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 2 

Abstract 22 
 23 
Here we present a spatiotemporal dissection of proteome single cell heterogeneity in 24 
human cells, performed with subcellular resolution over the course of a cell cycle. We 25 
identify 17% of the human proteome to display cell-to-cell variability, of which we could 26 
attribute 25% as correlated to cell cycle progression, and present the first evidence of 27 
cell cycle association for 258 proteins. A key finding is that the variance, of many of 28 
the cell cycle associated proteins, is only partially explained by the cell cycle, which 29 
hints at cross-talk between the cell cycle and other signaling pathways. We also 30 
demonstrate that several of the identified cell cycle regulated proteins may be clinically 31 
significant in proliferative disorders. This spatially resolved proteome map of the cell 32 
cycle, integrated into the Human Protein Atlas, serves as a valuable resource to 33 
accelerate the molecular knowledge of the cell cycle and opens up novel avenues for 34 
the understanding of cell proliferation. 35 

36 
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Introduction 37 
Cellular processes are, to a great extent, driven by the presence and activity of specific 38 
proteins. Essential processes, such as the cell division cycle, require precise 39 
coordination of the expression of hundreds of genes and the activity of their 40 
corresponding proteins in both time and space. The cell division cycle is tightly 41 
controlled at specific checkpoints 1,2 by regulated transcription 3-7, intricate feed-42 
forward and feedback loops of protein post-translational modifications, and protein 43 
degradation 8-12. Its dysregulation has devastating consequences, such as 44 
uncontrolled cell proliferation, genomic instability 13, and cancer 14,15. 45 
 46 
Given the fundamental role of the cell cycle, its regulation with cyclins and cyclin 47 
dependent kinases (CDKs) has been extensively studied 16. Recent efforts have 48 
focused on the investigation of genome-wide effects of cell cycle progression. 49 
Transcriptomics studies have revealed 400-1,200 human genes 17-20, and mass 50 
spectrometry-based proteomics studies have revealed 300-700 human proteins that 51 
show variation in abundance over the cell cycle 21-24. These studies have commonly 52 
been performed in bulk, with cells sorted into synchronized populations 17,19,25-28. This 53 
is a disruptive procedure, shown to alter gene expression 29, and perturb cellular 54 
morphology 30-32 as well as metabolism 33. In addition, the achieved synchrony could 55 
be contaminated with cells from other phases 33-36. 56 
 57 
Single-cell sequencing now allow the analysis of transcriptional changes without the 58 
need for synchronized cells. Recent single-cell transcriptomic studies presented the 59 
first efforts to update the decade old catalogues of periodic gene expression patterns 60 
that were based on bulk analysis 37-39. For instance, in a study using human myxoid 61 
sarcoma cell line (MSL) cells, 472 genes with periodic expression were identified 37, of 62 
which 269  had no prior association to the cell cycle, indicating the potential of single-63 
cell level studies to deepen our knowledge of the cell cycle.  64 
 65 
Microscopy offers an attractive approach to study cell cycle dynamics in asynchronous 66 
cells at a single-cell level. The readout of such studies has so far been focused only 67 
on cellular growth phenotypes, as conferred by genetically encoded fluorescent 68 
indicators 40-43. Due to technological limitations, studies of single cell variations at the 69 
proteome level have not yet been feasible. The few studies that exist 44,45 have been 70 
limited to a low number of proteins and none provides a complete view of temporal cell 71 
cycle dynamics of the human proteome with single cell resolution. 72 
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Here we report on a systematic characterization of temporal protein expression 73 
patterns with single-cell resolution in unsynchronized human cells, and present the first 74 
spatially resolved map of human proteome dynamics during the cell cycle. By 75 
leveraging the Human Protein Atlas (HPA) antibody resource 46 and the high-resolution 76 
image collection within its Cell Atlas 47, we provide a catalogue of human proteins with 77 
temporal and spatial variation correlating to cell cycle progression. This spatially 78 
resolved proteome map of the cell cycle, integrated into the HPA database, is a 79 
complement to the existing human cell cycle gene expression resources. Altogether 80 
this study has important implications for mechanistic insights into cellular proliferation 81 
as well as the contribution of its miss-regulation to tumorigenesis and disease.  82 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/543231doi: bioRxiv preprint 

https://doi.org/10.1101/543231
http://creativecommons.org/licenses/by/4.0/


 5 

Results 83 
 84 
Single-cell variations of the human proteome 85 
The HPA Cell Atlas aims to localize all human proteins at a subcellular level using 86 
immunofluorescence and confocal microscopy (45). To date, 12,390 (v.19) proteins 87 
have been localized to 33 subcellular structures. This high-resolution image collection 88 
contains protein expression in a variety of human cell lines, always non-synchronized 89 
and in log-phase growth, and provides an unprecedented resource to explore protein 90 
expression variation at single-cell level. Out of these 12,390 proteins mapped in the 91 
HPA Cell Atlas, 2,195 (17%, Supplementary Table 1) showed cell-to-cell variations 92 
based on visual inspection, either in terms of variation in protein expression level or 93 
variation in spatial distribution. As exemplified in Figure 1A, CCNB1, an important cell 94 
cycle regulator 48 localized to the cytosol, shows variation in abundance, whereas 95 
MRTO4, a protein with unknown function, shows spatial variation in its expression 96 
between the nucleus and nucleoli. Out of these 2,195 proteins, 69% showed similar 97 
cell-to-cell variations in more than one human cell line (Supplementary Table 2), as 98 
exemplified for RACGAP1 in three different cell lines (Figure 1B). This suggests that 99 
these proteome variations might be to a large extent controlled by preserved regulatory 100 
mechanisms. We investigate to what extent these observed protein variations 101 
represent temporally controlled expression patterns correlating to cell cycle 102 
progression. 103 
 104 
Proteins spatiotemporally restricted to mitotic cellular structures 105 
The cell cycle dependency of a protein can be inferred directly, if it localizes to a mitotic 106 
structure (i.e. kinetochores, mitotic spindle, midbody, midbody ring, cleavage furrow, 107 
or cytokinetic bridge). For example, the mitotic regulators INCENP 49 and SGO1 50 108 
appear at the kinetochores during mitosis; KIF20A 51 localizes to the cleavage furrow;  109 
and TACC3 52 to the mitotic spindles (Figure 1C). Of the 2,195 proteins identified to 110 
show cell-to-cell variability, a total of 166 mapped to one or several of the mitotic 111 
structures (99 to cytokinetic bridge, 45 to mitotic spindle, 40 to midbody, 17 to midbody 112 
ring, 5 to kinetochores, and 3 to cleavage furrow). Among these proteins, 99 were not 113 
previously annotated to have an association with the cell cycle by a biological process 114 
(BP) term in Gene Ontology (GO) 53 or Reactome 2, nor did they have any cell cycle 115 
phenotype registered in Cyclebase 54 (Supplementary Table 3). Among the proteins 116 
spatiotemporally restricted to mitotic substructures were e.g. BIRC5, a well 117 
characterized protein essential for chromosome alignment 55, which localizes to the 118 
cytokinetic bridge as well as two other uncharacterized proteins, GLI4 and C12orf66 119 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/543231doi: bioRxiv preprint 

https://doi.org/10.1101/543231
http://creativecommons.org/licenses/by/4.0/


 6 

(Figure 1D). C12orf66 localizes to the lysosomes during interphase 56. DVL3, a Wnt 120 
signaling component known to be involved in cell proliferation 57, localized to the 121 
midbody ring, which is the final bridge between dividing cells (Figure 1D). It is plausible 122 
to hypothesize that the proteins which localized to the mitotic spindle are involved in 123 
the process of chromosome segregation; these include KIF11 and KNSTRN, both of 124 
which are well-studied components of the mitotic spindle 58,59. We also identified novel 125 
proteins localizing to the mitotic spindle, such as MGAT5B, a glycosyltransferase for 126 
which downregulation has been shown to inhibit cell proliferation 60; and FKBPL, a 127 
crucial protein for response to high dose radiation stress 61 (Figure 1D). Altogether, 128 
these 166 proteins serve as potentially interesting targets for development of novel 129 
antimitotic drugs for cancer therapy. 130 
 131 
Proteins with temporal expression variation correlated to cell cycle interphase 132 
progression 133 
To determine if the observed cell-to-cell variations correlate to interphase progression, 134 
the FUCCI cell cycle marker system was used (Figure 1E) 42,62. Of the 2,195 proteins 135 
identified to show cell-to-cell variability, 1,188 proteins that were expressed and 136 
exhibited variations in the U-2 OS cell line were selected for further analysis with the 137 
FUCCI system (Supplementary Table 4). The expression of each protein was 138 
quantified across the cell cycle by immunostaining in U-2 OS FUCCI cells. Gaussian 139 
mixture modelling was used to define three clusters representing G1, the S-transition 140 
(denoted G1/S) and the remaining S and G2 phases (denoted S/G2), and the 141 
subsequent assignment of cells to each cluster. A polar coordinate system was used 142 
to transfer the FUCCI marker information into a linear model of interphase pseudo-143 
time (Figure 1E). Examples of this analysis are given in Figure 1F: ANLN, a well-144 
characterized cell cycle regulator 63, showed a significant (Kruskal Wallis p<0.01& 145 
FDR<0.05) increase in abundance during cell cycle progression in the nucleus. On the 146 
other hand, FAM71F, an uncharacterized protein localized to the cytosol, revealed 147 
variation that did not correlate to the cell cycle, meaning that both high and low 148 
expressing cells are present in all phases of the cell cycle. Expression of DUSP18, a 149 
member of the DUSP family 64 with no prior association to the cell cycle, was found to 150 
strongly correlate to cell cycle progression. In this analysis, staining of microtubules 151 
with alpha-tubulin in all samples served as a negative control, with no significant 152 
variation of expression during cell cycle progression. 153 
 154 
Based on this analysis, at an FDR of 5%, we identified 298 out of 1,188 proteins (25%) 155 
to have variance in expression levels temporally correlated to cell cycle progression, 156 
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and for which the cell-cycle explained more than 10% of the variance in expression. 157 
(Supplementary Table 5 and Supplementary Figure S1). This cutoff was set as 158 
being significantly above the negative control. It is noteworthy that the majority of the 159 
proteins analyzed (75%) showed cell-to-cell variations that were largely unexplained 160 
by cell cycle progression. Enrichment analysis of GO BP terms was performed for the 161 
genes encoding cell cycle dependent and independent proteins. The set of genes 162 
identified as cell cycle regulated was highly enriched for functions related to 163 
chromosome organization and segregation, regulation of cell cycle processes, 164 
cytoskeleton organization, cell division and cytokinesis (Figure 2A). Interestingly, the 165 
set of genes, with variations not correlating to the cell cycle, was not enriched for any 166 
GO BP terms at all. This shows that the identified proteins are indeed involved in cell 167 
cycle processes whereas the proteins not correlated to cell cycle are likely involved in 168 
a variety of different biological processes. 169 
 170 
Population distribution and fraction of variance explained by the cell cycle 171 
To investigate the pattern of variability for these 1,188 proteins, k-means clustering 172 
was performed using the kurtosis and skewness features of the distribution of the 173 
mean intensity per cell for each protein. The mean fold-change between high and low 174 
expressing cells per protein were 7.97. Three clusters were found to represent distinct 175 
variation patterns (Figure 2B): Cluster 1, the largest cluster (n=1,018), contained most 176 
cell cycle dependent and independent proteins, 92% and 83%, respectively. The lower 177 
segment of Cluster 1 contained some proteins with a bimodal distribution (Figure 2B, 178 
exemplified by GATA6), but the majority of the proteins in this cluster had a unimodal 179 
normal distribution (Figure 2B, exemplified by CCNB1). Cluster 2, the second largest 180 
cluster (n=153), contained proteins with slightly skewed distribution profiles with a 181 
sharp peak distribution, as exemplified by DEF6. Cluster 3 (n=17) mostly contained 182 
proteins not correlated to the cell cycle, where the variation was highly skewed and 183 
tailed with few cells expressing the protein. These results show that cell cycle 184 
dependent variations are mostly unimodal with a normal distribution across a log-185 
phase growing population of cells.  186 
 187 
In addition to identifying the proteins that are regulated by the cell cycle, the single-cell 188 
resolution of our dataset allowed us to also calculate the fraction of variance that is 189 
determined by the cell cycle. To our knowledge, such analysis has been done neither 190 
at transcriptome, nor at proteome level previously. Here, the Gini index 65 was 191 
calculated and used as a metric for the variance of these 1,188 proteins (Figure 2C). 192 
All the proteins analyzed had a Gini index significantly higher than the negative control 193 
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(alpha tubulin) used, which serve as yet another check that we are indeed analyzing 194 
proteins with heterogeneous expression. The percentage of variance explained by the 195 
cell cycle ranged between 10%-91% (the FUCCI markers themselves were controlled 196 
at green: 80% and red: 65%) and two distinct populations were identified (Figure 2C): 197 
one where the variance was determined by the cell cycle (CCD), and one where the 198 
variance was independent of the cell cycle (Non-CCD). Interestingly, the majority of 199 
the observed cell cycle regulated variations appeared to be controlled by the cell cycle 200 
at a low degree (on average 21%). We hypothesize that these cell cycle regulated 201 
proteins, where the percentage of variance explained by the cell cycle is low, are 202 
important for the cross-talk between the cell cycle and other signaling processes. 203 
 204 
Organelle specific differences in temporal cell cycle protein variations 205 
The high subcellular resolution of our analysis allows us to study the role of subcellular 206 
localization in cell cycle regulation. We found significant differences in the localization 207 
of proteins that show cell cycle dependent or independent expression (Figure 2D). 208 
Proteins with variations independent of the cell cycle were significantly enriched for 209 
localization to the intermediate filaments, nucleoli, nuclear bodies, and mitochondria 210 
(binomial one sided test, p<0.01, mapped proteome as background), whereas proteins 211 
with cell cycle dependent variation were significantly enriched for localization to 212 
nucleoli, nuclear bodies and mitotic structures, constituting 33% of the cell cycle 213 
dependent proteins (binomial one sided test, p<0.01, mapped proteome as 214 
background). Half (50%) of the cell cycle dependent proteins resided in the nuclear 215 
compartment (2% nuclear speckles, 11% nuclear bodies, 24% nucleoli and 63% 216 
nucleus), not surprisingly given that one of the main functions of the nucleus is to 217 
perform and control the replication of DNA during the cell cycle. 218 
 219 
In our analysis, we find many functionally uncharacterized proteins that share the same 220 
subcellular localization as some previously well characterized cell cycle dependent 221 
proteins (Figure 2E). It is plausible to assume that proteins expressed in the same 222 
organelle with similar temporal profiles may be involved in similar cell cycle processes. 223 
For example, two mitochondrial proteins with known association to cell proliferation - 224 
Pyruvate Carboxylase (PC), involved in gluconeogenesis and shown to be upregulated 225 
in several types of cancer 66-68, and XAF1, whose inhibition is known to prevent cell 226 
cycle progression 69  were both shown to peak in the S/G2 phase (0.78 and 0.80 in 227 
pseudotime, respectively). We could also identify two proteins without a prior 228 
association to the cell cycle. PC and XAF1 shared the same subcellular location and 229 
temporal expression profile as TTC21B (0.8 pseudotime) and SLIRP (0.8 pseudotime), 230 
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both with no previously described association to the cell cycle or cell proliferation. In 231 
this manner, we could associate novel and known cell cycle associated proteins with 232 
similar temporal profiles in organelles such as the cytosol, nucleus, nucleoli and the 233 
Golgi apparatus (Figure 2E). 234 
 235 
Temporal protein expression patterns through interphase 236 
We next sorted the proteins based on the time of peak expression in order to study the 237 
temporal dynamics of the cell cycle dependent proteome (Figure 3A). Despite G1 238 
being the longest period of the cell cycle (G1 10.8h; G1/S 2.6h; S&G2 together 11.9h 239 
in U-2 OS FUCCI cells), the majority (85%) of the proteins peaked towards the end of 240 
the cell cycle corresponding to the S&G2 phases. This analysis enabled identification 241 
of proteins which share a highly similar temporal pattern to well-known cell cycle 242 
regulators, but with no prior association to the cell cycle. For instance, in the G1 group, 243 
well-known cell cycle dependent proteins such as ORC6 (Figure 3B), required for the 244 
cell entry into S phase 70, and MCM10, required for DNA replication 71, were identified 245 
to have similar patterns as those with no prior association to the cell cycle, such as 246 
ZNF32. Recently, overexpression of ZNF32 was associated with a shorter survival 247 
time in lung adenocarcinoma cells 72,73. The group peaking in the end of G1 contained 248 
proteins such as JUN, required for progression through the G1 phase of cell cycle 74; 249 
the G1/S specific cyclin CCNE175; and DUSP19 (Figure 3B), a phosphatase whose 250 
depletion results in increased mitotic defects 76. In the SG2 group, several known cell 251 
cycle dependent proteins were identified: CCNB1, a G2/M specific cyclin 48, AURKB, 252 
a protein involved in the regulation of alignment and segregation of the chromosomes, 253 
and BUB1B (Figure 3B), a mitotic checkpoint kinase 77. This group also contained 254 
proteins such as PAPSS1, an estrogen sulfating enzyme with no previously described 255 
association to the cell cycle, although its overexpression was reported to affect 256 
proliferation 78. Other proteins in the SG2 group were N6AMT1, a methyltransferase 257 
79; PHLDB1, an uncharacterized protein; DPH2 (Figure 3B), required for the synthesis 258 
of diphthamide; and FLI1, a transcription factor associated to Ewing sarcoma 80 259 
(Figure 3B).  260 
 261 
Several of the proteins identified as cell cycle dependent, such as ORC6, RBL2, 262 
BUB1B, CCNA2 and HORMAD1 have been reported to be involved in cell cycle 263 
processes, yet their temporal expression profile across the interphase, which can 264 
provide insight into their functionality, has so far remained uncharacterized 265 
(Supplementary Figure S2). In addition, knowledge about the temporal expression 266 
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patterns and the timing of peak expression relative to other proteins is valuable for a 267 
deeper causal understanding of the molecular effects of cell cycle progression. 268 
 269 
An extended network of cell cycle genes 270 
Of the 464 proteins (298 in interphase and 166 in mitotic structures) identified to 271 
correlate to cell cycle progression, 206 (44%) had a known association to the cell cycle 272 
as determined either by a GO BP term related to cell cycle processes 53 or Reactome 273 
2, or a cell cycle phenotype registered in Cyclebase 54. The remaining 258 proteins 274 
(56%), had no previous association to the cell cycle (Supplementary Table 6). To 275 
investigate whether the proteins, identified to be cell cycle regulated in this study, are 276 
connected to proteins previously known to be cell cycle regulated, we analyzed 277 
protein-protein interactions using the STRING database 81. This analysis revealed 278 
significantly more interactions than expected for a random set of proteins of similar 279 
size (Lambda calculations PPI enrichment p-value <1e-16; 1855 interactions; 649 280 
expected number of edges), indicating that the proteins are likely involved in similar 281 
biological processes. The known cell cycle dependent proteins were tightly clustered 282 
together and made up the core of the network, whereas the newly identified cell cycle 283 
regulated proteins formed an extended network (Figure 3C). For instance, KIF23 is an 284 
essential protein for the microtubule bundling during cytokinesis via its interaction with 285 
RACGAP1 82 and it is known to oscillate temporally in the nucleus during the cell cycle 286 
83. In our interaction analysis (Figure 3C), KIF23 showed a number of interactions with 287 
known cell cycle regulators, but also with proteins with no prior association to the cell 288 
cycle such as DRG1; MICAL3, which further interacts with the known NINL protein 289 
required for cytokinesis 84; and RAD51AP1, which further interacts with RACGAP1 and 290 
KIF20A required for cytokinesis 85. This implies that these three proteins with unknown 291 
function, DRG1, MICAL3, and RAD51AP1, are involved in the same process as their 292 
known interaction partners, in this case cytokinesis. 293 
 294 
Poor overlap between the cell cycle dependent proteome and transcriptome 295 
We performed a comparative analysis between the cell cycle regulated proteome 296 
identified in our study and the cell cycle transcriptome of U-2 OS osteosarcoma cells 297 
obtained by bulk RNA-sequencing of synchronized cells (26), as well as the 298 
transcriptome of another type of sarcoma cells (myxoid sarcoma cells) obtained by 299 
single-cell RNA-sequencing of non-synchronized cells (36). Both comparisons 300 
revealed a poor overlap of 19% and 10%, respectively (Supplementary Table 7). This 301 
indicates that the temporal dynamics of proteome regulation may be to a large extent 302 
maintained at a translational or post-translational level. 303 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/543231doi: bioRxiv preprint 

https://doi.org/10.1101/543231
http://creativecommons.org/licenses/by/4.0/


 11 

 304 
Gene expression patterns across tissues and cancers results in clusters 305 
reflecting proliferative activity 306 
To further understand whether the identified proteins are functionally important for cell 307 
proliferation in a more native context than cell lines, we investigated the mRNA 308 
expression across cohorts of normal and cancer tissue. Hierarchical clustering of the 309 
transcript data from bulk RNA-sequencing of normal and cancer tissues from HPA 310 
(Figure 4A) resulted in four major clusters. The first cluster contained normal tissues 311 
with low proliferative activity, such as heart muscle, skeletal muscle and pancreas. The 312 
different cerebral tissues formed the second cluster, together with testis, which 313 
appeared as an outlier, most likely due to being the only sample with meiotic activity. 314 
The third cluster contained mostly normal tissues, such as kidney and breast, and 315 
showed mid-range expression level of the proliferation markers Ki67, MCM2, PCNA, 316 
CDK1 and MCM6. The fourth cluster contained mostly cancer tissues, such as skin 317 
and breast cancer, but also normal tissues with high proliferative activity, such as bone 318 
marrow, tonsil and fetal lung. The tissues in this cluster showed high expression of the 319 
abovementioned proliferation markers. Most importantly, gene expression levels were 320 
significantly higher in the proliferative tissues than the non-proliferative tissues 321 
(Kruskal Wallis test p-value <2e-16) (Figure 4B).  322 
 323 
To further strengthen the conclusion that the novel cell cycle regulated proteins are 324 
important for cellular proliferation, we used the RNA-sequencing data from The Cancer 325 
Genome Atlas (TCGA) 86 to create genome wide co-expression networks downloaded 326 
from TCSBN 87, in which the shortest path between the novel cell cycle regulated 327 
genes identified in our study and known cell cycle genes were measured and 328 
compared to a randomly sampled set of genes. The novel genes indeed had a 329 
significantly (Kolmogorov-Smirnov one-sided test, FDR < 0.05) shorter path to the 330 
known cell cycle genes in all cancer tissues and the normal proliferative tissues such 331 
as skin, spleen and colon (Figure 5A), whereas there was no significant difference 332 
(Kolmogorov-Smirnov one-sided test, FDR < 0.05) of the path length in low- or non-333 
proliferating tissues such as adipose, brain, heart and muscle tissues. This shows that 334 
even though most of these proteins are not temporally regulated at the gene 335 
expression level, their overall gene expression level is still of importance for cellular 336 
proliferation. 337 
 338 
Genes encoding cell cycle regulated proteins often have an expression 339 
correlating to patient survival in cancer 340 
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To further test if the level of expression of genes encoding cell cycle regulated proteins 341 
is associated to cancer patient outcome, the TCGA data incorporated in the cancer 342 
pathology atlas of HPA was used 88, where genes with a statistically significant 343 
differential expression between patient populations with long and short survival were 344 
identified 86. Genes with expression levels correlated with long survival time were 345 
denoted as favorable, and with shorter survival time were denoted as unfavorable. 346 
Globally, over half of all human genes (54%) were shown to have a prognostic 347 
association in this manner, as previously described 88. Interestingly, prognostic genes 348 
were significantly overrepresented among the cell cycle regulated proteins identified 349 
in our study (67% prognostic) and the majority of these genes (61%) were associated 350 
with an unfavorable outcome, further supporting the hypothesis of an important role of 351 
these genes in cellular proliferation. 352 
 353 
We next incorporated this classification into the generated co-expression networks for 354 
different human cancer tissue types. In these networks, an enrichment analysis was 355 
further subjected for each genetic community: communities were denoted as 356 
favorable, unfavorable or not enriched. All communities contained a mixture of known 357 
and novel cell cycle proteins, further strengthening their functional associations. 358 
Strikingly, these networks revealed that the association into clusters were highly 359 
different for different tumors (Figure 5B and Supplementary Figure S3), with proteins 360 
being in a favorable community in one cancer type while being in an unfavorable 361 
community in another cancer type, emphasizing the complexity of cell cycle regulation 362 
from a systems perspective. 363 
 364 
Many of the proteins identified here as cell cycle regulated are interesting candidates 365 
for in-depth studies of their roles in tumorigenesis, and for potential use as biomarkers. 366 
For instance, the gene RACGAP1, known to regulate cytokinesis, and DLGAP5, which 367 
has been reported to have a role in carcinogenesis 89-91. In the co-expression network 368 
analysis, these genes showed interactions with known cell cycle related genes and 369 
were enriched in an unfavorable prognostic cluster in breast cancer and pancreatic 370 
cancer, respectively (Figure 6A). Immunohistochemical (IHC) analysis showed that 371 
these proteins are expressed at low levels in normal tissues (Figure 6B) and high 372 
levels in corresponding tumor tissues (Figure 6C). Their expression profile is shown 373 
in Figure 6D.  To gain an insight into their potential pathway involvement, STRING 374 
analysis was performed (Figure 6E). RACGAP1 showed physical interaction with 375 
several members of the mitotic kinesin family required for cytokinesis 92, whereas 376 
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DLGAP5 showed direct interaction with AURKA, a protein involved in several mitotic 377 
events 93. 378 
 379 
A portion of the genes encoding proteins identified in our study (39%) were associated 380 
with a favorable outcome, such as SYNE2 and FAM50B (Figure 6A). Comparison of 381 
IHC staining of these two proteins revealed high expression in normal tissue (Figure 382 
6B), and low expression in the respective cancers (Figure 6C). This suggests that 383 
these proteins might function in anti-tumor activities. For example, SYNE2 is a nuclear 384 
membrane protein 94, for which we demonstrated temporal expression variation 385 
peaking in G2. FAM50B is expressed in the nucleus in interphase and translocates to 386 
the cytokinetic bridge in mitosis (Figure 6D). SYNE2 shows interaction with genes 387 
enriched in cell cycle processes, such as STAG1, SUN2, TERF1 and TERF2 and 388 
FAM50B shows a physical interaction with HDAC2 (Figure 6E), which is involved in 389 
the regulation of cell cycle progression 95. 390 
 391 
We conclude that these novel proteins identified to be cell cycle regulated have the 392 
potential of serving as novel diagnostic or therapeutic targets for a variety of human 393 
cancers.  394 
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Discussion 395 
In this study, we find that a large extent (17%) of the human proteome displays cell-to-396 
cell heterogeneity in terms of level of expression. We present the first temporal analysis 397 
of the cell cycle regulated human proteome in unsynchronized cells, mapped at a 398 
single cell level with subcellular resolution. Surprisingly, the majority of the variations 399 
were not correlated to the cell cycle, which opens up intriguing avenues for further 400 
exploration of the deterministic factors that might control these stochastic variations in 401 
expression.  402 
 403 
We present 258 novel cell cycle regulated proteins, and show that despite a poor 404 
overlap with cell cycle transcriptome studies, these genes are expressed significantly 405 
higher in proliferating tissues and tumors. The poor overlap to prior transcriptome-406 
based studies of the human cell cycle points towards massive regulation of protein 407 
levels at a translational or post-translational level. Another key finding of this study is 408 
that the variance of many cell cycle regulated proteins, in particular the newly identified 409 
proteins, are only partially explained by the cell cycle. We hypothesize that these 410 
proteins are deterministically controlled by other cellular mechanisms which open the 411 
door to further follow up work on the role of various signaling pathways in cell cycle 412 
regulation. 413 
 414 
Finally, we demonstrate that several of the newly identified cell cycle regulated proteins 415 
may be clinically significant and have oncogenic or anti-oncogenic functions. We 416 
believe that this comprehensive dissection of the cell cycle regulated human proteome, 417 
now integrated into the HPA database, will serve as a valuable resource to accelerate 418 
studies towards a greater functional understanding of the human cell cycle, the role of 419 
these proteins in tumorigenesis and identification of novel clinical markers for cellular 420 
proliferation.  421 
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Material and Methods 422 
 423 
Initial identification of proteins with cell-to-cell heterogeneity 424 
Protein cell-to-cell heterogeneity was identified in the images from the Cell Atlas of the 425 
Human Protein Atlas 46 either in terms of variation in abundance, defined as the change 426 
of protein expression levels between single cells within the same field of view, or 427 
variations in spatial distribution, defined as translocation of the protein between 428 
different subcellular compartments or independent regulation of the protein in two 429 
different compartments. 430 
 431 
Cell cultivation 432 
U2- OS FUCCI cells were developed and kindly provided by Dr. Miyawaki 42. These 433 
cells are endogenously tagged with two fluorescent proteins fused to cell cycle 434 
regulators to allow cell cycle monitoring; CDT1 (mKO2-hCdt1+) accumulates in G1 435 
phase, while Geminin (mAG-hGem+) accumulates in S and G2 phases. Cells 436 
expressing FUCCI probes are divided into red mKO2(+)mAG(-), yellow 437 
mKO2(+)mAG(+), and green mKO2(-)mAG(+) emitting populations. The cells were 438 
cultivated in Petri dishes at 37 °C in a 5.0 % CO2 humidified environment in McCoy’s 439 
5A (modified) medium GlutaMAX supplement, (ThermoFisher, 36600021, MA, USA) 440 
supplemented with 10% fetal bovine serum (FBS, VWR, Radnor, PA, USA). The cells 441 
were maintained sub-confluent and harvested by trypsinization at log-phase growth 442 
(60% confluency) for subsequent analysis. 443 
 444 
Live cell imaging 445 
U-2 OS FUCCI cells were grown on a 96-well glass bottom plates (Whatman, Cat# 446 
7716-2370, GE Healthcare, UK, and Greiner Sensoplate Plus, Cat# 655892, Greiner 447 
Bio-One, Germany). Approximately 6,000 cells were seeded in the wells and subjected 448 
to long-term time-lapse imaging using the molecular device instrument ImageXpress 449 
Micro XL (Molecular Device) high content screening equipped with a 20 x Plan Apo 450 
objective and supported with the MetaXpress software. Three Wavelenghts were 451 
acquired; W1 transmitted light, W2 FITC-3540C filter, W3 CY3-4040C filter. Images 452 
were collected every 30 minutes over a course of 72h. 453 
 454 
Antibodies 455 
The rabbit polyclonal antibodies used in this study (Supplementary Table 8) were 456 
generated within the HPA project. The antibodies were designed to target as many 457 
different isoforms of the target protein as possible and were affinity purified using 458 
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antigen fragments 96. Furthermore, the antibodies were validated and quality assured 459 
for sensitivity and lack of cross-reactivity using the HPA standard quality assurance 460 
including microarray analyses. 461 
 462 
Immunostaining 463 
Immunostaining of the cells 97 was performed in 96-well glass bottom plates (Whatman, 464 
GE Healthcare, UK, and Greiner Sensoplate Plus, Greiner Bio-One, Germany) coated 465 
with 50 μl of 12.5 μg/ml human fibronectin (Sigma Aldrich, Darmstadt, Germany). 466 
Approximately 8,000 cells were seeded in each well and incubated at 37 oC for 24 467 
hours. After washing with Phosphatase Buffered Saline (PBS, PH=7), cells were fixed 468 
with 40 μl 4% ice cold PFA (Sigma Aldrich, Darmstadt, Germany) dissolved in growth 469 
medium supplemented with 10 % serum for 15 minutes and permeabilized with 40 μl 470 
0.1% Triton X-100 (Sigma Aldrich) in PBS for 3x5 minutes. Rabbit polyclonal HPA 471 
antibodies targeting the proteins of interest were dissolved to 2-4 μg/ml in blocking 472 
buffer (PBS + 4% FBS) containing 1 μg/ml mouse anti-tubulin (Abcam, ab7291, 473 
Cambridge, UK). After washing with PBS, the diluted primary antibodies were added 474 
(40 μl/well) and the plates were incubated over night at 4 oC. After overnight incubation, 475 
wells were washed with PBS for 3x10 minutes. Secondary antibodies, goat anti-mouse 476 
Alexa405 (A31553, ThermoFisher) and goat anti-rabbit Alexa647 (A21245, 477 
ThermoFisher) diluted to 2,5 μg /ml in blocking buffer were added and the plates were 478 
incubated for 90 minutes at room temperature. After washing with PBS, all wells were 479 
mounted with PBS containing 78 % glycerol before sealed. 480 
 481 
Image acquisition 482 
Image acquisition was performed using ImageXpress Micro XL (Molecular Device) 483 
high content screening equipped with a 40 x Plan Apo objective and supported with 484 
the MetaXpress software for automated acquisition. Images of the four channels were 485 
acquired at room temperature from six positions per sample. Four wavelengths were 486 
acquired; W1 for the microtubules DAPI-5060C filter, W2 FITC-3540C filter, W3 CY3-487 
4040C filter and W4 CY5-4040C for the protein of interest. The images were unbinned 488 
with a pixel size of 0.1625x0.1625 µm. 489 
 490 
Image processing and analysis  491 
The segmentation of each cell was performed using the Cell Profiler software 98, where 492 
the overlay of the FUCCI tags were used for the nuclei identification and the 493 
microtubule staining was used for identification of the cell outline. Size exclusion was 494 
used to prune image mitotic cells from the population. 495 
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For each cell, the green and red tag mean intensity value was used and the cells were 496 
clustered in one of the cell cycle clusters using the Gaussian Clustering. The mean 497 
intensity of the target protein was measured in one of the three main compartments; 498 
nucleus, cytosol or cell, based on the a priori-known subcellular localization of the 499 
target protein from the HPA Cell Atlas. 500 
 501 
Statistical analysis was performed using Kruskal-Wallis statistical test to determine the 502 
p-values that significantly differed between the three cell cycle groups. An arbitrary cut-503 
off, based on a negative control, p<0.01 was chosen. FDR was calculated to adjust for 504 
multiple comparisons 99.The plots were generated using R studio v1.1.423 100. The 505 
image montages were created using Image J and FIJI 101. k-means clustering was 506 
performed using the features kurtosis and skewness, where each gene was assigned 507 
to a specific K-cluster. The optimal number of clusters was chosen using the Elbow 508 
method, where it looks at the percentage of variance explained as a function of the 509 
number of clusters. The bimodal distribution of the protein expression was indicated 510 
by Hartigan’s dip test.   511 
 512 
Polar-coordinate pseudo time model  513 
In this work we utilized the FUCCI system to model cell cycle position. To generate a 514 
continuous representation of cell cycle position we utilized a polar regression based 515 
on a log-scale scatter plot of GMNN (FUCCI-green) and CDT1 (FUCCI-red) where 516 
each point represents a single cell (Supplementary Figure S4). This data was shifted 517 
such that the origin point lay at the center of mass. This allowed us to use the fractional 518 
radius of the circle could be used to estimate time for each cell as traced by a ray from 519 
the origin generating a polar regression representing continuous cell cycle position. 520 
The cell-division point was selected by using the area of lowest cell density on the 521 
polar ray from the origin. This is justified by the knowledge that M phase (where cells 522 
express neither GMNN nor CDT1 highly) is much shorter than all other phases. The 523 
selected point was validated via visual inspection of nearby cells. This allowed us to 524 
linearize the progression of time from 0 to 1 representing the fractional distance along 525 
this polar axis from 0 to 360 degrees. This fit was done on a per-plate basis to account 526 
for batch-variance observed in the data. 527 
 528 
Moving average model  529 
Cell-cycle correlation was measured using a moving-average model within the 530 
linearized time from the polar fit described above. A range of window sizes were tested 531 
from 5-30. The analysis proved robust to this range of window size, and results 532 
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reported are for a window size of 20 cells which was chosen to balance the robustness 533 
to outliers with potentially destroying signal. 534 
 535 
Percent explained variance 536 
We used the metric percent explained variance to describe the goodness of our model 537 
fit. This metric is appealing as it is scale-invariant. That is, unlike a p-value significance 538 
metric which becomes more significant as sample size increases, the percent-variance 539 
converges to a stable solution as more cells are sampled. The percent explained 540 
variance is calculated as:  541 

(1) %𝜎#$%& = 1 − *+,-./012
*34312

 542 

Here, spolar represents the variance of the protein of interest for an experiment and 543 

sresidual represents the variance remaining calculated from the moving average line 544 
along the pseudo-time axis.  545 
 546 
Periodic regression model  547 
To model protein response over time, a novel continuous-time periodic regression 548 
model was developed. This model made the following assumptions.  549 
1. Protein expression is smoothly differentiable 550 
2. Protein expression in continuously dividing cells must be periodic 551 
3. Cell cycle-dependent protein expression shows a single peak as is commonly 552 

assumed for gene expression 102,103.  553 
To model the asymmetric nature of protein accumulation and depletion over the cell 554 

cycle we developed a sin-based equation of fit describing the expression of protein c 555 

over the cell cycle as seen in equation (2) below. 556 

 557 

(2)  558 

Where b describes the magnitude and sign of response, a describes the position of 559 

extremeum, g   defines the steepness of response, and C defines the y-intercept. Here 560 

we use p to define the single-extremum period 0-1 as represented by the normalized 561 

relative time since division. This function is fit to the normalized protein expression in 562 
the relevant meta-compartment where protein expression is observed (nucleus, 563 
cytoplasm, or both). Parameters of these functions are bounded to ensure reasonable 564 
differentiability as follows. 565 

0 < 𝑏 ≤ 1 566 

f (x) = b ⋅sin(π ⋅ xα )γ +C
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1
6
< 𝛼 ≤ 100 567 

1
2
< 𝛾 ≤ 100 568 

0 ≤ 𝐶 ≤ 1 569 
It is worth noting that these functions do not have a stable period and may behave 570 
erratically outside the defined 0-1 interval, however they are not designed to be 571 
evaluated outside this interval.  572 
 573 
Gene set enrichment and interaction analysis 574 
Functional enrichment analysis for the GO domain biological process was performed 575 
using the Database for Annotation, Visualization and Integrative Discovery (DAVID) 576 
tool 104  and Cytoscape v3.6.1 105 was used for the network visualization.  Enrichment 577 
map plugin was used to visualize the results of the highly significant gene-set 578 
enrichment as a network 106. 579 
 580 
The interaction analysis was done using the Search Tool for the Retrieval of Interacting 581 
Genes/Proteins (STRING) database v10.5  81, where a medium confidence (0.4) score 582 
was used to highlight the protein-protein interaction edges. 583 
 584 
The open sources Cyclebase v3.0 54; Reactome and QuickGO 107 were used for 585 
downloading the previously characterized cell cycle regulators. 586 
 587 
RNA extraction and RNA sequencing 588 
The RNA extraction and sequencing were performed as previously reported 46,47,88. 589 
Briefly, for cell lines early-split samples and duplicates were used for total RNA 590 
extraction. Tissue samples were embedded in Optimal Cutting Temperature 591 
compound and stored at –80°C. HE-stained frozen sections (4 µm) were prepared 592 
from each sample using a cryostat and the CryoJane® Tape-Transfer System 593 
(Instrumedics, St. Louis, MO, USA). Three sections (10 µm) were cut from each frozen 594 
tissue block and collected in a tube for subsequent RNA extraction 108. Total RNA was 595 
extracted from the cell lines and tissue samples using the RNeasy Mini Kit (Qiagen, 596 
Hilden, Germany) according to the manufacturer’s instructions. Only samples of high-597 
quality RNA (RNA Integrity Number ≥7.5) were used in the following mRNA sample 598 
preparation for sequencing. 599 
 600 
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A total of 172 samples from 37 tissues and organs was sequenced using Illumina 601 
Hiseq2000 and Hiseq2500, and the standard Illumina RNAseq protocol with a read 602 
length of 2x100 bases. Briefly, the reads were mapped to the human genome 603 
(GRCh37) using Tophat v2.0.8b 109. Transcript abundance estimation was performed 604 
using Kallisto v0.42.4 110. For each gene, the abundance was reported in 'Transcript 605 
Per Million' (TPM) as the sum of the TPM values of all its protein-coding transcripts. 606 
For each cell line and tissue type, the average TPM value for replicate samples was 607 
used as abundance score. The threshold level to detect presence of a transcript for a 608 
particular gene was set to ≥ 1 TPM. 609 
 610 
Co-Expression Network Analysis 611 
The co-expression networks for different tissues and cancer were downloaded from 612 
TCSBN website 87. The nodes (genes) in the networks were classified into three 613 
categories: i) candidate cell-cycle genes (T1), ii) known cell-cycle genes (T2) and iii) 614 
other genes (T3). Following that, the shortest path in the co-expression network was 615 
compared between each category by using simple Breadth-First Search (BFS) 616 
method. The distribution between shortest path of T1-T2 was compared with T3-T2 by 617 
FDR-Adjusted Kolmogorov-Smirnov one-sided test (FDR < 0.05). 618 
 619 
For the next step, we then incorporated the cancer pathology data from the HPA 88 into 620 
the cancer co-expression networks. The significant prognostic property (“favorable” or 621 
“unfavorable”) was mapped into the nodes of the networks. We then employed Louvain 622 
community detection algorithm111 to identify the communities in the network, to 623 
maximize the modularity score. For each community, we calculated hypergeometric 624 
test to understand further the behavior of each community. A community was 625 
considered as showing specific behavior if it fulfilled p-value < 0.01. Each community 626 
was mapped into one of the four categories: i) Favorable, ii) Unfavorable, iii) Both, iv) 627 
Not significant. 628 
 629 
The aforementioned analyses were performed with in-house Python script, with Scipy 630 
module112 for the statistical analysis and Igraph113 for the network analysis and 631 
manipulation.  632 
 633 
Immunohistochemical staining 634 
Immunohistochemical (IHC) staining of tissue microarray (TMA) sections and slide 635 
scanning were performed essentially as previously described 114. In brief, normal and 636 
cancer tissues were derived from surgical material obtained from the Department of 637 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 7, 2019. ; https://doi.org/10.1101/543231doi: bioRxiv preprint 

https://doi.org/10.1101/543231
http://creativecommons.org/licenses/by/4.0/


 21 

Pathology, Uppsala University Hospital, Uppsala, Sweden as part of the sample 638 
collection governed by the Uppsala Biobank (http://www.uppsalabiobank.uu.se/en/). 639 
All human tissue samples used in the present study were anonymized in accordance 640 
with approval and advisory report from the Uppsala Ethical Review Board (Reference 641 
# 2002-577, 2005-338 and 2007-159). Representative tissue cores (1 mm diameter) 642 
were sampled from formalin fixed and paraffin embedded (FFPE) blocks and 643 
assembled into six TMAs, containing normal tissue samples from 144 individuals, as 644 
well as cancer tissue samples from 216 individuals. TMA blocks were cut in 4 μm thick 645 
sections using waterfall microtomes (Microm HM 355S, Thermo Fisher Scientific, 646 
Freemont, CA, USA), dried in RT overnight and baked in 50°C for 12-24 hours prior to 647 
IHC staining. Automated immunohistochemistry was performed using Autostainer 648 
480® instruments (Lab Vision, Freemont, CA, USA), followed by slide scanning using 649 
Aperio AT2 (Leica Biosystems, Wetzlar, Germany). The high-resolution images of IHC 650 
stained TMA sections were evaluated and annotated by certified pathologists (Lab 651 
SurgPath, Mumbai, India).  652 
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Figure legends 984 
 985 
Figure 1: Temporal dissection of cell-to-cell heterogeneity of the human 986 
proteome 987 
In A-D the target protein is shown in green, microtubules in red and the nucleus in 988 
blue. The scalebars in A-F represents 10μm. 989 
A: Example images of proteins with observed cell-to-cell heterogeneity in 990 
immunostained U-2 OS cells in terms of variation in protein abundance (CCNB1) and 991 
in spatial distribution (MRTO4) respectively. 992 
B: The RACGAP1 protein shows the same type of cell-to-cell heterogeneity in several 993 
different cell types (U-2 OS, A-431 and MCF7). 994 
C: Example images of proteins localized to one of the mitotic substructures 995 
(Kinetochores, Cytokinetic bridge, Cleavage furrow, Mitotic spindle, Midbody ring and 996 
Midbody). INCENP localized to kinetochores in MCF-7 cells, SGO1, KIF20A and 997 
TACC3 localized to the kinetochores, the cleavage furrow and the mitotic spindle in U-998 
2 OS cells, respectively. 999 
D: Proteins localized to the cytokinetic bridge (BIRC5, GLI4, C12orf66) midbody ring 1000 
(DVL3), and mitotic spindle (KIF11, KNSTRN, MGAT5B and FKBPL) in U-2 OS cells. 1001 
E: U-2 OS FUCCI cells allow monitoring the cell cycle by expressing two fluorescently-1002 
tagged cell cycle markers, CDT1 expressed during G1 phase (red) and Geminin 1003 
expressed during S and G2 phases (green) and their co-expression during G1/S 1004 
transition (yellow). Intensity map of the FUCCI cells defined in three clusters 1005 
representing G1, G1/S and SG2 phases by Gaussian clustering.  The polar coordinate 1006 
model transfers the FUCCI marker information into a linear model of pseudo-time.  1007 
F: Examples images of the analyzed proteins ANLN, FAM171F1, DUSP18 and alpha-1008 
tubulin (MT) as negative control combined with their respective boxplot, intensity plot 1009 
and expression profile. In the boxplots the cells expressing the different markers (G1, 1010 
G1S and SG2) are grouped and the mean intensity of the target protein is plotted. 1011 
Kruskal- Wallis statistical test was used to check the significance variation across the 1012 
different groups. In the intensity plot, the cells corresponding to the specific target 1013 
protein is highlighted using a gradient color code of the mean intensity of the target. 1014 
 1015 
Figure 2: Variation distribution and organelle proteomes 1016 
A:  Gene ontology (BP) based enrichment analysis for cell cycle regulated proteins 1017 
showing significantly enriched terms for the domain biological process. Each node 1018 
represents a GO term and edge size corresponds to the number of genes that overlap 1019 
between the two connected gene sets. 1020 
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B: Scatterplot showing the three different clusters generated by K mean clustering 1021 
based on Kurtosis and skewness as features for the cell cycle regulated proteins (dark 1022 
blue) and the ones not correlated to cell cycle (grey). 1023 
Violin-plots and histograms showing the distinct distributions of the normalized mean 1024 
intensity of each cell per protein of selected examples (GTA6; CCNB1 and DEF6). 1025 
C: Scatterplot of percentage explained variance and Gini index for each investigated 1026 
protein color coded by -log10(FDR). 1027 
D: Bar plot showing the distribution of the cell cycle regulated proteins (dark blue) and 1028 
the ones not correlated to cell cycle (grey) proteins to the different subcellular 1029 
compartments. Asterisk marks statistically significant deviations from the mapped 1030 
human proteome (p<0.01) based on a binomial test. 1031 
E: Examples of cell cycle correlated proteins localized to the different subcellular 1032 
structures respectively: Cytosol, Mitochondria, Nucleus, Nucleoli, Nuclear sub-1033 
compartments and Secretory pathway. The scalebar represents 10μm. The target 1034 
protein is shown in green and microtubules in red. 1035 
 1036 
Figure 3: Temporal profiles of the cell cycle regulated human proteome 1037 
A: Heat map of the cell cycle regulated proteins showing the relative expression levels 1038 
of the protein across the cell cycle. Yellow represents high expression level and blue 1039 
represents low expression levels. The heatmap is sorted by the timepoint of their peak 1040 
of expression.  1041 
B: Examples of selected cell cycle regulated proteins peaking in different phases of 1042 
the cell cycle. ORC6 peaking in G1, DUSP19 peaking end of G1, BUB1B, DPH2 and 1043 
FLI1 peaking in S&G2 phases. 1044 
C: Protein-Protein interactions network plot of the 464 CCD proteins using the STRING 1045 
database. The proteins with a known association to the cell cycle (GO BP terms) are 1046 
shown as squares. 1047 
 1048 
Figure 4: Gene expression across normal and cancer tissues 1049 
A: Hierarchical clustering of transcript levels (TPM values) for the cell cycle regulated 1050 
proteins derived from bulk RNA sequencing of various normal and cancer tissue types. 1051 
The expression level of the proliferation markers MCM6, CDK1, PCNA, MCM2 and 1052 
KI67 is highlighted on top, as a general measure of the proliferative activity of the 1053 
tissues. Four clusters are identified; Cluster 1 contains normal tissues with low 1054 
proliferative activity, 2 contains cerebral tissues with testis, 3 contains mostly normal 1055 
tissues with midrange expression level of the proliferation markers and 4 contains 1056 
tissues with high expression of the proliferation markers, including tumors. 1057 
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B: Box plots of the average transcript level corresponding to the cell cycle regulated 1058 
proteins for the four different clusters from A. 1059 
 1060 
Figure 5: Co-expression networks of the cell cycle regulated proteome 1061 
A: Bar plot showing the path distance from gene co-expression networks between 1062 
novel cell cycle proteins and previously known cell cycle proteins in different normal 1063 
and cancer tissues. 1064 
B: Co-expression network analysis of the cell cycle regulated proteins in pancreatic, 1065 
breast and colorectal cancer. The network is clustered into communities using 1066 
mathematical models. Each community has been classified as favorable (green), 1067 
unfavorable (red) or both based on an enrichment / hypergeometric analysis. 1068 
 1069 
Figure 6: Novel cell cycle regulated proteins as potential clinical biomarkers  1070 
A: Kaplan-Meier plots showing the correlation between survival and gene expression 1071 
(FPKM) for four cell cycle regulated proteins. For RACGAP1 and DLGAP5 a high 1072 
expression was associated to a shorter survival (unfavorable), whereas for SYNE2 and 1073 
FAM50B a high expression was associated to a longer survival (favorable). Purple and 1074 
blue lines show high and low expression, respectively. 1075 
B: Images of immunohistochemically stained proteins in normal tissue. RACGAP1 in 1076 
breast, DLGAP5 in pancreas, SYNE2 and FAM50B in kidney. The target protein is 1077 
shown in brown and the nuclei in blue. 1078 
C: Images of immunohistochemically stained proteins in the corresponding tumor 1079 
tissue as to in B. RACGAP1 in breast cancer, DLGAP5 in pancreatic cancer, SYNE2 1080 
and FAM50B in renal cancer. The target protein is shown in brown and the nuclei in 1081 
blue. 1082 
D: Temporal interphase expression profile of RACGAP1, DLGAP5, SYNE2 and the 1083 
localization of FAM50B to the Cytokinetic bridge during mitosis.  1084 
E: Interaction networks for each of the proteins, using a medium confidence score with 1085 
a minimum interaction score of 0.4 and showing not more than 10 interactors. 1086 
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Figure 1 
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Figure 3 
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Figure 4 
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