
Hu and Friedberg

SwiftOrtho: a Fast, Memory-Efficient, Multiple
Genome Orthology Classifier
Xiao Hu

and Iddo Friedberg*

*Correspondence:
idoerg@iastate.edu
Department of Veterinary
Microbiology and Preventive
Medicine, College of
Veterinary Medicine, Iowa
State University, 2118 Vet
Med, Ames, IA 50011, USA
Full list of author information
is available at the end of the
article

Abstract

Introduction: Gene homology type classification is a requisite for many types of
genome analyses, including comparative genomics, phylogenetics, and protein
function annotation. A large variety of tools have been developed to perform
homology classification across genomes of different species. However, when applied
to large genomic datasets, these tools require high memory and CPU usage,
typically available only in costly computational clusters. To address this problem,
we developed a new graph-based orthology analysis tool, SwiftOrtho, which is
optimized for speed and memory usage when applied to large-scale data.

Results: In our tests, SwiftOrtho is the only tool that completed orthology
analysis of 1,760 bacterial genomes on a computer with only 4GB RAM. Using
various standard orthology datasets, we also show that SwiftOrtho has a high
accuracy. SwiftOrtho enables the accurate comparative genomic analyses of
thousands of genomes using low memory computers.

Availability: https://github.com/Rinoahu/SwiftOrtho

Background1

Gene homology type classification consists of identifying paralogs and orthologs2

across species. Orthologs are genes that evolved from a common ancestral gene fol-3

lowing speciation, while paralogs are genes that are homologous due to duplication.4

Computationally detecting orthologs and paralogs across species is an important5

problem, as the evolutionary history of genes has implications for our understand-6

ing of gene function and evolution.7

While the proper inference of homology type involves tracing gene history using8

phylogenetic trees [1], several proxy methods have been developed over the years.9

The most common method to infer orthologs by proxy is Reciprocal Best Hit or10

RBH [2, 3]. Briefly, RBH states the following: when two proteins that are encoded11

by two genes, each in a different genome, find each other as the best scoring match,12

they are considered to be orthologs [2, 3].13

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

mailto:idoerg@iastate.edu
https://github.com/Rinoahu/SwiftOrtho
https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 2 of 21

Inparanoid extends the RBH orthology relationship to include both orthologs and14

in-paralogs [4–6]. Specifically, Inparanoid distinguishes between orthologs and in-15

paralogs, which were duplicated following a given speciation event [4–6]. It is then16

a matter of course to extend orthologous pairs between two species to an ortholog17

group, where an ortholog group is defined as a set of genes that are hypothesized to18

have descended from a common ancestor [6]. Several methods have been developed19

to identify ortholog groups across multiple species. These methods can be classi-20

fied into two types: tree-based and graph-based. Tree-based methods construct a21

gene tree from an alignment of homologous sequences in different species and infer22

orthology relationships by reconciling the gene tree with its corresponding species23

tree [1, 7, 8]. Tree-based methods can infer a correct orthology relationship if the24

correct gene tree and species tree are given [9]. The main limitation of tree-based25

methods is the accuracy of the given gene tree and species tree. Erroneous trees26

lead to incorrect ortholog and in-paralog assignments [8–10]. Tree-based methods27

are also computationally expensive which limits the ability to apply them to large28

number of species [9, 11–13]. Graph-based methods infer orthologs and in-paralogs29

(Figure 1) from homologs and and then use different strategies to cluster them30

into orthologous groups [8, 11, 12]. The Clusters of Orthologous Groups or COG31

database detects triangles of RBHs in three different species and merges triangles32

with a common side [14]. Orthologous Matrix (OMA) clusters RBHs to orthologous33

groups by finding maximum weight cliques from the similarity graph [15]. Multi-34

Paranoid is an extension of Inparanoid, which uses InParanoid to detect triangle or-35

thologs and in-paralogs in three different species as seeds and then merges the seeds36

into larger groups [16]. OrthoMCL also uses the InParanoid algorithm to detect or-37

thologs, co-orthologs, and in-paralogs between two species [17] and then uses Markov38

Clustering (MCL) [18] to cluster these relationships into orthologous groups. The-39

oretically, graph-based methods are less accurate than tree-based methods, as the40

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 3 of 21

former identify orthologs and in-paralogs using proxy methods rather than directly41

inferring homology type from gene and species evolutionary history. In practice,42

graph-based methods have a similar accuracy as tree-based methods [9, 10, 19]. A43

comparison of several methods that include both tree-based and graph-based meth-44

ods found that tree-based methods had even a worse performance than graph-based45

methods on large dataset [10]. One study compared several common methods in-46

cluding RBH, graph-based and tree-based and found that tree-based methods often47

give a higher specificity but lower sensitivity [20]. Several studies have also shown48

that graph-based methods find a better trade-off between specificity and sensitiv-49

ity than tree-based methods [10, 20, 21]. Due to their better speed and accuracy,50

graph-based methods are generally preferred for analyzing large data set.51

Graph-based methods such as OrthoMCL and InParanoid can analyze hundreds52

of genomes, however they require considerable computational resources that may53

not be readily available [22, 23].54

Here we developed a new orthology analysis tool named SwiftOrtho. SwiftOrtho55

is a graph-based method focused on speed, accuracy and memory efficiency. We56

compared SwiftOrtho with several existing graph-based tools using the gold stan-57

dard dataset Orthobench [12], and the Quest for Orthologs service [24]. Using both58

benchmarks, we show that SwiftOrtho provides a high accuracy with lower CPU59

and memory usage than other graph-based methods.60

Methods61

Algorithms62

SwiftOrtho is a graph-based orthology prediction method that performs homology63

search, orthology inference, and clustering by homology type.64

Homology Search65

SwiftOrtho employs a seed-and-extension algorithm to find homologous gene66

pairs [25, 26]. At the seed phase, SwiftOrtho finds candidate target sequences that67

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 4 of 21

share common k-mers with the query sequence. k-mer size is an important fac-68

tor that affects search sensitivity and speed [27, 28]. SwiftOrtho therefore uses69

long (≥ 6) k-mers to accelerate search speed. However, k-mer length is negatively70

correlated with sensitivity [27]. To compensate for the loss of sensitivity caused71

by increasing k-mer size, SwiftOrtho uses two approaches: non-consecutive k-mers72

and reduced amino-acid alphabets. Non-consecutive k-mer seeds (known as spaced73

seeds), were introduced in PatternHunter [17, 29]. The main difference between con-74

secutive seeds and spaced seeds is that the latter allow mismatches in alignment. For75

example, the spaced seed 101101 allows mismatches at positions 2 and 5. The total76

number of matched positions in a spaced seed is known as a weight, so the weight of77

this seed is 4. A consecutive seed can be considered as a special case of spaced seed78

in which its weight equal its length. Spaced seeds often provide a better sensitivity79

than consecutive seeds [29, 30]. The default spaced seed patterns of SwiftOrtho are80

1110100010001011, 11010110111 –two spaced seeds with weight of 8– but the user81

may define their own spaced seeds. Seed patterns were optimized using SpEED [30]82

and manual inspection. The choice of the spaced seeds and default alphabet are83

elaborated upon in the Methods section in the Supplementary Materials. At the ex-84

tension phase, SwiftOrtho uses a variation of the Smith-Waterman algorithm [31],85

the k-banded Smith-Waterman or k-SWAT, which only allows for k gaps [32]. k-86

SWAT fills a band of cells along the main diagonal of the similarity score matrix87

(Figure 2B), and the complexity of k-swat is reduced to O(k · min(n, m)), where k88

is the maximum allowed number of gaps.89

Another method to mitigate the loss of sensitivity is to use reduced amino acid90

alphabets. Reduced alphabets are used to represent protein sequences using an91

alternative alphabet that combines several amino acids into a single representa-92

tive letter, based on common physico-chemical traits [33–35]. Compared with the93

original alphabet of 20 amino acids, reduced alphabets usually improve sensitiv-94

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 5 of 21

ity [36, 37]. However, reduced alphabets also introduces less specific seeds than the95

original alphabet, which reduces the search speed.96

Orthology Inference97

SwiftOrtho employs a graph-based approach as the method to infer orthologs, co-98

orthologs and in-paralogs from homologs (Figure 1), and uses RBH to identify the99

orthologs. If the bit score between gene A1 and A2 in genome A is higher than100

that between A1 and all its orthologs in other genomes, A1 and A2 are considered101

in-paralogs in genome A. if A1 in genome A and B1 in genome B are orthologs,102

in-paralogs of A1 and B1 are co-orthologs (Figure 1). This process requires many103

queries so it is therefore better to store the data in a way that facilitates fast104

querying. SwiftOrtho sorts the data and uses a binary search algorithm to query105

the sorted data, which significantly reduces memory usage when compared with an106

Relational Database Management System or a hash table. With the help of this107

query system, SwiftOrtho can process data that are much larger than the computer108

memory.109

After inferring orthology, the inferred orthology relationships are treated as the110

edges of a graph. Each edge is assigned a weight for cluster analysis. Appropriate111

edge-weighting metrics can improve the accuracy of cluster analysis. Gibbons com-112

pared the performance of several BLAST-based edge-weighting metrics and uses113

the bit score [38]. SwiftOrtho also uses the normalized bit score as edge-weighting114

metric. The normalization step take the same approach as OrthoMCL [22]: For115

orthologs or co-orthologs, the weight of (co-)ortholog (Figure 1) A1 in genome A116

and B1 in genome B is divided by the average edge-weight of all the (co-)orthologs117

between genome A and genome B. For in-paralogs, SwiftOrtho identifies a subset S118

of all in-paralogs in genome A, with each in-paralog Ax-Ay in subset S, Ax or Ay119

having at least one ortholog in another genome. The weight of each in-paralog in120

genome A is divided by the average edge-weight of subset S in genome A [22].121

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 6 of 21

Clustering Orthology Relationships into Orthologous Groups122

SwiftOrtho provides two methods to cluster orthology relationships in orthologous123

groups. One is the Markov Cluster algorithm (MCL), an unsupervised clustering124

algorithm based on simulation of flow in graphs [18]. MCL is fast and robust on125

small networks and has been used by several graph-based tools [17, 39–41]. However,126

MCL may run out of memory when applied on a large-scale network. To reduce127

memory usage, we cluster each individual connected component instead of the whole128

network because there is no flow among components [18]. However, for large and129

dense networks a single connected component could still be too large to be loaded130

into memory.131

For the large networks, SwiftOrtho uses an Affinity Propagation Clustering algo-

rithm (APC)[42]. The APC algorithm finds a set of centers in a network, where the

centers are the actual data points and are called “exemplars”. To find exemplars,

APC needs to keep two matrices of the responsibility matrix R and the availability

matrix A. The element Ri,k in R reflects how well-suited node k is to serve as the

exemplar for node i while the element Ai,k in R reflects how appropriate node i to

choose node k as its exemplar [42]. APC uses Equation 1 to update R, and Equa-

tion 2 to update A, where i, k, i′, k′ denote the node number, and Si,k′ denotes the

similarity between node i and node k′.

Ri,k = Si,k − maxk′ 6=k{Ai,k′ + Si,k′} (1)

Ai,k =



















min{0, Rk,k +
∑

i′ 6∈{i,k} max{0, Ri′,k}, if i 6= k

∑

i′ 6=k max{0, Ri′,k}, if i = k

(2)

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 7 of 21

The node k that maximizes Ai,k + Ri,k is the exemplar of node i, and each node132

i is assigned to its nearest exemplar. APC can update each element of matrix R133

and A one by one, so, it is unnecessary to keep the whole matrix of R and A in134

memory. Generally, the time complexity of APC is O(N2 · T ) where N is number135

of nodes and T is number of iterations [42]. In this case, the time complexity is136

O(E · T ), where E stands for edges which is number of orthology relationships and137

T is number of iterations. We implemented APC in Python, using Numba [43] to138

accelerate the numeric-intensive calculation parts.139

Application to Real data140

Data Sets141

We applied SwiftOrtho to three data sets to evaluate its predictive quality and142

performance:143

1 The Euk set was used to evaluate the quality of predicted orthologous groups.144

This set contains 420,415 protein sequences from 12 eukaryotic species, in-145

cluding Caenorhabditis elegans, Drosophila melanogaster, Ciona intestinalis,146

Danio rerio, Tetraodon nigroviridis, Gallus gallus, Monodelphis domestica,147

Mus musculus, Rattus norvegicus, Canis familiaris, Pan troglodytes and Homo148

sapiens. The protein sequences for these genes were downloaded from EMBL149

v65 [44].150

2 The QfO 2011 set was used to evaluate the quality of predicted orthology151

relationships. This set was the reference proteome dataset (2011) of The Quest152

for Orthologs[24], which contains 754,149 protein sequences of 66 species.153

3 The large Bac set was used to evaluate performance, including CPU time, real154

time and RAM usage. This set includes 5,950,817 protein sequences from 1,760155

bacterial species. The protein sequences were downloaded from GenBank [45].156

For a full list, see the additional file 1.157

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 8 of 21

Comparing SwiftOrtho with existing Tools158

We compared SwiftOrtho with several existing orthology analysis tools for pre-159

dictive quality and performance. The methods compared were: OrthoMCL(v2.0),160

FastOrtho, OrthAgogue, and OrthoFinder.161

Orthology Analysis Pipeline162

The pipeline for all the tools follows the standard steps of graph-based orthology163

prediction, (1) all-vs-all homology search, (2) orthology inference, and (3) cluster164

analysis.165

Homology Search166

SwiftOrtho used its built-in module to perform all-vs-all homology search. For all167

the three sets, the E-value was set 10−5. The amino acid alphabet was set to the168

regular 20 amino acids for the three sets. The spaced seed parameter was set to169

1011111,11111 for the Euk, 11111111 for the QfO 2011, and 111111 for Bac.170

OrthoMCL, FastOrtho, OrthAgogue, and OrthoFinder used BLASTP (v2.2.26)171

to perform all-vs-all homology search. The first three tools require the user to do this172

manually. In order to be able to compare, the -e (e-value), -v (number of database173

sequences to show one-line descriptions), and -b (number of database sequence to174

show alignments) parameters of BLASTP were set to 10−5, 1,000,000, and, 1,000,000175

for OrthoMCL, FastOrtho, and OrthAgogue. The OrthoFinder calls BLASTP, and176

the E-value of BLASTP have been set to 10−3.177

Orthology Inference178

SwiftOrtho, OrthoMCL, FastOrtho, OrthAgogue, and OrthoFinder were applied to179

perform orthology inference on the homologs. The first four tools are able to identify180

(co-)orthologs and in-paralogs, and the coverage (fraction of aligned regions) was set181

to 50%, while other parameters were set to their default values, see Supplementary182

Materials for full details. FastOrtho does not report (co-)orthologs and in-paralogs183

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 9 of 21

directly. However, the relevant information is stored in an intermediate file, from184

which we have extracted that information. Orthofinder does not report orthology185

relationships.186

Cluster Analysis187

All the tools in this study use MCL [18] for clustering. To control the granularity of188

the clustering, MCL performs an inflation operation controlled by -I option [18, 46].189

In this study, -I was set to 1.5. To take advantage of multiprocessor capabilities,190

we set the thread number of MCL to 12. SwiftOrtho has an alternative clustering191

algorithm APC, which we have also applied to Euk andBac.192

Evaluation of Prediction Quality193

Evaluation of Predicted Orthologous Group194

The OrthoBench set was used to evaluate the quality of predicted orthologous195

groups in Bac. This set contains 70 manually curated orthologous groups of the 12196

species from Bac and has been used as a high quality gold standard benchmark197

set for orthologous group prediction [12], we used OrthoBench v2 (Supplementary198

Table S1). In this study, each manually curated group of OrthoBench v2 set finds199

the best match in the predicted orthologous groups, where the best match means200

that the number of genes shared between manually curated and predicted orthologs201

is maximized, and the precision and recall are calculated(Figure 3A.).202

Evaluation of Predicted Orthology Relationships203

The Quest of Orthologs web-based service (QfO) was employed to evaluate the qual-204

ity of the orthology relationships predicted from the QfO 2011 set[24]. QfO service205

evaluates the predictive quality by performing four phylogeny-based tests of Species206

Tree Discordance Benchmark, Generalized Species Tree Discordance Benchmark,207

Agreement with Reference Gene Phylogenies: SwissTree, and Agreement with Refer-208

ence Gene Phylogenies: TreeFam-A, and two function-based tests of Gene Ontology209

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 10 of 21

conservation test and Enzyme Classification conservation test [24]. We also applied210

two more orthology prediction tools, SonicParanoid[47] and InParanoid (v4.1)[4],211

on the QfO 2011 set and used their results as control. The pairwise orthology rela-212

tionships were extracted from the predicted orthologous groups of all the tools, in-213

cluding SonicParanoid and InParanoid, and then submitted to the QfO web-service214

for further evaluation.215

Hardware216

Unless specified otherwise, all tests were run on the Condo cluster of Iowa State217

University with Intel Xeon E5-2640 v3 at 2.60GHz, 128GB RAM, 28TB free disk.218

The Linux command /usr/bin/time -v was used to track CPU and peak memory219

usage.220

Results221

We compared the orthology analysis performance of SwiftOrtho, OrthoMCL, Fas-222

tOrtho, OrthAgogue, and OrthFinder using Euk, QfO 2011, and Bac. The orthology223

analysis consists of homology search, orthology inference, and cluster analysis.224

Orthology Analysis on Euk225

The results of orthology analysis on Euk are summarized in Table 1:

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology

Search

Method SO built-in BLASTP

Hits 162,620,048 947,203,546 654,792,861

Uniq Hits 162,620,048 297,107,872 266,104,611

Orthology

Inference

(Co-)orthologs 1,199,783 8,279,424 3,297,613 1,265,553 N/A

In-paralogs 557,593 2,517,166 2,546,296 759,989 N/A

Clustering
Algorithm MCL APC MCL

Orthologous

Groups
48,270 43,114 36,901 40,943 51,297 19,904

Table 1 Comparative orthology analysis on the Euk set. N/A: not available, SO:
SwiftOrtho, MCL: Markov Clustering, APC: Affinity Propagation Cluster.

226

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 11 of 21

Homology Search227

The homology search results show that BLASTP detected the largest number228

of homologs (947,203,546). SwiftOrtho found 57.5% of the homologs detected by229

BLASTP but was 38.7 times faster than BLASTP. SwiftOrtho used longer k-mers,230

which reduced both specific and non-specific seed extension. The longer k-mers231

cause seed-and-extension methods to ignore low similarity sequences. According to232

the RBH rule, orthologs should have higher similarity than non-orthologs, so, the233

decrease in homolgs of SwiftOrtho does not significantly affect the next orthology234

inference. We compared RBHs inferred from homologs detected by BLASTP and235

SwiftOrtho, and the numbers of RBHs for BLASTP and SwiftOrtho are 654,730 and236

645,091, respectively. Identical RBHs are 497,286 (76.0% of BLASTP). These results237

shows that although SwiftOrtho found fewer homologs than BLASTP, SwiftOrtho238

does not significantly reduce the number of RBHs. The following results in Figure 4239

also show that there is no significant difference between SwiftOrtho and BLASTP240

in orthologous groups prediction.241

Orthology Inference242

OrthoMCL and FastOrtho found more orthology relationships than SwiftOrtho and243

OrthAgogue. This is because OrthoMCL and FastOrtho use the negative log ratio244

of the e-value as the edge-weighting metric. The BLASTP program rounds E-value245

< 10−180 to 0. Consequently, for homolgs with an e-value < 10−180, OrthoMCL246

and FastOrtho treat them as the RBHs, overestimating the number of orthologs.247

An example showing the OrthoMCL and FastOrtho overestimation can be found in248

Table S4.249

Computational resource use: OrthoMCL v2.0 used the most CPU time and250

real time because of the required I/O operations. The RAM usage of OrthoMCL251

was 3.45GB, at the same time, the generated intermediate file occupied >19 TB252

disk space. OrthAgogue was the most real time efficient because its ability to ex-253

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 12 of 21

ploit a multi-core processor. However, the RAM usage of OrthAgogue was more254

than 100GB which exceeds most workstations and servers. The orthology inference255

module of FastOrtho was the most memory-efficient among all the tools and it is256

also fast. SwiftOrtho was the most CPU time efficient although its real time was257

twice as OrthAgogue. Because the orthology inference module of SwiftOrtho was258

written in pure Python, we retested it by using the PyPy interpreter, an alter-259

nate implementation of Python [48]. The results show that the real run time of260

SwiftOrtho was close to OrthAgogue’s (Table S5)261

Cluster Analysis262

OrthoFinder identified the smallest number of orthologous groups. Other tools iden-263

tified many more orthologous groups than OrthoFinder, ranging from 36,901 to264

51,297. The APC algorithm find fewer clusters than the MCL algorithm.265

Evaluation of Predicted Orthologous Groups266

The quality of predicted orthologous groups is shown in Figure 3. OrthoFinder267

has the best recall, while SwiftOrtho and OrthAgogue have top precision values268

but lower recall values than other tools. Since SwiftOrtho and OrthAgogue use a269

more stringent standard to perform orthology inference, this strategy often increases270

precision but decreases recall [10, 20, 21].271

Because SwiftOrtho uses its built-in homology search module and its recall is272

lower than BLASTP’s, this may also cause a reduction in the recall of orthol-273

ogous groups. To eliminate this possibility, we made two replacements. We re-274

placed SwiftOrtho’s homology module with BLASTP for SwiftOrtho and replaced275

BLASTP with SwiftOrtho’s homology module for OrthoMCL, FastOrtho, OrthA-276

gogue, and OrthoFinder. We then reran the orthology analysis on Euk. The results277

show that for most tools replacing BLASTP with SwiftOrtho’s built-in homology278

search module does not significantly reduce the recall (Figure 4). The difference in279

recall between using SwiftOrtho’s homology search and using BLASTP is less than280

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 13 of 21

3% except for OrthoMCL and FastOrtho. The recall for OrthoMCL and FastOrtho281

decreased by 5% and 8%, respectively. The most likely reason is that the E-value282

of SwiftOrtho’s homology search module is more precise than that of BLASTP,283

which reduces the false RBHs as mentioned above. These results also show that284

SwiftOrtho’s homology search module is a reliable and fast alternative to BLASTP.285

Since SwiftOrtho uses an APC clustering algorithm, we ran SwiftOrtho with MCL286

and APC on the same data. The results (Figure 5) show that performance of APC287

is very close to that of MCL. APC improves the recall of most tools (Figure 5).288

These results also show that APC is a reliable alternative to MCL. APC requires289

less memory and can be used to cluster large-scale data.290

Orthology Analysis on QfO 2011291

The results of the orthology analysis on QfO 2011 are shown in Table 2:

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology

Search

Method SO built-in BLASTP

Hits 183,883,417 642,372,369 935,579,809

Uniq Hits 183,883,417 317,333,885 462,876,579

Orthology

Inference

(Co-)orthologs 2,209,243 3,743,779 2,588,851 2,716,128 N/A

In-paralogs 6,929,058 11,427,118 13,649,582 13,694,208 N/A

Clustering
Algorithm MCL

Orthologous

Groups
60,418 50,970 55,530 50,203 166,217

Table 2 Comparative orthology analysis on the Quest for Orthologs reference
proteome 2011 dataset. SO: SwiftOrtho; MCL: Markov Clustering; APC: Affinity
Propagation Cluster; N/A: not available.

292

Homology Search293

SwiftOrtho found 183,883,417 unique hits while BLASTP found 462,876,579 unique294

hits. However, SwiftOrtho is about 163 times faster than BLASTP.295

Orthology Inference296

OrthoMCL found many more orthologs and co-orthologs than the other tools.297

SwiftOrtho found fewer in-paralogs than other available tools. The CPU time of298

SwiftOrtho is the least of all tools. When using the PyPy interpreter, the real time299

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 14 of 21

of SwiftOrtho is also close to that of the fastest one, OrthAgogue (Supplementary300

Table S6).301

Cluster Analysis302

Overall, the clustering numbers of SwiftOrtho, OrthoMCL, FastOrtho, and Orth-303

Agogue are similar.However, the number of clusters found by OrthoFinder is three304

times that of other tools, and the next evaluation also shows that OrthoFinder305

performed poorly on QfO 2011.306

Evaluation of Predicted Ortholog Relationships307

The evaluation shows that the performance of SwiftOrtho is close to that of Inpara-308

noid (Figure 6). In some tests (Figure 6, D-E), SwiftOrtho outperformed Inparanoid.309

SwiftOrtho had the best performance in the Generalized Species Tree Discordance310

Benchmark and Agreement with Reference Gene Phylogenies: TreeFam-A tests. In311

the Species Tree Discordance Benchmark, SwiftOrtho had the minimum Robinson-312

Foulds distance. In the Enzyme Classification (EC) conservation test, SwiftOrtho313

had the maximum Schlicker similarity. These two metrics reflect the performance314

of the algorithm in accuracy and the results show that SwiftOrtho has an overall315

higher accuracy than the other tools, at the same time, the recall of SwiftOrtho316

was lower in some of the QfO tests. The most probable reason is that when we317

performed all-vs-all homology search, we used a long seed which resulted in fewer318

homologs being detected.319

Orthology Analysis On Bac320

The results of orthology analysis on Bac are shown in Table 3:321

Homology Search322

SwiftOrtho detected 8,966,131,536 homologs on the Bac set within 1,247 CPU323

hours. Because it takes long time to perform all-vs-all BLASTP search on the full324

Bac, we randomly selected 1,000 protein sequences from Bac and searched them325

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 15 of 21

SwiftOrtho OrthoMCL FastOrtho OrthAgogue OrthoFinder

Homology

Search

Method SO built-in N/A

Hits 8,478,732,753 N/A

Uniq Hits 8,478,732,753 N/A

Orthology

Inference

(Co-)orthologs 876,766,940 N/A 950,683,849 N/A N/A

In-paralogs 622,292 N/A 663,052 N/A N/A

Clustering
Algorithm MCL APC MCL

Orthologous

Groups
240,162 167,355 N/A 242,816 N/A N/A

Table 3 Comparative orthology analysis on the Bac set. SO: SwiftOrtho; MCL:
Markov Clustering; APC: Affinity Propagation Cluster; N/A: not available.

against the full Bac set. It took BLASTP 5.1 CPU hours to find the homologs of326

these 1,000 protein sequences. We infer that the estimated CPU time of BLASTP327

on the full Bac set should be around 30,000 CPU hours. SwiftOrtho was almost 25328

times faster than BLASTP on Bac.329

Orthology Inference330

SwiftOrtho, OrthoMCL, FastOrtho, and OrthAgogue were used to infer (co-331

)orthologs and in-paralogs from the homologs detected by the homology search332

module of SwiftOrtho in the Bac set. We did not test Orthofinder, because Or-333

thofinder does not accept a single file of homologs as input. For the 1,760 genomes in334

Bac, OrthoFinder needs to perform 3,097,600 pairwise genome comparisons, which335

will generate the same number of files. Then, OrthoFinder performs the orthol-336

ogy inference on these 3,097,600 files. Even at one minute per file, it will take an337

estimated six CPU years to process all the files.338

Due to memory limitation, only SwiftOrtho and FastOrtho finished the orthol-339

ogy inference on Bac. The results are shown in Table 3. The numbers of (co-340

)orthologs and in-paralogs inferred by SwiftOrtho and FastOrtho are similar. The341

number of common orthology relationships between SwiftOrtho and FastOrtho was342

861,619,519 (98.2% of SwiftOrtho and 90.57% of FastOrtho). Compared with Euk,343

SwiftOrtho and FastOrtho have a similar predictive quality on Bac. There are three344

possible explainations for these results. The first one is that Euk contains many pro-345

tein isoforms which cause FastOrtho to overestimate the number of orthologs and346

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 16 of 21

in-paralogs. The second one is that the gene duplication rate in Bacteria is lower347

than that in Eukaryotes [49, 50]. For Bac, each gene in one species has only small348

number of homolgs in other species, which makes FastOrtho unlikely to overesti-349

mate the number of RBHs. The third one is that SwiftOrtho uses double-precision350

floating-point to store the E-value, which increases the precision of E-value from351

10−180 to 10−308. This improvement also reduces the possibility that FastOrtho352

may report false RBHs.353

Computational resource use: FastOrtho and OrthAgogue did not finish the354

tests due to insufficient RAM, OrthoMCL aborted after running out of disk space, as355

it needed more than 18TB. Only SwiftOrtho and FastOrtho finished the orthology356

inference step. The Peak RAM usage of SwiftOrtho and FastOrtho were 90.6GB and357

99.5GB, respectively. When we used the PyPy interpreter, the Peak RAM usage358

of SwiftOrtho was reduced to 72.1GB. FastOrtho was about 1.52 times faster than359

SwiftOrtho which ran the tests in the CPython interpreter. When using the PyPy360

interpreter, SwiftOrtho ran 1.58 times faster than FastOrtho. The memory usage361

and CPU time are shown in Supplementary Table S7362

Cluster Analysis363

The clustering numbers of SwiftOrtho and FastOrtho are similar. We compared the364

APC algorithm and the MCL algorithm, and APC found fewer clusters than MCL.365

The APC used much less memory and less CPU time than MCL. However, due to366

the lack of support for multi-threading and a large number of I/O operations, the367

real run time of APC is longer than that of MCL.368

Test on Low-memory System369

Because SwiftOrtho is designed to handle large-scale data on low-memory comput-370

ers, we used it to analyze Bac on a range of computers with different specifications.371

The results (Supplementary Table S8) show that the memory usage of SwiftOrtho is372

flexible and adaptes to the size of the computer’s memory. In the tests, SwiftOrtho373

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 17 of 21

finished an orthology anlaysis of Bac on computers with only 4GB RAM in a rea-374

sonable time (Table S8).375

Discussion376

We present SwiftOrtho, a new high performance graph based homology classifica-377

tion tool. Unlike most tools that can only perform orthology inference, SwiftOrtho378

integrates all the modules necessary for orthology analysis, including homology379

search, orthology inference and cluster analysis. SwiftOrtho is designed to ana-380

lyze large-scale genomic data on a normal desktop computer in a reasonable time.381

In our tests, SwiftOrtho’s homology search module was nearly 30 times faster than382

BLASTP. The orthology inference module of SwiftOrtho was nearly 500 times faster383

than OrthoMCL when applied to Euk. When applied to the large-scale dataset, Bac,384

SwiftOrtho was the only one that finished orthology inference test on a workstation385

with 32GB RAM. The cluster module of SwiftOrtho using APC can handle data386

that is much larger than the computer memory. In our test, APC has comparable387

recall and accuracy, but requires much less memory than MCL. APC even improved388

F1-measure score by increasing recall in most cases. With the help of these opti-389

mized modules, SwiftOrtho has successfully finished an orthology analysis of 1,760390

bacterial genomes on a machine with only 4GB RAM. SwiftOrtho is not only fast391

but also accurate, as showing the results produced when running on orthobench392

and QfO[12, 24].393

Conclusion394

In summary, SwiftOrtho is a fast, accurate orthology prediction tool that can an-395

alyze a large number of sequences with minimal computational resource use. The396

installation and configuration of SwiftOrtho is simple and does not require the user397

to have any experience in database configuration. It is easy to use, the only input398

required by SwiftOrtho is a FASTA format file of protein sequences with taxonomy399

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 18 of 21

information in the header line. Furthermore, SwiftOrtho is highly modular, and can400

be used to401

SwiftOrtho can be integrated into various common pipelines where fast orthology402

classification is required such as pan-genome analysis, large-scale phylogenetic tree403

construction, and other multi-genome analyses. It is specifically suited for microbial404

community analyses, where large number of sequences and species are involved.405

Availability of data and materials406

SwiftOrtho was written in Python 2.7 and is available at https://github.com/Rinoahu/SwiftOrtho407

under a GPLv3 license.408

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://github.com/Rinoahu/SwiftOrtho
https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 19 of 21

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

Text for this section . . .

Acknowledgements

Text for this section . . .

References

1. Fitch, W.M.: Distinguishing Homologous from Analogous Proteins. Syst. Zool. 19(2), 99 (1970).
doi:10.2307/2412448

2. Overbeek, R., Fonstein, M., D ’souza, M., Pusch, G.D., Maltsev, N.: The use of gene clusters to
infer functional coupling. Genetics 96, 2896–2901 (1999)

3. Rivera, M.C., Jain, R., Moore, J.E., Lake, J.A.: Genomic evidence for two functionally distinct
gene classes. Genetics 95, 6239–6244 (1998)

4. Remm, M., Storm, C.E.V.V., Sonnhammer, E.L.L.L.: Automatic clustering of orthologs and
in-paralogs from pairwise species comparisons. J. Mol. Biol. 314(5), 1041–1052 (2001).
doi:10.1006/jmbi.2000.5197

5. O’Brien, K.P., Remm, M., Sonnhammer, E.L.L.: Inparanoid: a comprehensive database of
eukaryotic orthologs. Nucleic Acids Res. 33(Database issue), 476–80 (2005).
doi:10.1093/nar/gki107

6. Gabaldón, T., Koonin, E.V.: . Nature Reviews Genetics 14(5), 360–366 (2013).
doi:10.1038/nrg3456

7. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the Gene
Lineage into its Species Lineage, a Parsimony Strategy Illustrated by Cladograms Constructed
from Globin Sequences. Syst. Biol. 28(2), 132–163 (1979). doi:10.1093/sysbio/28.2.132

8. Kristensen, D.M., Wolf, Y.I., Mushegian, A.R., Koonin, E.V.: . Briefings in bioinformatics 12(5),
379–91 (2011). doi:10.1093/bib/bbr030

9. Gabaldón, T.: Large-scale assignment of orthology: back to phylogenetics? Genome Biol. 9(10),
235 (2008). doi:10.1186/gb-2008-9-10-235

10. Hulsen, T., Huynen, M.A., de Vlieg, J., Groenen, P.M.A.: Benchmarking ortholog identification
methods using functional genomics data. Genome Biol. 7(4), 31 (2006).
doi:10.1186/gb-2006-7-4-r31

11. Kuzniar, A., van Ham, R.C.H.J., Pongor, S., Leunissen, J.A.M.: The quest for orthologs: finding
the corresponding gene across genomes (2008). doi:10.1016/j.tig.2008.08.009.
https://ac.els-cdn.com/S0168952508002278/1-s2.0-S0168952508002278-main.pdf?{_}tid=b7244fd4-0868-11e8-b345-00000aab0f27{&}acdnat=1517

12. Trachana, K., Larsson, T.A., Powell, S., Chen, W.-H., Doerks, T., Muller, J., Bork, P.: Orthology
prediction methods: a quality assessment using curated protein families. Bioessays 33(10), 769–80
(2011). doi:10.1002/bies.201100062

13. Ward, N., Moreno-Hagelsieb, G.: Quickly finding orthologs as reciprocal best hits with BLAT,
LAST, and UBLAST: How much do we miss? PLoS One 9(7) (2014).
doi:10.1371/journal.pone.0101850

14. Tatusov, R.L., Galperin, M.Y., Natale, D.A., Koonin, E.V.: The COG database: a tool for
genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28(1), 33–36 (2000).
doi:10.1093/nar/28.1.33

15. Roth, A.C.J., Gonnet, G.H., Dessimoz, C.: Algorithm of OMA for large-scale orthology inference.
BMC Bioinformatics 9(1), 518 (2008). doi:10.1186/1471-2105-9-518

16. Alexeyenko, A., Tamas, I., Liu, G., Sonnhammer, E.L.L.: Automatic clustering of orthologs and
inparalogs shared by multiple proteomes. Bioinformatics 22(14) (2006).
doi:10.1093/bioinformatics/btl213

17. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: highly sensitive and fast homology
search. Genome Inform. 14(03), 164–75 (2003). doi:10.1142/S0219720004000661

18. van Dongen, S.: Graph clustering by flow simulation. Graph Stimul. by flow Clust. PhD thesis,
(2000). doi:10.1016/j.cosrev.2007.05.001

19. Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: EnsemblCompara
GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome research 19(2),
327–35 (2009). doi:10.1101/gr.073585.107

20. Chen, F., Mackey, A.J., Vermunt, J.K., Roos, D.S.: Assessing performance of orthology detection
strategies applied to eukaryotic genomes. PLoS One 2(4), 383 (2007).
doi:10.1371/journal.pone.0000383

21. Altenhoff, A.M., Dessimoz, C.: Phylogenetic and functional assessment of orthologs inference
projects and methods. PLoS Comput. Biol. 5(1), 1000262 (2009). doi:10.1371/journal.pcbi.1000262

22. Fischer, S., Brunk, B.P., Chen, F., Gao, X., Harb, O.S., Iodice, J.B., Shanmugam, D., Roos, D.S.,
Stoeckert, C.J., Jr.: Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster
proteomes into new ortholog groups. Curr. Protoc. Bioinforma. Chapter 6, 6–12119 (2011).
doi:10.1002/0471250953.bi0612s35

23. Sonnhammer, E.L.L., Östlund, G.: InParanoid 8: orthology analysis between 273 proteomes,
mostly eukaryotic. Nucleic acids research 43(Database issue), 234–9 (2015).
doi:10.1093/nar/gku1203

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

http://dx.doi.org/10.2307/2412448
http://dx.doi.org/10.1006/jmbi.2000.5197
http://dx.doi.org/10.1093/nar/gki107
http://dx.doi.org/10.1038/nrg3456
http://dx.doi.org/10.1093/sysbio/28.2.132
http://dx.doi.org/10.1093/bib/bbr030
http://dx.doi.org/10.1186/gb-2008-9-10-235
http://dx.doi.org/10.1186/gb-2006-7-4-r31
http://dx.doi.org/10.1016/j.tig.2008.08.009
https://ac.els-cdn.com/S0168952508002278/1-s2.0-S0168952508002278-main.pdf?{_}tid=b7244fd4-0868-11e8-b345-00000aab0f27{&}acdnat=1517610836{_}5abceff3246ae7fc278276b84337d26c
http://dx.doi.org/10.1002/bies.201100062
http://dx.doi.org/10.1371/journal.pone.0101850
http://dx.doi.org/10.1093/nar/28.1.33
http://dx.doi.org/10.1186/1471-2105-9-518
http://dx.doi.org/10.1093/bioinformatics/btl213
http://dx.doi.org/10.1142/S0219720004000661
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1101/gr.073585.107
http://dx.doi.org/10.1371/journal.pone.0000383
http://dx.doi.org/10.1371/journal.pcbi.1000262
http://dx.doi.org/10.1002/0471250953.bi0612s35
http://dx.doi.org/10.1093/nar/gku1203
https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 20 of 21

24. Altenhoff, A.M., Boeckmann, B., Capella-Gutierrez, S., Dalquen, D.A., DeLuca, T., Forslund, K.,
Huerta-Cepas, J., Linard, B., Pereira, C., Pryszcz, L.P., Schreiber, F., Da Silva, A.S., Szklarczyk,
D., Train, C.M., Bork, P., Lecompte, O., Von Mering, C., Xenarios, I., Sjölander, K., Jensen, L.J.,
Martin, M.J., Muffato, M., Gabaldón, T., Lewis, S.E., Thomas, P.D., Sonnhammer, E., Dessimoz,
C.: Standardized benchmarking in the quest for orthologs. Nat. Methods (2016).
doi:10.1038/nmeth.3830

25. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proc. Natl.
Acad. Sci. 85(8), 2444–2448 (1988). doi:10.1073/pnas.85.8.2444

26. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool.
J. Mol. Biol. 215(3), 403–410 (1990). doi:10.1016/S0022-2836(05)80360-2. arXiv:1611.08307v1

27. Kent, W.J.: BLAT — The BLAST -Like Alignment Tool. Genome Research 12, 656–664 (2002).
doi:10.1101/gr.229202.

28. Shiryev, S.A., Papadopoulos, J.S., Schäffer, A.A., Agarwala, R., Schaffer, A.A., Agarwala, R.:
Improved BLAST searches using longer words for protein seeding. Bioinformatics 23(21),
2949–2951 (2007). doi:10.1093/bioinformatics/btm479

29. Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive homology search.
Bioinformatics 18(3), 440–445 (2002). doi:10.1093/bioinformatics/18.3.440

30. Ilie, L., Ilie, S., Khoshraftar, S., Bigvand, A.M.: Seeds for effective oligonucleotide design. BMC
Genomics 12(1), 280 (2011). doi:10.1186/1471-2164-12-280

31. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol.
147(1), 195–197 (1981). doi:10.1016/0022-2836(81)90087-5

32. Chao, K.M., Pearson, W.R., Miller, W.: Aligning two sequences within a specified diagonal band.
Bioinformatics 8(5), 481–487 (1992). doi:10.1093/bioinformatics/8.5.481

33. Landès, C., Risler, J.L.: Fast databank searching with a reduced amino-acid alphabet. Computer
applications in the biosciences : CABIOS 10(4), 453–454 (1994)

34. Murphy, L.R., Wallqvist, A., Levy, R.M.: Simplified amino acid alphabets for protein fold
recognition and implications for folding. Protein Eng. Des. Sel. 13(3), 149–152 (2000).
doi:10.1093/protein/13.3.149

35. Peterson, E.L., Kondev, J., Theriot, J.A., Phillips, R.: Reduced amino acid alphabets exhibit an
improved sensitivity and selectivity in fold assignment. Bioinformatics (Oxford, England) 25(11),
1356–1362 (2009). doi:10.1093/bioinformatics/btp164

36. Edgar, R.C.: Local homology recognition and distance measures in linear time using compressed
amino acid alphabets. Nucleic acids research 32(1), 380–5 (2004). doi:10.1093/nar/gkh180

37. Ye, Y., Choi, J.-H., Tang, H.: RAPSearch: a fast protein similarity search tool for short reads.
BMC Bioinformatics 12(1), 159 (2011). doi:10.1186/1471-2105-12-159

38. Gibbons, T.R., Mount, S.M., Cooper, E.D., Delwiche, C.F.: Evaluation of BLAST-based
edge-weighting metrics used for homology inference with the Markov Clustering algorithm. BMC
Bioinformatics 16(1) (2015). doi:10.1186/s12859-015-0625-x

39. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Res. 30(7), 1575–1584 (2002). doi:10.1093/nar/30.7.1575.
journal.pone.0035671

40. Emms, D.M., Kelly, S.: OrthoFinder: solving fundamental biases in whole genome comparisons
dramatically improves orthogroup inference accuracy. Genome Biology 16(1), 157 (2015).
doi:10.1186/s13059-015-0721-2

41. Davis, J.J., Gerdes, S., Olsen, G.J., Olson, R., Pusch, G.D., Shukla, M., Vonstein, V., Wattam,
A.R., Yoo, H.: PATtyFams: Protein families for the microbial genomes in the PATRIC database.
Front. Microbiol. 7(FEB), 118 (2016). doi:10.3389/fmicb.2016.00118

42. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814),
972–6 (2007). doi:10.1126/science.1136800. 1401.2548

43. Lam, S.K., Pitrou, A., Seibert, S.: Numba: A LLVM-based python JIT compiler. Proc. Second
Work. LLVM Compil. Infrastruct. HPC - LLVM ’15, 1–6 (2015). doi:10.1145/2833157.2833162

44. Curwen, V., Eyras, E., Andrews, T.D., Clarke, L., Mongin, E., Searle, S.M.J., Clamp, M.: The
Ensembl automatic gene annotation system. Genome Res. 14(5), 942–950 (2004).
doi:10.1101/gr.1858004

45. Benson, D.A.: GenBank. Nucleic Acids Res. 28(1), 15–18 (2000). doi:10.1093/nar/28.1.15
46. Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction

networks. BMC Bioinformatics (2006). doi:10.1186/1471-2105-7-488
47. Cosentino, S., Iwasaki, W.: Sonicparanoid: fast, accurate and easy orthology inference.

Bioinformatics 35(1), 149–151 (2019). doi:10.1093/bioinformatics/bty631
48. Rigo, A., Pedroni, S.: PyPy ’ s Approach to Virtual Machine Construction. Companion to 21st

ACM SIGPLAN Symp., 944–953 (2006). doi:10.1145/1176617.1176753
49. Bratlie, M.S., Johansen, J., Sherman, B.T., Huang, D.W., Lempicki, R.A., Drabløs, F.: Gene

duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics
(2010). doi:10.1186/1471-2164-11-588

50. Katju, V., Bergthorsson, U.: Copy-number changes in evolution: Rates, fitness effects and adaptive
significance (2013). doi:10.3389/fgene.2013.00273

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

http://dx.doi.org/10.1038/nmeth.3830
http://dx.doi.org/10.1073/pnas.85.8.2444
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://arxiv.org/abs/arXiv:1611.08307v1
http://dx.doi.org/10.1101/gr.229202.
http://dx.doi.org/10.1093/bioinformatics/btm479
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1186/1471-2164-12-280
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1093/bioinformatics/8.5.481
http://dx.doi.org/10.1093/protein/13.3.149
http://dx.doi.org/10.1093/bioinformatics/btp164
http://dx.doi.org/10.1093/nar/gkh180
http://dx.doi.org/10.1186/1471-2105-12-159
http://dx.doi.org/10.1186/s12859-015-0625-x
http://dx.doi.org/10.1093/nar/30.7.1575
http://arxiv.org/abs/journal.pone.0035671
http://dx.doi.org/10.1186/s13059-015-0721-2
http://dx.doi.org/10.3389/fmicb.2016.00118
http://dx.doi.org/10.1126/science.1136800
http://arxiv.org/abs/1401.2548
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.1101/gr.1858004
http://dx.doi.org/10.1093/nar/28.1.15
http://dx.doi.org/10.1186/1471-2105-7-488
http://dx.doi.org/10.1093/bioinformatics/bty631
http://dx.doi.org/10.1145/1176617.1176753
http://dx.doi.org/10.1186/1471-2164-11-588
http://dx.doi.org/10.3389/fgene.2013.00273
https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Hu and Friedberg Page 21 of 21

Figures

Figure 1 Orthology Inference Algorithm. Nodes are gene names, edges are similarity
score of pairwise genes. 1. A1-B1 are putative orthologs identified by RBH. 2. A1-A2 and
B1-B2 are putative in-paralogs as the bit scores of these pairs greater than A1-B1; 3. A2-B1

and A2-B2 are putative co-orthologs as these pairs are not orthologs but A1-B1 are orthologs
and A1-A2, B1-B2 are in-paralogs.

Figure 2 Comparing Standard Smith-Waterman with Banded Smith-Waterman.
A. Similarity score matrix for Standard Smith-Waterman. Standard Smith-Waterman
algorithm need to calculate all the entries. B. Similarity score matrix for Banded
Smith-Waterman. Banded Smith-Waterman algorithm only need to calculate the entries on
and near the diagonal.

Figure 3 Evaluation of predicted orthologous groups. A. Definition of precision and
recall. OG: orthologous group, FN: genes only found in true orthologous group,TP: genes
shared between true and predicted orthologous group, FP: genes only found in predicted
orthologous group; B. Evaluation of different tools on OrthoBench2. SwiftOrtho+MCL:
SwiftOrtho with MCL; SwiftOrtho+APC: SwiftOrtho with Affinity Propagation
Clustering.

Figure 4 Comparing BLASTP and SwiftOrtho’s homology search module on the
quality of orthologous groups prediction. BLASTP and SwiftOrtho’s search module
perform an all-vs-all search on the Euk set, respectively. Then, all the orthology prediction
tools were employed for orthology inference. Finally, the predicted orthology relationships
were clustered into orthologous groups by MCL algorithm.

Figure 5 Markov Clustering versus Affinity Propagation Clustering. Both
algorithms were applied to cluster the orthology relationships of the Euck set inferred by
different orthology prediction tools, into orthologous groups. As OrthFinder does not report
orthology relationships, the Affinity Propagation can not apply to its results. MCL: Markov
Clustering algorithm; APC: Affinity Propagation Clustering.

Figure 6 The Benchmarking in Quest for Orthologs. A: Species Tree Discordance
Benchmark. Inparanoid has minimum average Robinson-Foulds distance. SwiftOrtho’s
average RF distance is close to Inparanoid. The prediction inferred by OrthoFinder is not
aviable in this test; B: Generalized Species Tree Discordance Benchmark. InParanoid has
minimum average Robinson-Foulds distance. The prediction inferred by OrthoFinder is not
aviable in this test; C: Agreement with Reference Gene Phylogenies of SwissTree. SwiftOrtho
has the highest positive prediction value rate(Recall). InParanoid has the highest true
positive rate(Precision); D: Agreement with Reference Gene Phylogenies of TreeFam-A.
SonicParanoid has the highest positive prediction value rate(Recall), however, its true positive
rate(Precision) is close to zero. SwiftOrtho has the second highest Recall and Precision; E:
Gene Ontology conservation test. OrthoMCL has the highest average Schlicker similarity; F:
Enzyme Classification conservation test. SwiftOrtho has the highest average Schlicker
similarity. OrthoMCL detected the most orthology relationships and has the highest Recall.

Tables

Additional Files

Additional file 1 —
Metadata for the genome assemblies of the Bac set (tab-delimited text file).
https://figshare.com/s/19a006d6fea9c2494ab8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://figshare.com/s/19a006d6fea9c2494ab8
https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Figure 1
.CC-BY 4.0 International licenseunder a

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 
The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Figure 2
.CC-BY 4.0 International licenseunder a

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 
The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Figure 3
.CC-BY 4.0 International licenseunder a

not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 
The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Figure 4 .CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


Figure 5

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/


0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0 2000 4000 6000 8000 10000

better

A
vg

 R
ob

in
so

n-
F
ou

ld
s 

di
st

an
ce

number of completed tree samplings (of 50k trials)

0.200

0.250

0.300

0.350

0 500 1000 1500 2000 2500 3000 3500 4000

better

A
vg

 R
ob

in
so

n-
F
ou

ld
s 

di
st

an
ce

number of completed tree samplings (of 50k trials)

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

better

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e
ra

te

True positive rate

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

better

P
os

iti
ve

 p
re

di
ct

iv
e

va
lu

e
ra

te

True positive rate

0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600

0 20000 40000 60000 80000 100000 120000 140000

better

A
vg

S
ch

lic
ke

r 
S

im
ila

rit
y

number of ortholog relations

0.800
0.820
0.840
0.860
0.880
0.900
0.920
0.940
0.960
0.980

0 20000 40000 60000 80000 100000 120000

better

A
vg

S
ch

lic
ke

r 
S

im
ila

rit
y

number of ortholog relations
FastOrtho
OrthoMCL

OrthAgogue
OrthoFinder

SwiftOrtho
SonicParanoid

InParanoid

A B

C D

E F

Figure 6

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2019. ; https://doi.org/10.1101/543223doi: bioRxiv preprint 

https://doi.org/10.1101/543223
http://creativecommons.org/licenses/by/4.0/

	Abstract

