therapeutic Cancer Immunity. Cold Spring 553 
Harb Perspect Biol,  (2018). 554 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543199doi: bioRxiv preprint 

https://doi.org/10.1101/543199
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

22. R. Bos, L. A. Sherman, CD4(+) T-Cell Help in the Tumor Milieu Is Required for 555 
Recruitment and Cytolytic Function of CD8(+) T Lymphocytes. Cancer Research 70, 556 
8368-8377 (2010). 557 

23. D. G. DeNardo et al., CD4(+) T cells regulate pulmonary metastasis of mammary 558 
carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91-102 559 
(2009). 560 

24. A. Tanaka, S. Sakaguchi, Regulatory T cells in cancer immunotherapy. Cell Res 27, 109-561 
118 (2017). 562 

25. J. L. Chao, P. A. Savage, Unlocking the Complexities of Tumor-Associated Regulatory T 563 
Cells. J Immunol 200, 415-421 (2018). 564 

26. M. De Simone et al., Transcriptional Landscape of Human Tissue Lymphocytes Unveils 565 
Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity 45, 1135-1147 (2016). 566 

27. G. Plitas et al., Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. 567 
Immunity 45, 1122-1134 (2016). 568 

28. C. Zheng et al., Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell 569 
Sequencing. Cell 169, 1342-1356 e1316 (2017). 570 

29. S. Malchow et al., Aire-dependent thymic development of tumor-associated regulatory T 571 
cells. Science 339, 1219-1224 (2013). 572 

30. M. Ahmadzadeh et al., Tumor-infiltrating human CD4(+) regulatory T cells display a 573 
distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol 4,  574 
(2019). 575 

31. L. Zhang et al., Lineage tracking reveals dynamic relationships of T cells in colorectal 576 
cancer. Nature 564, 268-272 (2018). 577 

32. E. Azizi et al., Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor 578 
Microenvironment. Cell 174, 1293-1308 e1236 (2018). 579 

33. M. Sade-Feldman et al., Defining T Cell States Associated with Response to Checkpoint 580 
Immunotherapy in Melanoma. Cell 175, 998-1013 e1020 (2018). 581 

34. T. Duhen et al., Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells 582 
in human solid tumors. Nat Commun 9,  (2018). 583 

35. Y. Simoni et al., Bystander CD8(+) T cells are abundant and phenotypically distinct in 584 
human tumour infiltrates. Nature 557, 575-+ (2018). 585 

36. M. Matloubian, R. J. Concepcion, R. Ahmed, Cd4(+) T-Cells Are Required to Sustain 586 
Cd8(+) Cytotoxic T-Cell Responses during Chronic Viral-Infection. J Virol 68, 8056-8063 587 
(1994). 588 

37. Y. Agata et al., Expression of the PD-1 antigen on the surface of stimulated mouse T and 589 
B lymphocytes. Int Immunol 8, 765-772 (1996). 590 

38. G. X. Zheng et al., Massively parallel digital transcriptional profiling of single cells. Nat 591 
Commun 8, 14049 (2017). 592 

39. J. H. Levine et al., Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like 593 
Cells that Correlate with Prognosis. Cell 162, 184-197 (2015). 594 

40. T. Ciucci et al., The Emergence and Functional Fitness of Memory CD4(+) T Cells Require 595 
the Transcription Factor Thpok. Immunity 50, 91-105 e104 (2019). 596 

41. M. Pepper, M. K. Jenkins, Origins of CD4(+) effector and central memory T cells. Nat 597 
Immunol 12, 467-471 (2011). 598 

42. G. H. Laurens van der Maaten, Visualizing Data using t-SNE. Journal of Machine 599 
Learning Research, 2579-2605 (2008). 600 

43. L. K. Mackay, A. Kallies, Transcriptional Regulation of Tissue-Resident Lymphocytes. 601 
Trends Immunol 38, 94-103 (2017). 602 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543199doi: bioRxiv preprint 

https://doi.org/10.1101/543199
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

44. A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell 603 
transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 604 
36, 411-420 (2018). 605 

45. N. S. Joshi, S. M. Kaech, Effector CD8 T cell development: A balancing act between 606 
memory cell potential and terminal differentiation. Journal of Immunology 180, 1309-1315 607 
(2008). 608 

46. F. Yu et al., The transcription factor Bhlhe40 is a switch of inflammatory versus 609 
antiinflammatory Th1 cell fate determination. J Exp Med 215, 1813-1821 (2018). 610 

47. H. Sun, B. F. Lu, R. Q. Li, R. A. Flavell, R. Taneja, Defective T cell activation and 611 
autoimmune disorder in Stra13-deficient mice. Nature Immunology 2, 1040-1047 (2001). 612 

48. A. Subramanian et al., Gene set enrichment analysis: A knowledge-based approach for 613 
interpreting genome-wide expression profiles. P Natl Acad Sci USA 102, 15545-15550 614 
(2005). 615 

49. G. Jeannet et al., Essential role of the Wnt pathway effector Tcf-1 for the establishment of 616 
functional CD8 T cell memory. Proc Natl Acad Sci U S A 107, 9777-9782 (2010). 617 

50. L. Gattinoni et al., Wnt signaling arrests effector T cell differentiation and generates CD8+ 618 
memory stem cells. Nature medicine 15, 808-813 (2009). 619 

51. X. Y. Zhou et al., Differentiation and Persistence of Memory CD8(+) T Cells Depend on 620 
T Cell Factor 1. Immunity 33, 229-240 (2010). 621 

52. S. J. Im et al., Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. 622 
Nature 537, 417-421 (2016). 623 

53. J. Brummelman et al., High-dimensional single cell analysis identifies stem-like cytotoxic 624 
CD8(+) T cells infiltrating human tumors. J Exp Med 215, 2520-2535 (2018). 625 

54. I. Siddiqui et al., Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties 626 
Promote Tumor Control in Response to Vaccination and Checkpoint Blockade 627 
Immunotherapy. Immunity 50, 195-211 e110 (2019). 628 

55. S. Kurtulus et al., Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-629 
1(-)CD8(+) Tumor-Infiltrating T Cells. Immunity 50, 181-194 e186 (2019). 630 

56. S. A. Nish et al., CD4+ T cell effector commitment coupled to self-renewal by asymmetric 631 
cell divisions. J Exp Med 214, 39-47 (2017). 632 

57. C. M. Carlson et al., Kruppel-like factor 2 regulates thymocyte and T-cell migration. 633 
Nature 442, 299-302 (2006). 634 

58. C. Trapnell et al., The dynamics and regulators of cell fate decisions are revealed by 635 
pseudotemporal ordering of single cells. Nat Biotechnol 32, 381-386 (2014). 636 

59. E. J. Wherry, M. Kurachi, Molecular and cellular insights into T cell exhaustion. Nat Rev 637 
Immunol 15, 486-499 (2015). 638 

60. D. S. Thommen, T. N. Schumacher, T Cell Dysfunction in Cancer. Cancer Cell 33, 547-639 
562 (2018). 640 

61. A. Liberzon et al., The Molecular Signatures Database (MSigDB) hallmark gene set 641 
collection. Cell Syst 1, 417-425 (2015). 642 

62. A. Crawford et al., Molecular and transcriptional basis of CD4(+) T cell dysfunction during 643 
chronic infection. Immunity 40, 289-302 (2014). 644 

63. N. Chihara et al., Induction and transcriptional regulation of the co-inhibitory gene module 645 
in T cells. Nature 558, 454-459 (2018). 646 

64. T. Wu et al., The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and 647 
maintain T cell stemness. Sci Immunol 1,  (2016). 648 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543199doi: bioRxiv preprint 

https://doi.org/10.1101/543199
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

65. H. Ikushima, H. Negishi, T. Taniguchi, The IRF family transcription factors at the interface 649 
of innate and adaptive immune responses. Cold Spring Harbor symposia on quantitative 650 
biology 78, 105-116 (2013). 651 

66. L. M. Snell, T. L. McGaha, D. G. Brooks, Type I Interferon in Chronic Virus Infection and 652 
Cancer. Trends Immunol 38, 542-557 (2017). 653 

67. L. P. Cousens et al., Two Roads Diverged: Interferon α/β– and Interleukin 12–mediated 654 
Pathways in Promoting T Cell Interferon γ Responses during Viral Infection. The Journal 655 
of Experimental Medicine 189, 1315-1328 (1999). 656 

68. S. Iwata et al., The Transcription Factor T-bet Limits Amplification of Type I IFN 657 
Transcriptome and Circuitry in T Helper 1 Cells. Immunity 46, 983-991 e984 (2017). 658 

69. Y. Belkaid et al., A natural model of Leishmania major infection reveals a prolonged 659 
"silent" phase of parasite amplification in the skin before the onset of lesion formation and 660 
immunity. J Immunol 165, 969-977 (2000). 661 

70. Y. Carmi et al., Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-662 
cell immunity. Nature 521, 99-U254 (2015). 663 

71. T. H. Corbett, D. P. Griswold, Jr., B. J. Roberts, J. C. Peckham, F. M. Schabel, Jr., Tumor 664 
induction relationships in development of transplantable cancers of the colon in mice for 665 
chemotherapy assays, with a note on carcinogen structure. Cancer Res 35, 2434-2439 666 
(1975). 667 

72. H. S. Grover et al., The Toxoplasma gondii Peptide AS15 Elicits CD4 T Cells That Can 668 
Control Parasite Burden. Infect Immun 80, 3279-3288 (2012). 669 

73. L. Wang et al., The zinc finger transcription factor Zbtb7b represses CD8-lineage gene 670 
expression in peripheral CD4+ T cells. Immunity 29, 876-887 (2008). 671 

74. A. Buja, N. Eyuboglu, Remarks on Parallel Analysis. Multivariate Behav Res 27, 509-540 672 
(1992). 673 

75. L. van der Maaten, Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine 674 
Learning Research 15, 3221-3245 (2014). 675 

76. A. L. Haber et al., A single-cell survey of the small intestinal epithelium. Nature 551, 333-676 
+ (2017). 677 

77. M. S. Kowalczyk et al., Single-cell RNA-seq reveals changes in cell cycle and 678 
differentiation programs upon aging of hematopoietic stem cells. Genome Res 25, 1860-679 
1872 (2015). 680 

  681 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2019. ; https://doi.org/10.1101/543199doi: bioRxiv preprint 

https://doi.org/10.1101/543199
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Figures 682 

 683 

Fig. 1: Characterization of CD4+ TIL, dLN and LCMV transcriptomes by scRNAseq. 684 
(A-D) TILs and dLN cells from WT mice at day 14 post MC38-GP injection analyzed by 685 

scRNAseq. (A) Heatmap shows row-standardized expression of selected genes across TIL and 686 
dLN clusters. Bar plot indicates the number of cells in each cluster relative to the total TIL or 687 
dLN cell number. (B) tSNE display of TILs and dLN cells, grey-shaded by tissue origin (left) or 688 
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color-coded by main group (right, as defined in A). (C) tSNE (TIL and dLN cell positioning as 689 
shown in B) display of normalized expression levels of selected genes. (D) Heatmap shows 690 
Pearson correlation between clusters’ FC vectors (as defined in text) across the two replicate 691 
experiments for TILs (left) and dLN (right). 692 

(E) TILs, dLN and LCMV cells from replicate experiments I and II analyzed by 693 
scRNAseq. Heatmap shows row-standardized expression of selected genes across clusters. 694 
Group II (purple) t5 separated into a distinct component from t3-4 (as defined in text).  695 
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 696 

Fig. 2: Treg and Th1-like transcriptomic patterns. 697 
(A) Heatmap defines meta-clusters based on Pearson correlation between TIL, dLN and 698 

LCMV cluster FC vectors (as defined in text) (left). Indicator tables show tissue origin and cell 699 
type color-code per cluster (right). 700 

(B-E) Comparison of dLN Tregs and TIL Tregs (respectively clusters t6-7 and n1 as shown 701 
in Fig. 1A). (B) Contour plots of dLN Treg (orange) or TIL Treg (blue) cell distribution 702 
according to scRNAseq-detected normalized expression of Icos vs. Tnfrsf4 (left) and Gzmb vs. 703 
Lag3 (right). (C) Violin plot of Lag3 and Gzmb scRNAseq expression in Treg vs. non-Treg TIL 704 
and dLN populations (Unpaired T test, ** p < 0.01, *** p < 0.001); bands indicate quartiles 705 
(25th, 50th and 75th quantile). (D) Overlaid flow cytometry expression of ICOS in Foxp3+ TILs 706 
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and dLN cells and Foxp3+ or Foxp3- CD4+ splenocytes from tumor-free control mice. (E) Flow 707 
cytometry contour plots of Granzyme B vs. LAG3 in Foxp3+ TILs and Foxp3+ dLN cells. 708 

(F-G) Comparison of TIL Th1 and Isc (respectively clusters t1-2 and t3-4 as shown in Fig. 709 
1A) to LCMV Th1 (as shown in Fig. 1E and S2A) (F) Contour plots of Th1 (orange) and Isc 710 
(blue) TIL distribution according to scRNAseq-detected normalized expression of Irf7 vs. Ifit3b 711 
(top) and Klrc1 vs. Lag3 (bottom). (G) Heatmap shows row-standardized expression of 712 
differentially expressed genes across TILs group II Isc, TILs group I Th1 and LCMV Th1.  713 
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 714 

Fig. 3: Transcriptomic continuum between TIL and dLN tumor-reactive cells. 715 
(A) Violin plots of differentially expressed genes across TILs group I Th1, dLN group IV 716 

Ccr7+ (respectively clusters t1-2 and n5 as shown in Fig. 1A) and all other TIL and dLN 717 
populations. 718 

(B) Heatmap shows row-standardized expression of differentially expressed genes across 719 
dLN Ccr7+ clusters (group IV n5-6) and other dLN clusters (Treg and Tfh clusters n1 and n7-8, 720 
respectively). 721 
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(C) Top panel shows flow cytometry contour plots of CXCR5 vs. CCR7 in Foxp3- dLN cells. 722 
Bottom panel shows overlaid protein expression of BCL6 and CD200 in CCR7+ and CXCR5+ 723 
dLN cells and naive CD4+ splenocytes from tumor-free control mice. 724 

(D) Flow cytometry contour plots of CXCR5 vs. PD-1 in dLN and LCMV cells. 725 
(E) Contour plot of dLN (red, clusters n7-8) and LCMV (blue) Tfh cell distribution 726 

according to scRNAseq-detected normalized expression of Icos vs. Maf (top). Overlaid protein 727 
expression of ICOS in dLN and LCMV PD-1+CXCR5+ (Tfh) cells and naive CD4+ splenocytes 728 
from tumor-free control mice (bottom). 729 

(F) Heatmap shows row-standardized expression of differentially expressed genes across 730 
TILs Isc and nRes clusters (as defined in text, group II t3-4 and t5, respectively) and all other 731 
TIL clusters (Th1 and Treg clusters t1-2 and t6-7, respectively). 732 

(G) Fractions of IL7R+Foxp3- cells out of total PD-1+ or GP66+ TILs. 733 
(H) Trajectory analysis of PD-1+ TILs and GP66+ dLN cells indicating individual cells 734 

assignment into a transcriptional continuum trajectory. nRes cluster (t5) is color-coded in orange 735 
in contrast to annotations in other figures.  736 
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 737 

Fig. 4: Correspondence to human data and dysfunction gene signatures. 738 
(A) Heatmap shows row-standardized expression of selected exhaustion genes across TIL, 739 

dLN and LCMV clusters from replicate experiments I and II. 740 
(B) Analysis of IL-27 signature genes overlapping with TIL subpopulation characteristic 741 

genes. Heatmap shows Pearson correlation (left) and row-standardized expression of overlapping 742 
genes across TIL Th1, Treg, Isc and nRes cells (respectively clusters t1-2, t6-7, t3-4 and t5 as 743 
shown in Fig. 1A) (right). 744 

(C) Analysis of human liver cancer TILHLC. Heatmap shows row-standardized expression of 745 
selected genes across TILHLC clusters. 746 
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(D) Heatmap defines meta-clusters based on Pearson correlation between TILHLC and MC38-747 
GP TIL clusters (top). Overlap of genes characteristic of human liver TIL Isc cluster with mouse 748 
TIL Isc gene signature (bottom). 749 

(E) Analysis of human melanoma TILMel. Box plots show the percentage of cells expressing 750 
selected interferon signaling characteristic genes in CD4+CD3+ cells across responding and non-751 
responding lesions (Unpaired Wilcoxon test, * p < 0.05, ** p < 0.01, *** p < 0.001).  752 
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 753 

 754 

Fig. S1: Characterization of antigen-specific CD4+ T cell responses in MC38 colon 755 
adenocarcinoma tumors. 756 

(A) Left panel shows overlaid protein expression of Thy1.1 in MC38 and MC38-GP cells. 757 
Right panel shows immunoblot analysis of GP protein expression in HEK293T cells, HEK293T 758 
cells transfected with pMRX-GP-IRES-Thy1.1 plasmid, MC38 cells or MC38-GP cells. 759 
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(B) C57BL/6 mice were subcutaneously injected MC38 or MC38-GP cells and analyzed at 760 
day 14 post-injection. Left panel shows flow cytometry contour plots of GP66 vs. control (AS15 761 
peptide from T. gondii) class II tetramer staining in TILs, dLN and nLN from MC38 and MC38-762 
GP tumor-bearing mice. Right panel shows the number of GP66+ TILs per gram of tumor and 763 
total number of GP66+ dLN and nLN cells, separately for MC38 and MC38-GP tumor-bearing 764 
mice (Unpaired Mann-Whitney U test, ** p < 0.01, *** p < 0.001, NS: not significant). 765 

(C) Top panel shows flow cytometry contour plots of GP66 tetramer staining vs. PD-1 in 766 
TILs. Bottom panel shows the percentage of PD-1+ cells out of GP66+ TILs. 767 
(D) GP66-specific CD44hi CD4+ splenocytes were isolated from WT animals 7 days post-768 
infection with LCMV Armstrong. Protein expression contour of populations used for scRNAseq 769 
captures from MC38-GP tumor-bearing mice (left: TILs PD-1 vs. CD44, middle: dLN GP66 vs. 770 
AS15 control) and LCMV Armstrong infected mice (right: GP66 vs. CD44).  771 
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 772 

Fig. S2: Characterization of immune responses to LCMV and MC38-GP by scRNAseq. 773 
(A) GP66-specific CD4+ splenocytes from WT animals 7 days post-infection with LCMV 774 

Armstrong analyzed by scRNAseq. Heatmap shows row-standardized expression of selected 775 
genes across LCMV clusters. 776 

(B-G) TILs and dLN cells from WT mice at day 14 post MC38-GP injection analyzed by 777 
scRNAseq. (B) Heatmap shows row-standardized expression of selected genes across main TIL 778 
and dLN groups (as defined in text). (C) Flow cytometry contour plots of Foxp3 vs. Tbet in 779 
CD44hi GP66+ dLN cells (left) and in CD44hiCD4+ splenocytes from tumor-free mice control 780 
(right). (D) Flow cytometry contour plots of Foxp3 vs. Tbet in PD-1+ and GP66+ TILs (left) and 781 
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in CD44hi CD4+ splenocytes from tumor-free mice control (right). (E) tSNE display of TILs and 782 
dLN cells generated using different parameter combination of perplexity and number of 783 
iterations, grey-shaded by tissue origin. (F) tSNE displays of TILs and dLN cells, grey-shaded 784 
by tissue origin, post confounder correction for number of unique molecular identifiers (UMIs) 785 
and expression of ribosomal and mitochondrial coding genes (left) or TCR engagement on dLN 786 
cells as a result of GP66-tetramer-based purification (right). (G) scRNAseq analysis of TILs and 787 
dLN cells from replicate experiment II. Heatmap shows row-standardized expression of selected 788 
genes across TIL and dLN clusters (left). tSNE display of TILs and dLN cells, grey-shaded by 789 
tissue origin (right). 790 

(H) TILs, dLN and LCMV cells from replicate experiments I and II analyzed by scRNAseq. 791 
tSNE plots show TILs, dLN, and LCMV cells, grey-shaded by origin (left) or color-coded by 792 
Treg or cell-cycle (Cycle) clustering assignment (grey for all other clusters) (right).  793 
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 794 

Fig. S3: Assessment of tissue-context-specific effects on clustering analyses and TILs-dLN 795 
heterogeneity. 796 

 (A-C) TILs, dLN and LCMV cells from replicate experiments I and II analyzed by 797 
scRNAseq. (A) Heatmap shows Euclidean similarity between cluster-specific average expression 798 
vectors (as defined in text) (left) annotated with cluster origin and cluster group or type (right). 799 
(B) Bar plot shows relative cluster composition of Foxp3+ or Foxp3- TILs and Foxp3- LCMV (no 800 
Foxp3+ cells found in GP66+ LCMV) after applying a data integration approach (44). (C) 801 
Heatmap shows row-standardized expression of TIL Isc and Th1 characteristic genes across TIL, 802 
dLN and LCMV clusters. 803 
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(D) Overlaid protein expression of PLZF in GP66+ and PD-1+ TILs and CD44hi NK1.1+ DN 804 
(double negative CD4-CD8-) thymocytes from tumor-free control mice. 805 

(E) Mean fluorescence intensity (MFI) of BCL6 and CD200 in CXCR5+ or CCR7+GP66+ 806 
dLN cells relative to naive CD4+ splenocytes from tumor-free control mice (Unpaired t-test, ** p 807 
< 0.005, **** p < 0.0001). 808 

(F) Percentage of CD200hi cells out of CCR7+CXCR5+ dLN cells. 809 
(G) Top panel shows flow cytometry contour plots of CXCR5 vs. PD-1 in CD44hi CD4+ dLN 810 

cells from MC38 and MC38-GP tumor-bearing mice. Bottom panel shows percentage of Tfh 811 
cells out of total CD44hi CD4+ T cells in dLN (left) and total number of Tfh cells (right). 812 

(H) Mean fluorescence intensity (MFI) levels of ICOS in LCMV Tfh and dLN Tfh relative to 813 
naive CD4+ splenocytes from tumor-free control mice (Unpaired t-test, p < 10-5).  814 
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815 
Fig. S4: Correspondence to human data and dysfunction gene signatures. 816 

(A) Heatmap shows row-standardized expression of selected exhaustion genes across TIL 817 
Th1, Treg and Isc clusters (respectively clusters t1-2, t6-7 and t3-4 as shown in Fig. 1A). 818 

(B-C) Analysis of TILHLC and TILs (as defined in text). (B) tSNE plots show cells grey-819 
shaded by origin. (C) tSNE plots show cells color-coded by cell cycle signature activation level. 820 
(D) Analysis of TILMel (as defined in text). Heatmap shows row-standardized expression of 821 
selected TIL characteristic genes across TILMel clusters.  822 
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Supplementary Note 823 

GP66-tetramer binding results in potential cross-linking of and signaling by the TCR of GP66-824 

specific T cells. To model the transcriptomic effect of TCR engagement as a result of GP66-825 

tetramer-based purification, we sought to compare LCMV-specific CD4+ T cells obtained either 826 

after GP66-tetramer purifcation or without tetramer-based purification. To enrich in such cells 827 

without tetramer staining, we noted that ~94% of GP66-specific CD4+ splenocytes from LCMV-828 

infected mice express little or no IL7R [IL-7 receptor a chain] (Suppl. Note Figure A). Thus, 829 

we considered that most CD44hiCD4+Il7R+ splenocytes were not LCMV-specific, and sorted 830 

CD44hi IL7R– (LCMV IL7R–) T cells for scRNAseq; in addition to antigen-specific CD44hi  831 

GP66-tetramer purified (LCMV GP66+) T cells (Suppl. Note Figure B). Pooled clustering of the 832 

two samples revealed 2 (out of 6) clusters heavily dominated by stained cells (Suppl. Note 833 

Figure C, top), suggesting staining bias limited to those clusters. As expected from GP66 834 

tetramer engagement with the TCR, GP66-specific clusters were characterized by genes involved 835 

in T cell receptor signaling and NFKB signaling (Table S9), while clusters containing cells from 836 

both samples displayed features of Tfh and Th1 cells (Suppl. Note Figure C, bottom). We 837 

designated the GP66-characteristic genes as the TCR engagement GP66 signature (Table S10) 838 

and regressed the activation scores of the signature from the expression matrix using a linear 839 

regression model fitted to each gene. 840 
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 841 

Supplementary Note Figure: Transcriptomic effects of TCR engagement as a result of 842 
GP66-tetramer-based purification. 843 

(A-B) Analysis of CD4+ splenocytes from C57BL/6 animals 7 days post-infection with 844 
LCMV Armstrong. (A) Flow cytometry contour plot of GP66 tetramer staining vs. IL7R in CD4+ 845 
LCMV cells. (B) Flow cytometry contour plots of IL7R vs. CD44 (for LCMV IL7R- sample, 846 
left) and GP66 vs. CD44 (for LCMV GP66+ sample, right). 847 
(C) LCMV IL7R- and LCMV GP66+ cells analyzed by scRNAseq. Heatmap shows row-848 
standardized expression of selected genes across pooled LCMV IL7R- and LCMV GP66+ clusters 849 
(bottom). Bar plot indicates the number of LCMV IL7R- and LCMV GP66+ cells in each cluster 850 
relative to the total number of cells (top). 851 
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